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Abstract

Purpose—OCT offers high in-plane micrometer resolution, enabling studies of 

neurodegenerative and ocular-disease mechanisms via imaging of the retina at low cost. An 

important component to such studies is inter-scanner deformable image registration. Image quality 

of OCT, however, is suboptimal with poor signal-to-noise ratio and through-plane resolution. 

Geometry of OCT is additionally improperly defined. We developed a diffeomorphic deformable 

registration method incorporating constraints accommodating the improper geometry and a 

decentralized-modality-insensitive-neighborhood-descriptors (D-MIND) robust against 

degradation of OCT image quality and inter-scanner variability.

Method—The method, called D-MIND Demons, estimates diffeomorphisms using D-MINDs 

under constraints on the direction of velocity fields in a MIND-Demons framework. 

Descriptiveness of D-MINDs with/without denoising was ranked against four other shape/texture-

based descriptors. Performance of D-MIND Demons and its variants incorporating other 

descriptors was compared for cross-scanner, intra- and inter-subject deformable registration using 

clinical retina OCT data.

Result—D-MINDs outperformed other descriptors with the difference in mutual descriptiveness 

between high-contrast and homogenous regions > 0.2. Among Demons variants, D-MIND-

Demons was computationally efficient, demonstrating robustness against OCT image degradation 

(noise, speckle, intensity-non-uniformity, and poor through-plane resolution) and consistent 

registration accuracy [(4±4 μm) and (4±6 μm) in cross-scanner intra- and inter-subject registration] 

regardless of denoising.

Conclusions—A promising method for cross-scanner, intra- and inter-subject OCT image 

registration has been developed for ophthalmological and neurological studies of retinal structures. 

The approach could assist image segmentation, evaluation of longitudinal disease progression, and 

patient population analysis, which in turn, facilitate diagnosis and patient-specific treatment.

Keywords

deformable image registration; Demons algorithm; diffeomorphism; descriptors; optical coherence 
tomography; OCT

HHS Public Access
Author manuscript
Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2019 November 06.

Published in final edited form as:
Proc SPIE Int Soc Opt Eng. 2018 February ; 10574: . doi:10.1117/12.2293790.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1. INTRODUCTION

Optical coherence tomography (OCT) offers low-cost microscopic imaging of the retina, 

therefore facilitating detection and study of various neurological disorders, including 

multiple sclerosis1 and Alzheimer’s disease.2 Registration of OCT acquired using different 

imaging systems, particularly from different vendors, facilitates the longitudinal study of 

disease progression, population analysis, and segmentation, which, in turn, benefit diagnosis 

and precision medicine treatment. In this work, D-MIND Demons was developed based on 

MIND Demons3 to enable cross-scanner, inter-subject diffeomorphic deformable 

registration of 3D OCT images. The method improves insensitivity to image quality and 

differences in image characteristics of OCT by incorporating a decentralized modality 

insensitive neighborhood descriptors (D-MIND) combining a Huber metric and an 

asymmetric stencil to accommodate noise, speckle, and strongly anisotropic and dissimilar 

voxel size of cross-scanner OCT images. As OCT does not reflect the physical geometry of 

image acquisition,4 the method constrains velocity fields of diffeomorphisms to be parallel 

to the A-scan direction. The registration method and D-MINDs are described in Section 2. 

Since OCT exhibits poor signal-to-noise ratio,4 the effects of denoising methods [i.e., block-

matching and 3D (BM3D) filtering5 and foveated nonlocal means (FNLM) filtering6] on the 

ability of descriptors to encode local structure and/or texture in images are presented in 

Sections 3 and 4. The sections additionally demonstrate the performance of the D-MIND 

Demons method in cross-scanner intra- and inter-subject registration using clinical OCT 

data compared to its variants––i.e., integrating D-MINDs with other descriptors including 

average image gradients (AG), compact histograms of image orientation (CHO), co-

occurrence (COC) texture features,7 and run length (RL) texture features8. Advantages and 

limitations as well as future work are discussed in Section 5.

