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Abstract

Introduction: The Agatston score is a well-established metric of cardiovascular disease related 

to clinical outcomes. It is computed from CT scans by a) measuring the volume and intensity of 

the atherosclerotic plaques and b) aggregating such information in an index.

Objective: To generate a convolutional neural network that inputs a non-contrast chest CT scan 

and outputs the Agatston score associated with it directly, without a prior segmentation of 

Coronary Artery Calcifications (CAC).

Materials and methods: We use a database of 5973 non-contrast non-ECG gated chest CT 

scans where the Agatston score has been manually computed. The heart of each scan is cropped 

automatically using an object detector. The database is split in 4973 cases for training and 1000 for 

testing. We train a 3D deep convolutional neural network to regress the Agatston score directly 

from the extracted hearts.

Results: The proposed method yields a Pearson correlation coefficient of r = 0.93; p ≤ 0.0001 

against manual reference standard in the 1000 test cases. It further stratifies correctly 72.6% of the 

cases with respect to standard risk groups. This compares to more complex state-of-the-art 

methods based on prior segmentations of the CACs, which achieve r = 0.94 in ECG-gated 

pulmonary CT.

Conclusions: A convolutional neural network can regress the Agatston score from the image of 

the heart directly, without a prior segmentation of the CACs. This is a new and simpler paradigm 

in the Agatston score computation that yields similar results to the state-of-the-art literature.

Keywords

Agatston score; pulmonary CT; computed aided detection; deep learning

Further author information: (Send correspondence to R.S.J.E.): R.S.J.E.: rsanjose@bwh.harvard.edu; C.C-E.: ccanoespinosa@ua.es; 
G.G.:| ggonzale@sierra-research.com; G.R.W: gwashko@bwh.harvard.edu; M.C.: miguel.cazorla@ua.es. 

HHS Public Access
Author manuscript
Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2018 August 16.

Published in final edited form as:
Proc SPIE Int Soc Opt Eng. 2018 February ; 10574: . doi:10.1117/12.2293681.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1. INTRODUCTION

One third (31%) of the 62 million CT scans performed in the United States are pulmonary 

chest CT studies. Patients suffering from chronic pulmonary diseases are at risk of 

cardiovascular events, such as coronary artery disease (CAD) 1. The Agatston score is a well 

stablished metric used to measure the extent of CAD disease in ECG-gated CT studies2. 

Recently, a clinically meaningful correlation has been shown between the Agatston score 

computed in cardiac ECG-gated CT and in non ECG-gated chest CTs3, enabling the analysis 

of cardiovascular disease on chest CT studies4.

The Agatston score is computed by finding coronary artery calcifications (CAC) in the 

image, calculating their volume and multiplying it by a factor related to the maximum 

intensity of the CAC, adding the perlesion scores to compute a global biomarker. Several 

studies have automated the Agatston score from cardiac CT images. They all follow the 

same general framework: first, a region of interest (ROI) around the heart is located, either 

using anatomy-based approaches5, atlas-based location strategies6 or 2.5D object detection 

strategies.7,8 Second, CACs are found in the ROI and categorized as relevant or not using 

their relative position in the image9, their texture and size features10 or a combination of 

both11,12. The latest works of Ref. 13, 14 uses a deep-learning approach towards CAC 

detection. These techniques use a database of segmented CACs to learn a lesion-based or a 

voxel-based classifier, where a per-lesion label of whether the candidate CAC should be 

included or not is present. In contrast, the work of Ref. 8 generates the inclusion and 

exclusion rules of the CACs by optimizing the global correlation coefficient directly.

We propose to further develop this latter strategy by regressing directly the CAC score from 

an ROI that encompasses the whole heart. We use a large database of non-contrast non-ECG 

gated chest CT scans for whom reference standard Agatston score is available to train and 

evaluate the proposed system.

2. MATERIALS AND METHODS

2.1 Evaluation Database

The evaluation database, the COPDGene study, is a multicenter observational study 

designed to understand the evolution and genetic signature of COPD in smokers15. 10, 000 

subjects have been enrolled in the study and undergone pulmonary non-ECG gated CT 

scanning with a scanner of at least 16 detectors. The Agatston score was computed in 6983 

of such images, forming the database in which we train and evaluate the proposed method.

2.2 Image preprocessing

We select a region of interest (ROI) centered around the heart in each CT scan using the 

method of Ref. 7, 8. Each heart ROI is normalized to a canonical size of 64 × 64 × 64 voxels 

to enable their comparison using the convolutional neural network. The reference Agatston 

score is normalized accordingly to enable training, resulting in the training set. The images 

are clamped to the range [−500, 2000] to highlight the lesions and discard lung structures.

