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ABSTRACT

Background: Observing the spatial pattern of tumour infiltrating lymphocytes in follicular lymphoma can lead
to the development of promising novel biomarkers for survival prognosis. We have developed the “Hypothesised
Interactions Distribution” (HID) analysis, to quantify the spatial heterogeneity of cell type interactions between
lymphocytes in the tumour microenvironment. HID features were extracted to train a machine learning model
for survival prediction and their performance was compared to other architectural biomarkers. Scalability of
the method was examined by observing interactions between cell types that were identified using 6-plexed im-
munofluorescent staining. Methods: Two follicular lymphoma datasets were used in this study; a microarray
with tissue cores from patients, stained with CD69, CD3 and FOXP3 using multiplexed brightfield immuno-
histochemistry and a second tissue microarray, stained with PD1, PDL1, CD4, FOXP3, CD68 and CD8 using
immunofluorescence. Spectral deconvolution, nuclei segmentation and cell type classification was carried out,
followed by extraction of features based on cell type interaction probabilities. Random Forest classifiers were
built to assign patients into groups of different overall survival and the performance of HID features was assessed.
Results: HID features constructed over a range of interaction distances were found to significantly predict overall
survival in both datasets (p = 0.0363, p = 0.0077). Interactions of specific phenotype pairs, correlated with un-
favourable prognosis, could be identified, such as the interactions between CD3+FOXP3+ cells and CD3+CD69+

cells. Conclusion: Further validation of HID demonstrates its potential for development of clinical biomarkers
in follicular lymphoma.

Keywords: Follicular lymphoma, prognostic, biomarker, multiplexed immunofluorescence, Hypothesized Inter-
action Distribution (HID), architectural heterogeneity

1. INTRODUCTION

1.1 Background

Follicular lymphoma is the most common of the low grade Non-Hodgkins lymphomas (NHL), with a 5-year
relative survival of 86.5% and a median survival of 12-16 years. It follows an indolent course1 and most patients
go through many periods of remittance and relapse, however it is considered an incurable disease.

A complex interplay is evident between the tumour infiltrating lymphocytes (TILs) in follicular lymphoma
and the neoplastic B-cells. There have been many studies linking the heterogeneity of TILs in the tumour
microenvironment (TME) of follicular lymphoma to survival. This link supports the potential for novel TME
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biomarkers for: survival prognosis; as a means to target end-of-spectrum cases for clinical trials; to select
appropriate treatment in the age of personalised medicine; or, for companion diagnostics. TME biomarkers,
when compared with conventional clinically used biomarkers such as the FLIPI score, allow a direct observation
of the disease mechanisms and interactions between relevant cell types, permitting potential for discovery of new
disease mechanisms, disease subtypes or new treatments. Looking at studies searching for clinically useful TME
biomarkers in follicular lymphoma, it becomes apparent that the overwhelming majority use cell population
numbers or density to quantify the heterogeneity, while only a handful2,3 mention the potential of observing the
spatial pattern as a biomarker. This approach is limited because it does not account for the spatial distribution
of cell populations. Additionally, it ignores micro-heterogeneity,4 the variation of protein expression within
“homogeneous” populations of cells.

Microscopy imaging of tissue sections stained with immunohistochemistry (IHC) markers in monoplex or
multiplex can preserve the architectural information between different cell phenotypes and it can even localise
proteins in a sub-cellular resolution.5 This functionality makes IHC a good candidate to study spatial hetero-
geneity as contrary to other methods, such as flow cytometry or single cell sequencing, it preserves the spatial
structure of the sample. Multiplexed IHC conjugates antibodies to dies or fluorophores and can be used to
concurrently detect multiple antigens in a single frozen or paraffin-fixed tissue section.5 It can be applied in
whole tissue sections or tissue microarrays (TMA) to reduce the associated cost. However, IHC studies may be
challenging to validate for a variety of reasons.6 If the interpretation of the images is done manually, results may
be inconsistent because of intra- and inter-observer variability. Choice of area and magnification on the micro-
scope may also skew the results, as could different approaches in staining. These factors produce discrepancies in
the reported prognostic significance of several patterns of follicle infiltration in the literature (eg. interfollicular,
follicular, perifollicular, diffuse). As an example, in Farinha et al.3 a diffuse pattern of FOXP3+ cells is shown
to correlate with a favourable prognosis, while Lee et al.7 report that a peri-follicular pattern of the same cells
is a favourable indicator of patient outcome. The qualitative way in which these patterns are assessed makes it
difficult to compare and reproduce these results. However, a computer automated approach for the quantifica-
tion of architectural pattern could potentially remedy this problem, as well as aid in the interpretation of highly
multiplexed images, where distinguishing the different protein signals by eye becomes impossible.