2. METHODS

2.1. Image Descriptors

Intensity non-uniformity, noise, speckle, and thick through-plane resolution (slice-

separation) of OCT images challenge intensity-based deformable registration. Instead of 

using a robust metric which could involve complex calculations,9–11 we consider image 

descriptors which provide a rich encoding of local structural and/or texture while reducing 

the effect of image degradation to registration performance. The section describes the D-

MIND, AG, and CHO descriptors.

1. Decentralized-modality-insensitive neighborhood descriptor (D-MIND)—D-

MINDs are robust to intensity inhomogeneity and invariant to imaging modalities, thus 

insensitive to global intensity change between distinct scanners. D-MINDs improve upon 

MINDs3,12 to accommodate OCT image quality. Calculation of descriptor elements involves 

a stencil 𝒩s and a patch 𝒩p which is decentralized such that patch distances are computed 

between patches of points r j, rk ∈ 𝒩s for indices j, k ∈ {1,2,3, … ,10} and j ≠ k [Figs. 

1(a,b)]––instead of between patches of points r j ∈ 𝒩s and the patch of the center point x of 

𝒩s, denoted center patch––to reduce the influence of the degradation of the center patch to 
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the performance of descriptors. Each i-th element dI,i(x) of a D-MIND dI(x) ∈ ℝD in an 

image I is therefore

dI, i(x) = c exp −
H𝒩p

I, r j, rk

V(I, x) , (1)

where c is a normalization factor and V(I, x) is the local variance. The patch distance H𝒩p
 is 

computed using a Huber metric13 H to improve robustness against noise and speckle as

H𝒩p
I, r j, rk = 1

𝒩p
∑

z ∈ 𝒩p

H I r j + z , I rk + z , (2)

where z denotes an offset from the center of 𝒩p. Equal weighting is applied in (2) through 

mean filtering instead of Gaussian weighting14,15 to improve computational efficiency. As 

such, a patch is cuboid instead of an ellipsoid obtianed from Gaussian filtering.14,15 An 

asymmetric stencil 𝒩s depicted in Fig. 1(a) is additionally designed to accentuate structures 

present along the A-scan direction and minimize sensitivity to poor through-plane 

resolution.

2. Gradient-based descriptors—gradient information has been shown to capture 

retinal structures in various successful segmentation algorithms.16–19 To exploit gradients 

with neighborhood-based calculation, two classes of descriptors were devised, including AG 

and CHO. The calculation of AG and CHO involves a patch identical to 𝒩p and a smaller 

stencil 𝒩s′ used to limit the descriptor dimensionality, providing AG with 18 elements from 

the average gradients of 6 𝒩p for 6 points in 𝒩s′. CHO, on the other hand, is built upon AG 

by populating histograms of 6 orientation bins with an angle θk between the average 

gradient ga of 𝒩p and each gradient gk in 𝒩p computed using a scalar product

θk = cos−1 ga ⋅ gk
ga 2 gk 2

. (3)

As a result, CHO consists of 6 elements capturing the deviation of gk from ga in 𝒩p.

2.2. Symmetric Diffeomorphic Demons Registration

Symmetric diffeomorphic Demons registration3 seeks a diffeomorphism 

ϕi(x, t):Ω ⊂ ℝ3 × t ∈ [0, 1] Ω which is a flow of time-dependent velocity fields
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ϕi(x, t) = ϕi(x, 0.5) + ∫
0

( − 1)i(0.5 − t)

vi(ϕi(x, 0.5 − ( − 1)iτ), 0.5 − ( − 1)iτ)dτ, i

= 0, 1,

(4)

between a moving image I0 and a fixed image I1 such that I0 ∘ ϕ0 ∘ ϕ1
−1(z, 0) = I1(z), z ∈ Ω. 

