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ABSTRACT

In this study, a novel computer aided diagnosis (CADx) framework is devised to investigate interpretability
for classifying breast masses. Recently, a deep learning technology has been successfully applied to medical
image analysis including CADx. Existing deep learning based CADx approaches, however, have a limitation
in explaining the diagnostic decision. In real clinical practice, clinical decisions could be made with reasonable
explanation. So current deep learning approaches in CADx are limited in real world deployment. In this paper, we
investigate interpretability in CADx with the proposed interpretable CADx (ICADx) framework. The proposed
framework is devised with a generative adversarial network, which consists of interpretable diagnosis network and
synthetic lesion generative network to learn the relationship between malignancy and a standardized description
(BI-RADS). The lesion generative network and the interpretable diagnosis network compete in an adversarial
learning so that the two networks are improved. The effectiveness of the proposed method was validated on
public mammogram database. Experimental results showed that the proposed ICADx framework could provide
the interpretability of mass as well as mass classification. It was mainly attributed to the fact that the proposed
method was effectively trained to find the relationship between malignancy and interpretations via the adversarial
learning. These results imply that the proposed ICADx framework could be a promising approach to develop
the CADx system.
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1. INTRODUCTION

In real clinical practice, radiologists usually read medical images and find the abnormalities to determine that
the patient has cancer. Normally, clinical decisions are made with reasonable descriptions which are recorded
in clinical reports. For the case of breast cancer diagnosis, the Breast Imaging Reporting and Data System
(BI-RADS) is defined by the American College of Radiology (ACR) and widely used as a standardized method
to record and communicate the abnormalities.1

Recently, a deep learning technology has dramatically succeed in various applications such as image/video
recognition,2–4 biometrics,5–8 image generation,9–11 and medical image analysis12–15 as well. Deep learning ap-
proaches have achieved impressive accuracies in computer-aided detection (CADe) and computer-aided diagnosis
(CADx) on various modalities.12,13,15 The use of the current deep learning approaches for CADx in real world
is limited due to the lack of interpretability. So, the interpretability of the decisions made by the deep learning
approach needs to be investigated for real world deployment.

In this study, a novel interpretable CADx (ICADx) framework is devised to overcome the aforementioned
limitation. The proposed framework is designed to make a diagnosis decision and to provide interpretation of the
decision with a standardized description (e.g., BI-RADS). Note that radiologist records patients abnormalities
based on BI-RADS in breast cancer diagnosis. To effectively learn the relationship between malignancy and BI-
RADs description, a generative adversarial network framework is devised. The generative adversarial network
framework consists of a synthetic lesion generative network and an interpretable diagnosis network. To the
best of our knowledge, the approach for interpreting the decision of deep learning with a standardized medical
description has not been reported in the area of CADx. Moreover, the proposed framework could provide
visual interpretation with the synthetic lesion generative network. In the experiments, the effectiveness of the
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Figure 1. Framework of the proposed interpretable CADx.

proposed method has been validated on the public mammogram database. Experimental results showed that
the proposed method could effectively provide interpretation of diagnosis as well as mass classification. It means
that the proposed deep network effectively learns the relationship between malignancy and standardized medical
descriptions through adversarial learning. The visual interpretation on diagnosis could provide the reliability of
the diagnostic decision and interpretation.

2. PROPOSED INTERPRETABLE CADX

An overall structure of the proposed interpretable CADx framework is shown in Figure 1. As shown in the figure,
the framework largely consists of 1) a synthetic lesion generative network and 2) an interpretable diagnosis
network. In the training stage, the generative network and the diagnosis network compete in a two-player
minimax game.9 The generative network tries to synthesize realistic-looking lesions from malignancy interpreting
conditions (e.g., margin and shape of masses). The diagnosis network tries to classify malignant masses and
benign masses and discriminate real and synthetic masses. Moreover, the diagnosis network tries to predict
medical description. With an alternative training in minimax two-player game, the generative network and
the diagnosis network can be boosted. In the test stage, the interpretable diagnosis network diagnoses mass
with interpretation (medical description). The synthetic lesion generative network is used for providing visual
interpretation of diagnosis. Details and learning procedure are described in the following subsections.

2.1 Synthetic Lesion Generative Network

In order to learn the relationship between malignancy and BI-RADS description, the synthetic lesion generative
network is devised to boost the interpretable diagnosis network through adversarial learning. To synthesize
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Figure 2. Detail structure of the synthetic lesion generative network.

the mass with malignancy interpretation condition, the proposed synthetic lesion generative network takes an
input image x ∈ R64×64 and malignancy interpretation conditions (i.e., margin label code ym ∈ RNm and shape
label code ys ∈ RNs) as shown in Figure 2. Nm and Ns denote the number of mass margin and the number
of mass shape. Each label code is passed through two fully connected layers with leaky ReLU.16 Through the
fully connected layers, each label code is embedded to a 256-dimensional vector and 4096-dimensional vector.
The 4096-dimensional vector is transformed to a spatial map (i.e., label channels). The input image (x) and
label channels (Im ∈ R64×64 and Is ∈ R64×64) are concatenated and induced to the synthetic lesion generative
network.

