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Abstract

Algorithms for image segmentation (including object recognition and delineation) are influenced 

by the quality of object appearance in the image and overall image quality. However, the issue of 

how to perform segmentation evaluation as a function of these quality factors has not been 

addressed in the literature. In this paper, we present a solution to this problem. We devised a set of 

key quality criteria that influence segmentation (global and regional): posture deviations, image 

noise, beam hardening artifacts (streak artifacts), shape distortion, presence of pathology, object 

intensity deviation, and object contrast. A trained reader assigned a grade to each object for each 

criterion in each study. We developed algorithms based on logical predicates for determining a 1 to 

10 numeric quality score for each object and each image from reader-assigned quality grades. We 

analyzed these object and image quality scores (OQS and IQS, respectively) in our data cohort by 

gender and age. We performed recognition and delineation of all objects using recent adaptations 

[8, 9] of our Automatic Anatomy Recognition (AAR) framework [6] and analyzed the accuracy of 

recognition and delineation of each object. We illustrate our method on 216 head & neck and 211 

thoracic cancer computed tomography (CT) studies.
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1. Introduction

Many publicly available data sets, performance metrics, methods, and associated software 

under the name “Segmentation Challenges” exist for evaluating medical image segmentation 

algorithms. However, it is currently not possible to obtain a quantitative understanding of 

segmentation performance as a function of input image quality. Consequently, it is 

impossible to present a holistic picture of segmentation performance independent of input-

image-specific vagaries due to unknown quality. We present a novel methodology to 

overcome this hurdle. For a holistic evaluation, it is important to define object and image 

quality metrics and segmentation evaluation metrics as a function of these quality metrics. 
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No such efforts seem to have been undertaken to date in segmentation challenges and other 

quantitative medical imaging application efforts.

We describe our method of segmentation assessment as a function of image and object 

quality in Section 2. We illustrate our method on 216 head & neck cancer CT studies and 

present results on these quality measures in Section 3. We summarize our conclusions in 

Section 4.

2. Methods

Data sets

We retrospectively created a database of a mix of contrast-enhanced and un-enhanced CT 

images and dosimetrist-drawn contours in 216 cancer studies in head-and-neck (H&N) from 

the Department of Radiation Oncology, University of Pennsylvania on this IRB-approved 

study. Image and contour data pertained to patients in four groups (54 studies in each group) 

– male and female in the age range 40–59 and 60–79. Voxel size in these data sets ranged 

from 0.93 × 0.93 × 1.5 mm3 to 1.6 × 1.6 ×. 3 mm3.

We developed precise definitions of 11 key organs at risk (OARs) [5], by extending object 

definitions from recent guidelines [3,4], and modified contour data to fulfill these 

definitions. This turned out to a very arduous task since adherence to definitions is loose and 

the guidelines had many gaps which prevented them from being used directly for 

computational modeling of objects which require precise definitions.

Quality criteria

We devised a set of key quality criteria that influence segmentation (global and regional):

• body posture deviations

• image noise

• beam hardening artifacts (streak artifacts)

• shape distortion

• presence of pathology

• object intensity deviation

• object contrast

Some of these criteria are illustrated in Figure 1 for data sets from our cohort.

Quality metrics

A trained reader then assigned a grade to each object for each criterion in each study. We 

developed algorithms based on logical predicates for determining a 1 to 10 numeric quality 

score for each object and each image from reader-assigned quality grades. We analyzed 

these object and image quality scores (OQS and IQS) in our cohort by gender and age. We 

then described the performance of a segmentation method for any given metric over the 

entire quality score scale as a distribution of that metric. We performed recognition and 
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delineation of all objects using recent adaptations [8, 9] of our AAR framework [6] and 

analyzed the accuracy of recognition and delineation of each object as a function of OQS for 

each object considered in the body region and as a function of IQS at the study level.

Below, we present examples of the image and object quality criteria we developed as well as 

the basis of assigning grades to them. The quality criteria variables run from x1 through x9. 

These consist of four image-wise/ global (x1 - x4) and five object-specific/ local (x5 – x9) 

variables. To illustrate the level of detail involved, two examples are presented – two for 

global (x1, x4) and two for local (x7, x8) variables.

Criterion
number/ logical

variable

Criterion Quality Grade

IQC1 (x1) Neck posture deviation

Neck normally positioned (x1 = 0): Neck is in neutral position and 
properly aligned with the body.

Neck not normally positioned (x1 = 1): Note the ways in which the 
neck can deviate (flexion, extension, left/right rotation, left/right tilt).

Threshold the image roughly for skin and visualize in 3D rendering to 
determine posture.

IQC4 (x4) Image noise

Not Present (x4 = 0): Significant image noise is not visible in the body 
region.

Present (x4 = 1): Significant image noise is visible in the body region.

Use soft-tissue window. Examine at body-region.

IQC7 (x7) Presence of pathology

Not Present (x7 = 0): No pathology is visible inside the object.

Minimal (x7 = 1): Visible pathology occupies less than 25% of the 
object by volume.

Severe (x7 = 2): Visible pathology occupies greater than or equal to 
25% of the object by volume.