The diffeomorphisms ϕ0(x, t) and ϕ1(x, t) are defined for different time points (see Fig. 1 in 

Reaungamornrat et al.3) using a time point variable ti = (0.5 − (−1)iτ) ∈ [0, 1] defined via 

pseudo-time τ ∈ [0, 0.5]. The velocity fields νi in (4) are defined in the normed space V 
with a norm ∥νi(ti)∥V = ∥Lνi(ti)∥2 and a differential operator L = (Id + a2∇2) for a ∈ ℝ. The 

geodesics of ϕi are energy minimizing paths with the geodesic shortest length (GSL) 

measured in terms of the minimizing energy as

ρ ϕi(0.5), ϕi = inf
vi

∫
0

0.5

‖vi(0.5 − ( − 1)iτ)‖
V
2 dτ, (5)

with a boundary ϕi(x, 0.5) = x, ϕ0(x, 0) = y, and ϕ1(x, 1) = z for a point x, y, and z in the 

domains of a virtual image I0.5, I0, and I1, respectively. This section briefly summarizes the 

symmetric diffeomorphic Demons optimization approach used in MIND Demons3,14 (see 

prior work3,14 for detail) and describes extensions added to MIND Demons to enable robust 

cross-scanner, inter-subject diffeomorphic deformable registration of OCT volumetric 

images.

1. MIND-Demons optimization—As described in prior work,3 MIND Demons 

estimates diffeomorphisms by optimizing the energy functional incorporating priors on 

invertibility ϕi ∘ ϕi
−1 = Id and the equality of GSL ρ(ϕ0(x, 0.5), ϕ0(x)) = ρ(ϕ1(x, 0.5), ϕ1(x)):

E ϕi, ηi = 1
2{αS

2 ∫
x ∈ Ω

H2 I0 ∘ η0, I1 ∘ η1, x dx + αU
2 ρ2 ϕ1

−1, η0 , ρ2 ϕ0
−1, η1

+ αP
2(‖∇ϕ1

−1‖2
2 + ‖∇ϕ0

−1‖2
2)}

subject to ϕi(x, 0.5) = ηi(x, 0.5) = Id(x), ρ ϕ0(x, 0.5), ϕ0(x)

= ρ ϕ1(x, 0.5), ϕ1(x) , and ϕi ∘ ϕi
−1 = Id

(6)

where αs, αU, and αP are regularization parameters and ηi = ϕi Id + Lvi = ϕ j
−1 Id + Lvi  are 

hidden variables representing intermediate diffeomorphisms. The first term in the functional 

(6) measures similarity between I0 and I1 after diffeomorphism using the Huber metric, the 
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second term quantifies the kinetic energy of the diffeomorphisms based on (5), and the last 

term estimates the harmonic energy of the diffeomorphisms.3

Optimization of (6) is performed in two steps.3 In the first step, the first two terms are 

minimized under the GSL equality constraint to maximize image alignment using a Gauss-

Newton (GN) method. Calculation of GN search directions yields a voxel-wise update field 

equation:

ui(x) = −
H(x)∇iH(x)

αU
2 /αS

2(x) + ∇iH(x) 2
2 (7)

where ∇iH (x) denotes the gradient of H with respect to ϕi. The update fields are used to 

increment ηi as ηi
k = (ϕi

k − 1)−1 + K(ui
k)

L2 ∘ (ϕ j
k − 1)−1

, where k is an iteration number and K = 

(L†L)−1 is the Green kernel projecting Lagrangian measure-based momentum fields ui in L2 

(a space of square integrable vector fields) onto V.3,20–22 In the second step, Tikhonov 

regularization is applied to estimate smooth diffeomorphisms ϕi with the priors on the 

invertibility of ϕi. The optimization method alternates between these two steps until 

convergence or a maximum number of optimization iterations is reached.