1.2 Related Work

Recently, several studies8,9 have shifted their focus into developing computer vision systems specifically for
interpreting highly multiplexed IHC, or similar types of images where multiple protein signals can be observed
on the same tissue sample, such as the ones obtained using toponome imaging systems10 (TIS). For multiplexed
IHC, commercial solutions are available to spectrally unmix the multiple protein signals, segment the cells and
perform further processing steps. Some examples include inForm (PerkinElmer), Nuance (PerkinElmer) and Halo
(Indica Labs) and the Definiens imaging software. Once the signal from each protein has been isolated using
spectral deconvolution or some other method, the cellular compartments are automatically segmented based on a
nuclear counterstain. Each cell is then represented as a multidimensional vector of the various protein intensities
in each of the sub-cellular components (nucleus, cytoplasm and membrane). This poses the problem of how we
identify meaningful cell phenotypes from this stain intensity information that could be recognised by pathologists
and linked to their biological functions (e.g. Tregs, natural killer cells).

A simplistic approach to phenotyping is assuming a cell can be either positive or negative for a specific stain,
using a specified threshold for cut-off. However, finding the appropriate thresholds to perform this task is not
straightforward. Barysenka et al.11 proposed an information theoretic approach that calculates these thresholds
based on the requirement that the intensity signals for different markers in one composite TIS image must
be correlated. This method automatically accounts for the variation observed as part of the imaging process.
In practice, an empirical approach is often adopted, where the thresholds for the cut-off are determined by a
trained pathologist. Another approach to phenotyping proposes clustering, using a locality preserving, nonlinear
embedding algorithm and the raw, entire cell, protein intensity vectors as features.12 Clustering avoids the
binarisation of the protein signals, minimising the information loss and allowing the discovery of sub-categories
of cell populations and the observation of micro-heterogeneity. A similar approach was proposed Humaun et
al.,13 where phenotyping is carried out by unsupervised hierarchical clustering with a predefined number of 20
clusters. Affinity propagation clustering was also used by Kovacheva et al.14 to phenotype colon cancer samples
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stained with 12 cell markers, while unsupervised K-SVD clustering was used by Spagnolo et al.15 Dress et al.16

introduce a series of metrics that can be used in TIS/multivariate images to quantify similarity between pixels
and assist on clustering for cell phenotyping. These metrics were used in an interactive visualisation tool, where
selecting a pixel automatically highlights all other pixels with similar protein distributions.

Many studies have hypothesised that differential patterns of phenotype interactions have the potential to
discriminate between disease sub-types and even predict outcome. The relevance of phenotype colocalisation for
biomarker development was supported by a study17 which found that the numbers of FOXP3+ expressing Tregs
are prognostic of good outcome in gastric cancer, only if located within a specified distance of CD8+ T-cells.
Spagnolo et al.15 built networks where only the interacting cells of a sample were connected, where the two
cells were considered to interact if found within an specified distance of each other. Based on these networks,
the pointwise mutual information (PMI) of each phenotype pair was calculated, to quantify association between
phenotypes. It was observed that differences in these associations could discriminate between different types
of invasive ductal carcinoma. We have developed the Hypothesized Interactions Distribution (HID) method,18

to quantify the heterogeneity of cell type interactions in the TME, using multiplexed immunohistochemistry
and machine learning. We applied HID for overall survival prediction from right censored data in a follicular
lymphoma data set stained for CD3+, CD69+ and FOXP3+, which allowed us to observe interactions between
CD3+FOXP3+ Tregs and other CD3+CD69+ activated T-cells. Methods that consider protein colocalisation
instead of phenotype colocalisation have also been developed. These methods don’t rely on the concept of a
fixed distance, within which cells can interact. Such a method was introduced by Kovacheva et al.14 to identify
protein-pairs that are specific to cancer in colon tissue TIS images.