Cano-Espinosa et al. Page 2

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2018 August 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2.3 Deep Neural Network Agatston Score Computation

We use a deep convolutional neural network of Fig. 1. It consists of three 3D convolutional 

layers with rectified linear activation followed by 3D max-pooling operations. We linearize 

the output and forward it to a fully connected and the output layers. We use dropout layers 

before the linearization operation and the output layers to prevent overfitting.

We eliminated the images in which the automated ROI placement failed, resulting in a 

database of 5973 images with their corresponding Agatston score. The database is split 

between a training set (n = 4973) and a test set (n = 1000). The optimization of the network 

parameters is performed by minimizing the root mean squared error between the computed 

score and the reference standard using an ADAM16 optimizer with an exponential decay 

rate. We augment the training set by displacing the ROI a given set of pixels in each axial 

direction. Training is performed for 250 epochs, taking 2 days on a Maxwell TitanX GPU.

2.3.1 Implementation.—The software is implemented in Python using the SimpleITK17 

(Kitware Inc., Clifton Park, NY, USA), Keras18 and Tensorflow19 libararies. Statistical 

analysis was performed with JMP (JMP, Version 11. SAS Institute Inc., Cary, NC, USA).

3. RESULTS

The object detector of Section 2.2 is run on the 6983 cases of the database, detecting 

correctly the four planes in 5973 scans. We use 4973 cases of such scans to train the deep 

neural network and leave 1000 aside for testing. Examples of such detections are shown in 

Fig. 2.

The Pearson correlation coeffcient between the reference standard and the computed scores 

on the test set is 0.932; p < 0.0001 and depicted in Fig. 3. The Bland-Altman plot is shown 

in Fig. 3. The mean difference is 7.67 units, the standard deviation of the difference is 

140.13, and the limits of agreement are [−266.98, 282.34].

We further perform the evaluation methodology of Ref. 20, which consists in estimate the 

correct placing of subjects according to their risk group. Five risk groups are defined 

depending on the value of the Agatston score. Group I is defined as subjects with a score 

between [0, 10), Group II ranges between [10, 100), Group III is defined in the range [100, 

400), Group IV in [400, 1000) and finally Group V in cases with a score >1000 units. The 

proposed method correctly classifies the risk group in 75.6% of the cases and classifies the 

subjects in the same group or with a diffrence of one in 99.3%. The confusion matrix is 

shown in Table 1.

4. DISCUSSION

We have presented a deep learning regression framework to estimate the Agatston score 

directly from images of the heart. The proposed method is trained using 4973 scans and 

tested in 1000 cases, archiving a high Pearson correlation coeffcient concerning the 

reference standard (ρ = 0.932; p < 0.0001) and shows no systematic bias in Bland-Altmann 

analysis. The results reflect a good patient risk stratification, with 75.6% of cases being 
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assigned to the right group. The proposed method has been trained and tested in non-contrast 

non-ECG gated pulmonary scans, which are known to have substantial noise and motion 

artifacts in comparison to ECG-gated CT scans21. Prior art in such higher quality images has 

obtained better correlation coeffcients. For instance, Ref. 12 obtained (ρ = 0.94) in cardiac 

ECG-gated scans. In cardiac calcium scoring CT protocols the work of Ref. 11 and Ref. 14 

achieved ρ = 0.95. It is unknown how the proposed method would perform under those 

image characteristics.

The proposed network structure is simple in comparison to state-of-the-art detection 

networks, which use more convolutional and fully connected layers. Further research will 

focus on network architecture and transfer learning to improve the results.

The main advantage of the proposed method with respect to prior art is that it does not 

require a database of annotated calcifications, but require only the input CT scan and the 

measured Agatston score. Such information is readily available in the healthcare databases 

of the hospitals. The proposed network could leverage such datasets directly, without the 

need for experts labeling.
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Figure 1. 
Regression network structure used.
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Figure 2. 
Cut planes of the images of four different subjects with calcifications. First column: axial, 

second column: sagittal, third column: coronal. The subjects have Agatston scores of 3578, 

3151, 4147 and 4217 respectively. Calcifications appear as bright structures within the 

coronary arteries and are highlighted with green ellipses. Please note the presence of extra 

calcifications in the aorta and heart valves, highlighted with red ellipses, and bone structures, 

such as the sternum or the vertebrae.
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Figure 3. 
Evaluation of the automated Agatston score computation method. Left: correlation plot 

between the reference standard and the automatically computed score. Right: Bland-Altman 

plot.
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Table 1.

Confusion matrix.

Automated

Manual

I II III IV V

I 279 114 2 1 0

II 25 180 26 1 1

III 0 17 179 16 2

IV 0 0 16 83 12

V 0 0 0 11 35
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