2. D-MIND Demons optimization—In addition to the challenges of image quality that 

D-MINDs address (described in Section 2.1), acquisition geometry of OCT is typically not 

properly defined. The fanning of A-scans, for example, is often not acquired and not 

presented in OCT images but affects the degree of curvature of deformations orthogonal to 

the A-scan direction.4 As a result, deformation across different A-scans is difficult to 

correctly modeled. These additional constraints are added to (6) to permit non-linear 

alignment only along corresponding A-scans in I0 and I1, defined as

L†L vi ϕi x, ti , ti , [1, 1, 0]
L2 = 0, (8)

where ⟨·, ·⟩L
2 denotes the inner product in L2. The constraints force ui(x) = (L†L)νi(ϕi(x, ti), 

ti) to be parallel to the A-scan direction ([0,0,1]T, corresponding to the z axis of the 

coordinate system of OCT volumetric data used in this work). Equation (8) can be written in 

terms of ui in (7) as ∀ x ∈ Ω ∶ ⟨ui, [1,1,0]⟩L2 = 0, implying that the scalar projection of ui 

onto the xy-plane of the coordinate system of OCT is 0 and that ui are parallel to the A-scan 

direction or 0.

The D-MIND Demons optimization approach is integrated with a multiresolution strategy 

and convergence criteria (described in prior work3) to improve robustness against local 

minima and ability to resolve large deformation, while preventing excessive optimization 

iterations. Combinations of descriptors from Section 2.1 (i.e., D-MIND, AG, CHO, COC, 

and RL) are used as image representations in place of I0 and I1, providing D-MIND Demons 

and its alternatives including D-MIND+CHO, D-MIND+COC+RL, and D-MIND+CHO

+COC+RL Demons methods.
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3. EXPERIMENTS

3.1. Clinical OCT Data

The performance of descriptors and registration methods were assessed using seven pairs of 

clinical retina OCT volumetric images in a local institutional review board approved study. 

For all experiments, I0 were acquired using a Spectralis OCT system (Heidelberg 

Engineering, Heidelberg, Germany) with 49 B-scans, each B-scan having 1024 A-scans with 

496 voxels per A-scan, and I1 were acquired using a Cirrus OCT scanner (Carl Zeiss 

Meditec, Jena, Germany) with 128 B-scans, each B-scan having 512 A-scans with 1024 

voxels per A-scan. An OCT voxel size, defined by distances between scan lines, B-mode 

slices, and A-scan voxels, was approximately 6×125×4 μm3 for I0 and 12×47×2 μm3 for I1. 

The coordinate-system convention used here is that B-scan (lateral), slice-separation 

(through-plane), and A-scan (axial) directions represent the x, y, and z axes, respectively. 

Shown in Fig. 2 are examples of I0 and I1. Each of the first two rows in Fig. 2 shows OCT 

images acquired from the same patient, while the last row depicts an image pair acquired 

from different subjects. Separate image pairs were used in the following experiments. 

Retinal boundaries in all I0 and I1 were flattened, as performed in various segmentation 

algorithms,16,23,24 by translating all A-scans in each B-scan such that the Bruch’s membrane 

boundary is flat.16 I0 and I1 were initially aligned using a NMI registration method with a 

fovea-position constraint. For target point definition (TRE calculation), retina layers in I0 

and I1 were segmented and points along the boundaries of the layers were used as target 

points.16 The corresponding target points in I0 and I1 with TRE after rigid registration < 1μm 

were referred to as matched points (~94,000 points).

3.1. Analysis of Effects of Denoising Methods on Feature Performance

The effect of BM3D5 and FNLM6 denoising on the ability of descriptors to discriminate 

distinct local structure/texture was investigated using two pairs of OCT images, each 

acquired from the same patient. The ability of descriptors di and dj in images Ii and Ij was 

quantified using mutual descriptiveness,

MD di, d j, x, 𝒩q =
Ui di, d j, x, 𝒩q + U j d j, di, x, 𝒩q

2 + 2H di(x), d j(x)
∈ [0, 1] (9)

combining the Huber dissimilarity measure H and the uniqueness Ui determined by the 

similarity of a descriptor to its neighboring descriptors defined in a neighborhood 𝒩q in Ii 

and Ij as

Ui di, d j, x, 𝒩q = 1
2 𝒩q

∑
q ∈ 𝒩q

∑
k = 1

D log di, k(x)/di, k(x + q)
1 + log di, k(x)/di, k(x + q)

+
log di, k(x)/d j, k(x + q)

1 + log di, k(x)/d j, k(x + q)
∈ [0, 1]

(10)
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where q is an offset from the center of 𝒩q. The uniqueness Uj is computed similarly. 