1.3 Contribution

The current work studies further the spatial heterogeneity of cell interactions in follicular lymphoma by comparing
the performance of the HID method against other methods that observe spatial interactions in the TME, and
demonstrates its scalability in more highly multiplexed images, stained with PD1, PDL1, CD4, FOXP3, CD68
and CD8. The architectural relations between further subsets of TILs are examined in this way, and spatial
patterns that correlate with overall survival are identified. Finally, a simple automated phenotyping scheme is
introduced that relies on thresholding of the unimodal distribution of each stain intensity and can be applied on
a per sample basis. The automatically selected thresholds were validated against thresholds manually selected
by a pathologist.

2. MATERIALS AND METHODS

2.1 Data sets

For the retrospective analysis that follows we used formalin-fixed, paraffin embedded (FFPE) lymph node samples
from a follicular lymphoma cohort of 44 patients from the study of Nelson et al.2 These samples were obtained
with informed consent, with ethical permission granted by the Central Manchester Multi-centre Research Ethical
Committee (03/08/016). Overall survival data is available for these patients up to 171 months follow-up and
29.5% (13 patients) of the survival data is censored. None of the patients were treated with Rituximab and the
median survival was 4.5 years. All the samples corresponded to initial pre-treatment biopsies at first presentation
and were retrieved from the archives of the Christie Hospital, Manchester. After selection of regions of interest
by a pathologist (R.J.B.), 56 cores of 1mm diameter and 3mm depth were selected, extracted and used to create
tissue micro-arrays (TMA) for the multiplexed IHC experiment. Hereafter, this is referred to as the Nelson
dataset, which was used to study interactions between CD3+, FOXP3+ and CD69+ cells.

From the same cohort, a second TMA series were constructed, with the same process, containing 227 cores
from 40 patients. This dataset, referred to as the Fitzpatrick dataset, was used to study interactions between
cells positive for PD1, PDL1, CD4, FOXP3, CD68 and CD8.

Both TMA series contain multiple cores taken from each biopsy section, as well as multiple slides cut from
each core, to account for inconsistencies in the staining and imaging process. Detailed information on the cohort’s
clinical data is available in table 1.
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Table 1. The cohort’s clinical data.

Total number of patients 53

Age 35-73 (mean 55) years

Male 54.72%
Female 45.28%

Stage

I 3
II 5
III 10
IV 11

Unknown 24

FLIPI

0 2
1 7
2 10
3 8
4 2
5 0

Unknown 24

Bone marrow involvement

Yes 11
No 17
Unknown 25

2.2 Multiplexed Staining

The slides cut from the TMA of the Nelson dataset, underwent an indirect, bright-field, IHC 3-plex protocol on
the Ventana Benchmark automated staining system (Ventana Systems, Arizona, USA). The primary antibodies
used were CD3, FOXP3 and CD69, each paired with an appropriate secondary, raised against the host species
of the primary. For illumination, chromogenic dyes (Dyomics Blue, Vector Red and BrightDAB, BrightVision
plus kit) and a hematoxylin counterstain were applied. Antigen retrieval was heat induced. A detailed protocol
for this experiment can be found in Nelson et al.2 Once stained, the cores were scanned into individual images
with .im3 spectral cube format and 20x magnification, using the Vectra slide scanner (PerkinElmer).

Slides cut from the TMA of the Fitzpatrick dataset underwent an indirect immunofluorescent IHC 6-plex
protocol. The Ventana Benchmark stainer was employed to run repeated cycles of pre-treatment, blocking,
incubation with a primary and a secondary antibody, and finally application of a fluorophore as a detection
label. All primaries were raised in mouse, except PDL1, which was raised in rabbit. The use of Opal 7-Color
Automation IHC kit (PerkinElmer), which relies on tyramide signal amplification (TSA) technology, was used.
Table 2 contains detailed information on the protocol, fluorophore spectra and specifications of the reagents used.
The slides were counterstained with DAPI to illuminate the nuclei of all cells and scanned with the Vectra slide
scanner, in similar fashion to the Nelson dataset.