IQC8 (x8) Object intensity deviation

Contrast enhanced: This should be treated as a different modality 
from non-contrast enhanced. Independent of the above, use criteria 
below.

Glands: Lean (closer in attenuation to muscle than to fat, x8 = 0) vs. 
Fatty (closer in attenuation to fat than to muscle, x8 = 1).

Mandible: Normal (x8 = 0) vs. Either Diffusely lucent or Diffusely 
sclerotic (x8 = 1).

All other organs: Normal (x8 = 0) vs. Abnormal (x8 = 1). The vast 
majority of the organs will be normal.

Let Δ = (I, Ib) denote an image data ensemble for a body region B, where I is a set of 

acquired images of B and Ib is a set of binary images constituting a set of objects O in B in 

the images in I. That is, Ib contains a binary image corresponding to each object (OAR) O in 

O in each image I in I. Let Θ(q, O, I) denote the image quality grade determined for object O 
in image I for image quality criterion q (one of IQC1, …, IQC9 in the table). Given Δ and its 

grade assignment Θ(q, O, I) for the objects in O, we devised an Algorithm αO which 

generates object quality score OQS(O, I) that reflects how well O is portrayed in I. 
Algorithm αI presented below subsequently generates image quality score IQS(I) that 
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reflects the quality of image I considering the quality of portrayal of all objects in I. Note: 

x1…, x9 are all logical variables.

Algorithm αI presented below estimates IQS(I) as the median of the object quality scores 

OQS(O, I) over all objects in I.

Algorithm αI

Input: Object quality scores OQS(O, I) for all O in O and I in I.

Output: Image quality scores IQS(I) for all I in I.

Begin

S1. For each I in I, do

S2. Set IQS(I) to be the median of the set of values {OQS(O, I): O ∈ O};

S3. End for;

S4. Output IQS(I) for all I in I;

End

3. Results

The number of scans in our cohort that were completely free of deviations with respect to 

the 9 image-quality criteria was 1 for H&N. The mean object quality score over all objects 

in the H&N is 3.9, with scores for 3 objects in the upper quartile and 8 in the lower quartile. 

A similar evaluation on 210 thoracic data sets showed a mean object quality score over all 

12 objects in the thorax to be 5.7, with scores for 7 objects in the upper quartile and 5 in the 

lower quartile. Overall, H&N objects had a lower quality score than thoracic objects.

In Figure 2 we show sample OQS distributions as well as IQS distribution. Figure 2 shows 

that OQS tends to cluster around the lower and upper ends of the scale. Also, objects for 

younger patients seem to have better quality than older subjects except for the 

orohypopharynx constrictor muscle where the opposite seems to be true. This object 

consistently showed the poorest score among all objects. IQS for male and younger subjects 

seems to be better than that for females and older subjects.

As an example, in Table 1 we list the recognition and delineation results obtained on H&N 

data sets [8, 9] as a function of object quality. Because of the clustering of OQS at the lower 

and higher end of the scale, we roughly divided objects into high-quality and low-quality 

groups based on OQS. High-quality in this instance means scores greater than 7. This 

roughly translated to objects with streak artifacts or other deviations in not more than 3 

slices through the object. The table shows that for objects with OQS in the upper end of the 

scale, recognition accuracy for the very challenging H&N region is about 1.5 voxels, Dice 

coefficient (DC) for delineation is about 0.8, and Hausdorff distance (HD) is about 1.5 mm. 

There is no statistically significant difference in accuracy between the two gender groups. 

DC is known to be very sensitive to errors in small objects, HD being a more robust 

measure. There is considerable variation in dosimetrists’ contouring (not shown here), as 

determined by our separate experiment where two dosimetrists outlined 5 H&N OARs 

twice. The above accuracy from our system is well within the range of this variability.
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The majority of the H&N objects are affected by strong streak artifacts as shown in Figures 

1 and 2. The percentage of object samples with major streak artifacts in the H&N were 

12.08%, whereas 3.02% cases were affected in the thorax. We observed a higher influence 

of pathology and shape distortion on the thorax with 24.67% cases being affected compared 

to 11.86% for the H&N region. Consequently, when OQS is low, both recognition and hence 

delineation accuracy suffer.

4. Conclusions

The logical predicate can be adapted to the requirements of each application. The proposed 

holistic assessment of performance may allow for selection of segmentation systems that are 

optimally suited to the image/object quality distribution underlying a given application/ 

imaging center. The approach shows promising opportunities for monitoring algorithm 

performance in an unsupervised setting with future improvements of using machine learning 

for image quality criteria detection and classification. We now understand that OQS and IQS 

play different roles in segmentation. They influence object recognition (localization) and 

delineation in different ways. Multi-object segmentation methods may differ in their 

performance on different objects which can be well captured via OQS. OQS seems to be a 

more useful factor than IQS for segmentation evaluation although IQS is useful to 

understand overall image quality and segmentation performance.
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Figure 1. 
Illustration of several quality criteria on data sets from our cohort. (a) Streak artifacts, (b) 

Mouth and neck posture deviation, (c) Pathology, (d) Shape distortion.
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Figure 2. 
Distribution of (a) Object quality score (OQS) for three objects, and (b) Image quality score 

(IQS) for the Head and Neck data set.
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