Equation (10) was inspired by the measure of uniqueness of an image neighborhood 

described in previous work;25 Ui, however, is distinct since it measures the uniqueness of an 

individual descriptor di (not a neighborhood) compared to descriptors in its neighborhood 

and the corresponding neighborhood in another image. MD in (9), as a result, quantifies not 

only the uniqueness of two corresponding descriptors di and dj but also the similarity 

between them. The more similar the corresponding descriptors and the more unique the 

descriptors from their neighboring descriptors, the better the descriptor ability to uniquely 

represent local structure/texture and the higher the value of MD.

3.2 Ranking of Descriptor Performance

Elements of descriptors (described in Section 2.1) were ranked according to the difference 

between the median of MD computed at match points and that computed at points in 

homogenous regions. This difference demonstrates the ability to capture local information 

while faithfully representing homogenous regions. Ranking was performed using two OCT 

pairs (distinct from those used in Section 3.1), each acquired from the same subject, before 

and after denoising. The descriptor elements with high ranking formed descriptors (image 

representations) incorporated in Demons-based registration methods described in Section 

2.2.

3.3 Analysis of Descriptor Performance in Demons

The combination of descriptor elements that yielded the best registration performance were 

identified using three OCT image pairs (Fig. 2). As Section 4.2 shows elements of D-MIND, 

CHO, COC, and RL achieved high rank, the registration approaches investigated included 

D-MIND, D-MIND+CHO, D-MIND+COC+RL, and D-MIND+CHO+COC+RL Demons 

methods. Two image pairs––each acquired from the same patient––were well aligned after 

NMI rigid registration (TRE = 4±6 μm) and used to investigate the reliability and stability of 

each Demons variant. The most stable and reliable method with the best computational 

efficiency was identified as a nominal method, and was evaluated in inter-scanner, inter-

subject deformable image registration.

4. RESULTS

4.1. Effects of Denoising Methods on Feature Performance

Figure 3 demonstrates the effect of B3MD and FNLM on descriptiveness of features at 

match points (filled markers) and points in homogenous regions (hollow markers). The plots 

show the median of MD of descriptor elements computed on images before and after BM3D 

and FNLM denoising. Element numbers and their meaning are described in Fig.1. BM3D 

yielded statistically significant improvement (p-value << 0.001) in MD at match points for 

D-MIND and AG, while FNLM statistically significantly improved MD of COC and RL (p-

value << 0.001). The benefit of denoising to CHO, however, was not observed. Regardless 

of denoising methods, D-MINDs demonstrated the best ability to faithfully represent 

homogenous regions (Fig. 3).
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4.2 Ranking of Descriptor Performance

Figure 4 summarizes the ranking of descriptor elements of images before and after BM3D 

and FNML denoising. An element achieving the highest difference in the median mutual 

descriptiveness measured in high-contrast and homogenous regions is depicted in the top left 

corner, and one with the lowest difference is shown in the bottom right corner. The top 28 

ranks were considered high ranks. Regardless of denoising methods, D-MIND elements, 

except numbers 1 and 7, occupied high ranks. AG, on the other hand, earned low ranks, and 

was omitted from further study. Some elements of CHO (#2–#6), COC (#1, #3, and #4), and 

RL (#9, #7, and #5) achieved high ranks. The high-ranking elements were combined, giving 

Demons variants investigated in the following experiment.

4.3 Descriptor Performance in Demons

Figure 5 summarizes the performance of each Demons variant in intra-subject registration of 

rigidly well-aligned OCT pairs. CHO showed sensitivity to noise, introducing misalignment 

between noisy images. D-MIND Demons and the others, however, maintained, if not 

improved, TRE, demonstrating stability. As denoising and addition of other descriptors 

increased computation time, D-MIND Demons without denoising methods was a nominal 

registration approach. The performance of D-MIND Demons in inter-scanner, inter-subject 

registration is summarized in Fig. 6. Figures 6(a–c) show D-MIND Demons improved image 

alignment from TRE = 12±8 μm to 4±6 μm. The estimated deformation was additionally 

diffeomorphic with invertibility error3 of 0.005±0.007 μm and minimum of Jacobian 

determinant3 of 0.17 as captured in Fig. 6(d).