2.3 Pre-processing, Segmentation and Cell Phenotyping

Nelson dataset: Multi-spectral imaging in the visible spectrum was used for multiplexing and spectral unmixing
was performed as described in Nelson et al.2 Nuance (PerkinElmer) software was used to locate the centroid
coordinates of the cells and mark them as positive or negative for each of the stains, using empirical thresholding
by a pathologist. Thus, a binary vector of positivity for each stain was assigned to each cell. For N stains, 2N −1
combinations of stain positivity are possible, since the cells negative for all stains cannot be observed. Each of
these combinations was considered as a distinct cell phenotype. At the end of the pre-processing steps, for each
sample, a list of cell coordinates and phenotype labels for each cell were available.

Fitzpatrick dataset: inForm (PerkinElmer) software was used for the spectral deconvolution and segmenta-
tion. The cells in these samples were densely packed and an object based segmentation algorithm was selected.
The DAPI counterstain component was selected to segment the nuclear compartment, while cytoplasmic seg-
mentation was based on two of the markers that illuminate the cytoplasm, namely PD1 and CD8. The area
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Table 2. All steps in the 6-plex immunofluorescence staining protocol were carried out by the Ventana autostainer, except
the final washing step and application of counterstain. At the time this protocol was performed, the Ventana software
did not support a 6-plex configuration, thus the procedure was coded as three sequential 2-plex protocols. HIER: Heat
induced epitope retrieval, CC: Cell Conditioning, HRP: Horseradish peroxidase, TSA: Tyramide signal amplification.

STEP Description Time (min)

Deparaffinisation 3 cycles of 8 min tissue deparaffinisation at 69◦C 24

HIER HIER carried out at 91◦C while the slides were incubated with CC solution (pH = 6) 32
Blocking Incubation with DISCOVERY Inhibitor 16
Primary antibody: Anti-CD4 Incubation with primary antibody at 37◦C 32
Secondary antibody Incubation with DISCOVERY OmniMap Anti-mouse secondary, conjugated to HRP 16
Detection label: Opal 650 Incubation with Opal fluorophore, diluted at 1:75 with TSA solution 16

HIER HIER carried out at 95◦C while the slides were incubated with CC solution (pH = 9) 16
Blocking Incubation with DISCOVERY Inhibitor 16
Primary antibody: Anti-CD8 Incubation with primary antibody at 37◦C 32
Secondary antibody Incubation with DISCOVERY OmniMap Anti-mouse secondary, conjugated to HRP 16
Detection label: Opal 540 Incubation with Opal fluorophore, diluted at 1:75 with TSA solution 16

HIER HIER carried out at 95◦C while the slides were incubated with CC solution (pH = 9) 16
Blocking Incubation with DISCOVERY Inhibitor 16
Primary antibody: Anti-CD68 Incubation with primary antibody at 37◦C 32
Secondary antibody Incubation with DISCOVERY OmniMap Anti-mouse secondary, conjugated to HRP 16
Detection label: Opal 620 Incubation with Opal fluorophore, diluted at 1:75 with TSA solution 16

HIER HIER carried out at 95◦C while the slides were incubated with CC solution (pH = 9) 16
Blocking Incubation with DISCOVERY Inhibitor 16
Primary antibody: Anti-FOXP3 Incubation with primary antibody at 37◦C 32
Secondary antibody Incubation with DISCOVERY OmniMap Anti-mouse secondary, conjugated to HRP 16
Detection label: Opal 570 Incubation with Opal fluorophore, diluted at 1:75 with TSA solution 16

HIER HIER carried out at 95◦C while the slides were incubated with CC solution (pH = 9) 16
Blocking Incubation with DISCOVERY Inhibitor 16
Primary antibody: Anti-PD1 Incubation with primary antibody at 37◦C 32
Secondary antibody Incubation with DISCOVERY OmniMap Anti-mouse secondary, conjugated to HRP 16
Detection label: Opal 520 Incubation with Opal fluorophore, diluted at 1:75 with TSA solution 16