A U-Net structure,17 which consists of encoder and decoder with skip connection, is used as to synthesize
masses. The U-Net structure connects low layers in encoder and high layers in decoder by skip connection. The
U-Net structure allows the generative network to maximize the utilization of low-level information to elaborately
generate the masses. The noise is provided in the form of the dropout18 on the first two layers in the decoder of
the generator, which enables the generative network to make synthesized masses with variability.

2.2 Interpretable Diagnosis Network

The interpretable diagnosis network is designed to conduct diagnosis (i.e., classification of the malignant and
benign masses) and interpret the diagnostic decision with medical descriptions. As medical descriptions, margin
and shape of masses are used in this study. Margin of masses and shape of masses which are representative
characteristics of masses defined by BI-RADS. Figure 3 shows the example of the diagnosis results in inference
step (test stage). As shown in the figure, the proposed interpretable diagnosis network provides the explanation
on diagnostic decision in terms of BI-RADS description. For that purpose, the interpretable diagnosis network
is designed by a multi-task convolutional neural network (CNN). The VGG structure19 has been modified to
conduct multitask predictions (classification of malignancy, shape and margin of masses).

2.3 Learning Generative Adversarial Network

As explained in aforementioned subsections, ICADx network consists of two networks: the synthetic lesion gener-
ative network (G) and the interpretable diagnosis network (D). The interpretable diagnosis network which is the
multi-task CNN consists of multiple components. In this paper, we have four components: D = [Dd,Dm,Ds,Dr].
Dd ∈ R2 is for mass diagnosis (i.e., malignant and benign classification). Dm ∈ RNm is for mass margin, and
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Figure 3. Example of CADx results. The proposed method could provide diagnosis results with interpretation based on
radiologists terminology (margin and shape).

Ds ∈ RNs is for mass shape. Dr ∈ R1 is for real/synthetic mass classification. For learning the interpretable
diagnosis network (D), we define the following loss functions:

LD
gan = −Ex,y∼pd(x,y) [logDr(x)]− Ex,y∼pd(x,y),m∼pm(m),s∼ps(s)[log(1−Dr(G(x,m, s)))], (1)

LD
diagnosis = −Ex,y∼pd(x,y)

[
logDd

yd(x) + logDm
ym(x) + logDs

ys(x)
]
, (2)

where x denotes the mass image, G(x,m, s) denotes the synthetic lesion generated by the synthetized lesion
generative network in Figure 1 (a). y =

{
yd,ym,ys

}
denotes the label of mass x in training data where yd

denotes the label for mass diagnosis (malignant/benign). pd(x,y),pm(m), and ps(s) are distributions of training
samples for diagnosis, margin, and shape. Finally, the interpretable diagnosis network (D) is trained by using
the following objective function:

min
D

LD = LD
gan + λdL

D
diagnosis. (3)

For learning the synthetic lesion generative network (G), we define the following loss functions:

LG
gan = −Ex,y∼pd(x,y),m∼pm(m),s∼ps(s)[logDr(G(x,m, s))], (4)

LG
diagnosis = −Ex,y∼pd(x,y)

[
logDd

yd(G(x,m, s)) + logDm
ym(G(x,m, s)) + logDs

ys(G(x,m, s))
]
, (5)

LG
recon = Ex,y∼pd(x,y) [‖x−G(x,m, s)‖1] . (6)

The generative network is able to elaborately synthesize lesion and deceive the diagnosis network by using L1

reconstruction loss as well as adversarial loss. As a result, the final objective function for training the synthetic
lesion generative network (G) is the weighted average of each loss functions:

min
G

LG = LG
gan + µdL

G
diagnosis + µrL

G
recon. (7)

The overall network is trained to alternatively minimize Eq. 3 and Eq. 7. With D being more discriminative
in classifying real vs. synthetic mass and malignancy of mass and predicting margin and shape of masses, G
strives to synthesize an identity-preserving lesion with the corresponding shape and margin to compete with D.
In other words, the synthetic lesion generative network (G) and the interpretable diagnosis network (D) improve
each other during alternative training.