5. DISCUSSION and CONCLUSIONS

A deformable registration method estimating diffeomorphisms between retinal OCT 

volumetric images has been developed by incorporating D-MINDs, which reduces 

sensitivity to intensity non-uniformity, minimizes effects of central-patch degradation, uses 

the Huber metric to improve robustness against noise and speckle, and employs an 

asymmetric stencil to accommodate poor through-plane resolution. The method constrains 

the direction of velocity fields to be parallel to that of A-scans. Among descriptors 

investigated, D-MINDs demonstrated the superior ability to distinguish local structures 

while faithfully capturing homogenous regions. Validation of the D-MIND Demons method 

in cross-scanner OCT registration showed the method outperformed the other variants with 

better computational efficiency, robustness against typical degradation of OCT images, and 

accuracy (4 μm) comparable to, if not better than, voxel size. Future work includes analysis 

in a larger dataset and application to longitudinal evaluation of anatomical changes, 

population-based studies, and image segmentation.
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Figure 1. 
3D stencil configurations of D-MIND, AG, and CHO descriptors. (a) D-MIND stencil 

configuration with 14 elements computed from patch distances between (b) patch pairs. A 

cuboid depicts a patch whose size and shape are determined by offsets and weights in (2), 

e.g., an ellipsoidal patch can be approximated using Gaussian weights. The numbers on the 

cuboids denote the indices of points in the stencil, used to defined (b) patch pairs. (c) AG 

and CHO stencil configuration with a smaller number of elements to reduce the descriptor 

dimensionality. The x, y, and z axes represent the B-scan (lateral), through-B-mode-plane, 

and A-scan (axial) directions, respectively.
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Figure 2. 
Example retina OCT images acquired using (left) Spectralis and (right) Cirrus OCT imaging 

systems. A pair of I0 and I1 on the first two rows were each acquired from the same patient. 

I0 and I1 on the last row were acquired from different patients for inter-scanner, inter-subject 

evaluation.
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Figure 3. 
Effect of denoising on mutual descriptiveness of descriptor elements at match points (filled 

marker) and points in homogenous regions (hollow markers). From left to right, median 

mutual descriptiveness for descriptor elements of D-MINDs, average image gradients, 

compact histograms of image orientation, co-occurrence texture features, and run-length 

texture features. The blue circles, black squares, and green triangles mark the median mutual 

descriptiveness for no filtering, BM3D, and FNLM, respectively. Solid and dot lines are 

linear fits for measures of match points and points in homogenous regions.
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Figure 4. 
Ranking of descriptor elements according to the difference between the median mutual 

descriptiveness of the elements measured at match points and that measured at points in 

homogenous regions. (Top) from left to right, descriptors were computed on images before 

and after BM3D denoising, respectively. (Bottom) descriptors were computed on images 

after FNLM denoising. The maps are colored according to the difference in the median 

mutual descriptiveness.
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Figure 5. 
TRE measured for cross-scanner intra-subject diffeomorphic deformable registration of 

OCT images before and after BM3D and FNLM denoising using NMI rigid registration and 

variants of the D-MIND Demons method, including D-MIND+CHO, D-MIND+COC+RL, 

D-MIND+CHO+COC+RL Demons registrations.
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Figure 6. 
Cross-scanner inter-subject diffeomorphic deformable OCT registration using D-MIND 

Demons. (a) TRE resulting from NMI rigid and D-MIND Demons registration. (b) 

Superposition of retinal layer contours in I1 on I0 after NMI rigid registration (top) and a 

checkerboard image of I1 and I0 after rigid registration (bottom). (c) The same, for D-MIND 

Demons registration. (d) Jacobian determinants of the estimated deformation.
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