HIER HIER carried out at 95◦C while the slides were incubated with CC solution (pH = 9) 16
Blocking Incubation with DISCOVERY Inhibitor 16
Primary antibody: Anti-PDL1 Incubation with primary antibody at 37◦C 32
Secondary antibody Incubation with DISCOVERY OmniMap Anti-rabbit secondary, conjugated to HRP 16
Detection label: Opal 690 Incubation with Opal fluorophore, diluted at 1:75 with TSA solution 16

Washing Slides are submerged in EZ preparation solution for 3x5 min to remove oil coverslip 15
Washing Slides are washed with water 5
Counterstain DAPI Slides are coverslipped with aqueous Prolong Anti-Gold mounting agent with DAPI 4
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of cells was determined to range between 70-700 pixels and refined splitting was applied after segmentation to
break up clusters of closely packed cells that had been detected as one. The image of each core was exported
from inForm as a collection of cell coordinates, and for each cell the mean intensity of the 6 markers in the
cytoplasmic and the nuclear compartment were available.

High variance in the range of intensities for all markers between different slides and between different TMA
cores within the same slide prohibited the use of a single set of thresholds for cell phenotyping. Instead, thresholds
were determined in a per-sample basis from the histograms of mean stain intensities of the nuclear or cytoplasmic
compartments. It was observed that in all samples these histograms followed unimodal distributions; a single
peak close to zero would represent noise, i.e. all the cells with non specific background staining, while the
true positive cells would be located at the right tail of the distribution. We employed the maximum deviation
thresholding algorithm for unimodal images as proposed in Rosin et al.19 to calculate a threshold for each sample
as demonstrated in figure 1.

Table 3. Pearson’s Coefficient to assess linear correlation between manually and automatically selected thresholds.

Antibody Stain intensity Pearson’s R

PD1 Cytoplasm Opal 520 Mean 0.941
CD8 Cytoplasm Opal 540 Mean 0.782

FOXP3 Nucleus Opal 570 Mean 0.786
CD68 Cytoplasm Opal 620 Mean 0.871
CD4 Cytoplasm Opal 650 Mean 0.993
PDL1 Cytoplasm Opal 690 Mean 0.992

To validate the automatic threshold calculation, we manually selected thresholds for each stain for 20 samples
from our dataset using the unmixed component views generated by the inForm software. We used RANSAC
regression analysis to validate the automatic thresholds, and found that there was a strong linear correlation
with the manually selected thresholds (see table 3). Therefore, to further improve the accuracy of phenotyping,
we applied a linear correction to the automatic thresholds using the regression parameters.

The nine most frequent cell types that resulted from applying this phenotyping scheme, PDL1+, CD4+PDL1+,
CD4+, CD68+, FOXP3+, CD4+FOXP3+, CD8+, PD1+CD4+ and PD1+ were considered in the analysis that
follows. The rest had frequencies less than 2% and were considered artefacts which may occur because of the
non-specific nature of cytoplasmic staining, bleed through from other components during spectral unmixing or
suboptimal thresholds selected in the phenotyping stage.

2.4 Spatial Architecture Feature Extraction

HID and PMI features are extracted, as described in18 and,15 respectively. A cell interaction is hypothesized to
occur whenever two cells fall within a distance threshold d of each other. If the position and phenotype label of
each cell are represented as xi and li , respectively, then each element of the HID feature vector is computed as
follows:

Hi,j = |{(i, j)|xi ∈ Ci,xj ∈ Cj , ||xi − xj||2 < d}| . (1)

In Eq. (1) Ci and Cj are the sets of cells with phenotype label li and lj respectively. Thus each element of the
HID matrix contains the number of occurrences where a cell with phenotype i is less than d pixels from a cell of
phenotype j. The symmetric HID matrix is normalised, so that its upper-triangle sums to one and its elements
then represents the probabilities of observing an interaction between each pair of phenotypes.