Algorithm 1: Interpretation of decision using the synthetic lesion generative network for the visual
interpreter

Input: x: Mass image, G : Synthetic lesion generative network, D : Interpretable diagnosis network
Output: x̂: Visually interpretable synthesized image, I: Interpretation of diagnostic decision
1. Conduct diagnosis on the mass image using the interpretable diagnosis network
- Estimated mass diagnosis (malignant/ benign): ŷd = Dd

yd(x)

- Estimated medical description: mass margin ŷm = Dm
ym(x), mass shape ŷs = Ds

ys(x)
2. Generate visually interpretable synthesized image: x̂ = G(x, ŷm, ŷs)
3. Compare the visually interpretable synthesized image x̂ with the mass image x
- If ‖x̂− x‖ ≤ δ : I = diagnostic decision is interpretable (δ denotes the threshold for interpretation)

Otherwise: I =diagnostic decision is not interpretable

2.4 Visual Interpreter

To provide visual interpretation on the diagnostic results, the synthetic lesion generative network is used for
visual interpreter. Note that the synthetic lesion generative network tries to synthesize mass with respect to the
malignancy conditions. As a result, the synthesized mass for test image from the true label codes is similar to the
original test image. However, the synthesized image from the false label codes (i.e., different label information for
test image) makes a large difference between the synthesized image and the original test image. Based on these
observations, the synthetic lesion generative network could also be utilized for providing the visual information
on the medical description in test stage as shown in Figure 1. The pseudocodes for visual interpretation using
the synthetic lesion generative network are given in Algorithm 1. In Section 3.4.2, we discuss the usage of the
synthetic lesion generative network for visual interpreter by showing the example cases.

3. EXPERIMENTS AND RESULTS

3.1 Dataset

In our experiments, public mammogram dataset named DDSM20 was used. In DDSM, mammogram images
were digitized by different scanners with different resolutions.20 For data consistency, mammograms scanned by
Howtek 960 were selected from the DDSM dataset because a large number of cases were scanned by Howtek
960. A total of 1,088 region of interests (ROIs) which were malignant or benign masses were cropped based on
the radiologists annotations for the experiments. Among them, 454 ROIs were malignant cases and 634 ROIs
were benign cases. For interpreting diagnosis decision, shape of masses and margin of masses, were selected from
BI-RADS descriptions because these are related with decision of malignant and benign masses. Figure 4 shows
detail information of the dataset. As shown in the figure, various masses found in clinical practice were included
in the dataset. Both Nm and Ns were 5 in this study. For evaluation purpose, 5-folds cross-validation was
conducted. In each test, 20% of the dataset was set aside as test sample and remaining 80% of the dataset was
used for training the deep network. There were no subject-overlap between training and test dataset. Finally,
the performance was reported by averaging 5-folds results.

3.2 Detail Architecture and Experimental Settings

For the synthetic lesion generative network, the U-Net structure17 was used. Both the number of convolution
layer in encoder and decoder of the generator was six, respectively. The number of channels of convolution layers
in encoder were 64, 128, 256, 512, 512, and 512 with filter size of 4×4. The decoder had six convolutional layers
with 512, 512, 512, 256, 128, and 64 channels with filter size of 4×4.

For the interpretable diagnosis network, the VGG-like structure14,19 was used. The number of the convolu-
tional layer was 13 and the final convolutional layer was flattend and passed through two fully connected layers.
First fully connected layer had 1,024 units and the last fully connected layer had 13 units. The 13-dimensional
vector sliced into four components as mentioned in subsection 2.3. The size of mini-batch was set to 16, and
Adam optimizer was used with a learning rate of 0.0002 and an exponential decay with momentum (set to 0.99).
The parameters of λd,µd, and µr in Eq. 3 and Eq. 7 were set to 0.1, 10, and 100, respectively.
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Figure 4. Information of dataset in this study. (a) Distribution of mass shapes, IRR: irregular, LOB: lobulated, OVA:
oval, ROU: round, ARC: architectural distortion. (b) Distribution of mass margins, ILL: ill defined, OBS: obscured, SPI:
spiculated, CIR: circumscribed, MIC: microlobulated.
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Figure 5. Comparison of ROC curves obtained from the proposed method, multitask CNN, and convetional CNN.

3.3 Assessment of Diagnosis

To verify the usefulness of the proposed method, comparative experiments were conducted. For the comparison,
we built conventional CNN which was based on VGG14,19 and multitask CNN. The multitask CNN was imple-
mented on top of the conventional CNN with multitask predictions including malignancy, shape, and margin of
masses. The conventional CNN and multitask CNN networks were initialized with parameters trained on large
scale image classification dataset through transfer learning and re-trained on the training dataset of this study.
Figure 5 shows the ROC curves21 for evaluating diagnosis performance. As shown in the figure, the area under
the ROC curve (AUC) of 0.908 was achieved by the proposed method. The AUCs of the multitask CNN and the



Table 1. Comparisons of the prediction accuracy for the diagnosis results in terms of the shape and margin of masses.