Furthermore, a PMI feature vector can be calculated, where each element represents the pointwise mutual
information for a pair of phenotypes:

PMIi,j = log
ps(i, j)

pt(i)pt(j)
, (2)

where ps(i, j) is the probability of observing an interaction between phenotypes i and j in a single sample,
whereas pt(i) and pt(j) refer to the probabilities of occurrence of phenotypes i and j in all samples. In the case
of the PMI vector features, the interaction distance threshold is calculated from the mean distance of each cell
from its 10 nearest neighbours.
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Figure 1. Automated threshold selection for cytoplasmic stain PD1 (Opal 520). A: First, a Gaussian kernel was applied to
smooth the histogram and a line was drawn from the peak of the distribution to the end of the tail. Then, the appropriate
threshold was selected as the point in the smoothed histogram that had the maximum perpendicular distance from the
line. B: Unmixed component view in inForm. C: The result of phenotyping using the manually selected threshold of
8.5. Cells annotated in red are positive for PD1, while blue are stained with DAPI only. D: Phenotyping using the
automatically selected threshold of 6.37.

While both the PMI and HID features operate on the basis of a single selected interaction distance, when
looking at patterns between multiple pairs of phenotypes, it is possible that different patterns and therefore
different interaction distances could be considered most informative per phenotype pair. A new set of HID type
features is therefore proposed, the cumulative HID (cHID) to capture this information. For each combination
of phenotypes, we build a cumulative histogram of the number of interactions between a combination of cell
phenotypes over a range of distances. The number or interactions at any given distance are normalised by the
total number of possible interactions contained within the sample.

2.5 Random Forests for Survival Prediction

Three Random Forest (RF) classifiers were trained to predict a binary risk score for the patients, using either
HID, PMI or cHID feature vectors. As ground truth for training, target groups were defined by splitting the
patient survival data at the median value. By attempting to classify each patient correctly into the short or long
survival groups, the RF would learn to identify which features are most important in predicting overall survival.
The median survival in the Nelson and Fitzpatrick datasets was 53 and 55 months respectively. The scoring
function of the RF was classification accuracy and the criterion for selecting a threshold for the best split at each
node was Gini impurity.
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Training and scoring the performance of the RF was carried out on a per sample basis, and predictions were
generated by leave one out cross validation. However, to avoid having the model over fit on patient specific
characteristics during training, the cross validation scheme was stratified per patient. This way, in each fold all
the samples for a patient would be found on either the train set or the test set, but not simultaneously in both.
Predictions from all samples of a single patient were treated as equally weighted votes, and the aggregation of
risk scores was carried out by selecting the most frequently occurring vote.

In the case of the HID vector features, the interaction distance threshold was chosen within the training fold
during the cross validation procedure.

3. RESULTS

3.1 Risk prediction in the Nelson dataset

Figure 2 shows that the RF trained with HID features slightly out-performed the RF with PMI and cHID features
when performing a Kaplan-Meier analysis on the predicted patient groups. In all cases RF with 100 trees were
sufficient to discriminate well between high and low risk patients in the test set. The HID performed optimally for
interaction distances of 65 microns, while the PMI selected a distance of 350 microns. The binary classification
predictions were aggregated for all samples of a single patient. Thus a categorical, high or low risk index was
generated. All three risk indices was were significant in univariate Cox proportional hazards regression analysis,
presented in Table 4. The confidence intervals in the Kaplan-Meier plots were calculated based on Greenwoods
estimator of the survival function’s variance, with α = 95%. Representative samples for the long and short
survival groups are presented in figure 3. Feature importance was assessed for the three random forests, and the
features that are associated with the following interactions are found to have the most impact in the performance
of all classifiers; (i) interactions between cells both positive for FOXP3 and (ii) interactions between cells positive
for FOXP3 and positive for CD69. Favourable outcome was observed when type (i) interactions were infrequent
and type (ii) interactions were frequent.

Single scores were also used to summarise the HID and PMI feature vectors in the Nelson dataset. These
scores might lead to some information loss, associated with reducing the dimensions of the feature vectors,
but are nevertheless useful, as they could be easily integrated into conventional Kaplan-Meier analysis. These
scores represent measures of heterogeneity of the spatial interactions, overall. The Shannon entropy was used to
summarise the HID features and the PMI HET15 score to summarise the PMI features. The survival log rank
test scores for the predicted splits were p = 0.00004, χ2 = 16.59 and p = 0.0002, χ2 = 13.43, respectively. Higher
scores, corresponding to more heterogeneous interactions were associated with favourable outcome.

Figure 2. Kaplan-Meier curves and results for the survival log rank test between the two predicted groups of patients.
The predictions were generated with leave one out cross-validation using the Random Forest with HID vector features,
Random forest with PMI vector features and Random forest with cHID vector features. Group A corresponds to the
positive class with the highest probability of survival. The timeline refers to months.

3.2 Risk prediction in the Fitzpatrick dataset

The RF were trained with HID, PMI or cHID features and 1000 trees on the Fitzpatrick dataset, where the
phenotypes considered were nine. Predictions from multiple samples of the same patient were aggregated and
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Figure 3. For representative patients from the long and short survival group, the composite images and the graphs of
interactions between FOXP3+-FOXP3+ and FOXP3+-CD69+ cells are presented.

risk indices were generated, as in the Nelson dataset. However, in this dataset it was observed that HID and
PMI features failed to correlate with overall survival in the univariate Cox regression, as seen in table 4. Only
the RF trained with cHID features, could significantly predict survival. In this classifier, higher importance was
given to features concerning interactions between cells positive for PD1, FOXP3, CD68 and double positive for
FOXP3 and CD4.

Table 4. Univariate Cox Regression for the risk scores predicted by the Random Forests. For patients with multiple
samples the risk scores have been aggregated by selecting the most frequently occurring prediction, before fitting the Cox
model. The concordance index (CI) provides the equivalent of AUC estimate for survival analysis.

Fitzpatrick Dataset Hazard Ratio p Lower 0.95 Upper 0.95 Mean CI (10-fold CV)

40 Patients cHID score 0.54 0.00767 0.34 0.85 0.59
30 Events HID score 0.78 0.21340 0.53 1.15 0.53

PMI score 0.74 0.13650 0.50 1.10 0.57

Nelson Dataset Hazard Ratio p Lower 0.95 Upper 0.95 Mean CI (10-fold CV)

44 Patients cHID 0.68 0.03631 0.47 0.98 0.59
31 Events HID score 0.50 0.00048 0.34 0.74 0.69

PMI score 0.62 0.01746 0.42 0.92 0.65

4. DISCUSSION

The phenotyping method that we proposed, based on automated unimodal thresholding of stain intensity thresh-
olds, offers many benefits. It is a simple, quick method which can be applied even in cases where staining is
highly variable between samples in the dataset. Even if it does not offer the level of sophistication of clustering
methods, it has the advantage that its results can be easily validated. The phenotypes produced using this
method are furthermore easily linked to their biological function by a pathologist. When applied to the Fitz-
patrick dataset only few phenotypes were observed in the resulting distribution with high frequencies, which
points to the accuracy of the method.

The RF trained with HID, PMI and cHID features further validate that information encoded in the spatial
interactions in the TME have the potential to predict outcome for follicular lymphoma. Even though the HID
method has been applied for outcome prediction in Follicular lymphoma in the past, this is the first time, to our
knowledge, that the PMI method has been used for the same application. Furthermore, the extended cumulative
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HID method was introduced, which does not require a selection of interaction distance parameter, and was shown
to perform robustly in both datasets, scaling successfully to a higher number of phenotypes. The accuracy of cell
identification in highly multiplexed systems is often not optimal, which is to be expected, as the repeated cycles
of staining wear the tissue and co-localisation of stains presents a challenge to spectral unmixing. The cHID
could however overcome obstacles presented by the added noise in the data and significantly predict survival in
a univariate Cox Regression for both dataset. It is worth mentioning that the hazard ratios in table 4 represent
the death rate associated with the low risk group relative to the high risk group, as a higher predicted score by
the RF corresponds to favourable outcome.

The features selected by the RF as most significant were all associated with Tregs, macrophages, and PD1
positive cells, which agrees to previous studies observing architecture as a biomarker in follicular lymphoma.3,7

Further validation in larger datasets of follicular lymphoma patients would be necessary, however, in order to
develop biomarkers that could be clinically relevant. Not having sufficient clinical data to compare the cHID
with other clinically used risk scores, such as the FLIPI, presents a limitation for this analysis.
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