Performance measurement

Accuracy of shape prediction Accuracy of margin prediction

Proposed method 71.6% 70.6%

Multitask CNN 66.1% 61.0%

conventional CNN were 0.893 and 0.868, respectively. The proposed method achieved the highest performance
compared with the multitask CNN and the conventional CNN. It was mainly attributed to the fact that the in-
terpretable diagnosis network was trained with the synthetic lesion generative network in the adversarial learning
strategy. The competition with the generative network improved the performance of the diagnosis network.

3.4 Assessment of Interpretation

3.4.1 Assessment of medical description

To access the performance of diagnosis prediction with interpretation, the comparative experiment was con-
ducted. Table 1 shows the diagnosis prediction accuracy with the interpretation in terms of medical description
(BI-RADS). As shown in the table, by learning the proposed method with adversarial learning strategy using
Eq. 3 and Eq. 7, the proposed method achieved higher prediction accuracy in terms of medical description (BI-
RADS) compared with multitask CNN. It was mainly due to the reason that the proposed method could learn
the relationship between diagnostic result and medical description. The proposed method embedded medical
description (i.e., malignancy interpretation conditions) to image domain and learned the relationship between
medical description and malignancy of masses through the adversarial learning strategy. As a result, the inter-
pretable diagnostic network was trained to provide accurate interpretation on diagnostic decision. In order to
show the effectiveness of the proposed method, the masses synthesized from the proposed synthetic lesion gen-
erative network are represented as shown in Figure 6. As shown in the figure, the proposed method elaborately
synthesized the masses with respect to the malignancy interpretation conditions.

3.4.2 Visual Interpretation at test stage

As explained in subsection 2.4, the synthetic lesion generative network could be used for visual interpreter in
test stage. Figure 7 shows the example of the masses and the synthesized image. Figure 7 (b) and (e) show the
synthesized from the true margin and shape label codes. For figure 7 (b), the visually interpretable synthesized
image was generated by using the label codes of spiculated margins and irregular shape. For figure 7 (e), the
image was generated by using the label codes of circumscribed margins and round shape. Due to the reason
that the synthetic lesion generative network was trained to synthesize masses as realistic as possible, if the test
image was put in the generative network with true label codes, the synthesized mass was similar to the original
test image. On the other hand, if the test image was put in the generative network with false label codes, the
synthesized image was very different from the original test image. Figure 7 (c) was generated by obscured margins
and oval shape which were frequently observed in benign masses. In other words, if the interpretable diagnosis
network make wrong decision on figure 7 (a) to benign masses, the visual interpreter could not reconstruct mass
image as in figure 7 (c). In the same way, figure 7 (f) was generated by ill-defined margins and irregular shape
which were frequently observed in malignant masses. Based on these observations, the synthetic lesion generative
network could be used as the visual interpreter for diagnostic decision and BI-RADS description. If the difference
of the visually interpretable synthesized image and the test mass image is larger than pre-defined threshold δ,
the decision of CADx is not interpretable.
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Figure 6. Example images synthesized by the proposed synthetic lesion generative network. (a) Synthesized masses with
spiculated margins. (b) Synthesized masses with ill defined margins. (c) Synthesized masses with circumscribed margins.
(d) Synthesized masses with obscured margins.

4. CONCLUSIONS

In this study, the interpretable CADx framework has been proposed to provide the diagnostic decision with
interpretation in terms of medical descriptions (BI-RADS). To effectively learn the relationship between ma-
lignancy and medical description, the proposed method was designed with the generative adversarial network.
The generative adversarial network consisted of the synthetic lesion generative network and the interpretable
diagnosis network which were improved via the adversarial learning. Comparative experiments were conducted
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Figure 7. Visual interpretation on diagnostic results. (a) Example of malignant mass with spiculated margins and
irregular shape. (b) Visually synthesized lesion with true label codes. (c) Visually synthesized lesion with false label
codes. (d) Example of benign mass with circumscribed margins and round shape. (e) Visually synthesized lesion with
true label codes. (f) Visually synthesized lesion with false label codes.

to validate the effectiveness of the proposed method. Experimental results showed that the proposed method
effectively interpreted the diagnosis decision in terms of BI-RADS. Moreover, the synthetic legion generative
network could be used as visual interpreter for diagnostic results. These results imply that the proposed ICADx
could be a promising approach to develop the CADx system. As a future work, we have a plan to increase the
number of interpretations such as density and subtlety. The interpretable deep learning approach can also be
extended to CADx and CADe for other modalities such as digital breast tomosynthesis22,23 and ultrasound.24
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