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Abstract

Background—Clustering thalamic nuclei is important for both research and clinical purposes. 

For example, ventral intermediate nuclei in thalami serve as targets in both deep brain stimulation 

neurosurgery and radiosurgery for treating patients suffering from movement disorders (e.g., 

Parkinson’s disease and essential tremor). Diffusion magnetic resonance imaging (dMRI) is able 

to reflect tissue microstructure in the central nervous system via fitting different models, such as, 

the diffusion tensor (DT), constrained spherical deconvolution (CSD), neurite orientation 

dispersion and density imaging (NODDI), diffusion kurtosis imaging (DKI) and the spherical 

mean technique (SMT).

Purpose—To test which of the above-mentioned dMRI models is better for thalamic 

parcellation, we proposed a framework of k-means clustering, implemented it on each model, and 

evaluated the agreement with histology.

Method—An ex vivo monkey brain was scanned in a 9.4T MRI scanner at 0.3mm resolution with 

b values of 3000, 6000, 9000 and 12000 s/mm2. K-means clustering on each thalamus was 

implemented using maps of dMRI models fitted to the same data. Meanwhile, histological nuclei 

were identified by AChE and Nissl stains of the same brain. Overall agreement rate and agreement 

rate for each nucleus were calculated between clustering and histology. Sixteen thalamic nuclei on 

each hemisphere were included.

Results—Clustering with the DKI model has slightly higher overall agreement rate but clustering 

with other dMRI models result in higher agreement rate in some nuclei.

Conclusion—dMRl models should be carefully selected to better parcellate the thalamus, 

depending on the specific purpose of the parcellation.
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1. INTRODUCTION

The thalamus is subdivided into a number of nuclei that possess functional specializations. 

Pinpointing thalamic nuclei is important for both research and clinical purposes. For 

example, the ventral intermediate nucleus (Vim) in the thalamus is a FDA-approved target in 

deep brain stimulation (DBS) neurosurgery [1, 2] and stereotactic radiosurgery [3, 4] 

performed on patients with Parkinson’s disease (PD) symptoms or essential tremor (ET). 

Stimulating the Vim by implanted microelectrodes or destroying the Vim by radiation could 

alleviate tremor symptoms of the PD and ET patients. It is reported in non-human primates 

that microstructural characteristics (i.e., neuron size, neuron arrangement and fiber density) 

can be used to distinguish each nucleus from its neighbors [5]. For example, the VLp 

nucleus in monkey brain, homologous to the Vim in human, has large, multipolar neurons 

sparsely distributed between bundles of fibers.

Diffusion MRI (dMRI) is a noninvasive imaging method sensitive to the diffusion pattern of 

water molecules in brain tissue and thus is able to reflect local microstructural properties of 

neural tissue. Different diffusion models fit to the same dMRI signals emphasize different 

tissue properties: the diffusion tensor (DT [6]) characterizes the water diffusion profile in 

each voxel using a single 2nd order symmetric tensor [7]; constrained spherical 

deconvolution (CSD [8]) reconstructs multiple axon orientations in the same voxel in terms 

of spherical harmonics; neurite orientation dispersion and density imaging (NODDI [9]) 

estimates neurite density and orientation dispersion, diffusion kurtosis imaging (DKI [10]) 

measures diffusion profiles of tissue in terms of a higher order kurtosis tensor, and the 

spherical mean technique (SMT [11]) maps neurite density and microscopic diffusivities 

unconfounded by effects of orientation dispersion and crossing axons.

Previous studies reported using unsupervised clustering methods to parcellate the thalamus 

in human brain using maps derived from some of these dMRI models, such as the diffusion 

tensor [12] and orientation distribution [13], as features. However, clustering using other 

dMRI models has not been tested and the comparison among different models has not been 

investigated. Most importantly, evaluation of the clustering methods has not been performed 

in the same subjects using histology.

In our paper, a unified framework of k-means clustering for thalamic parcellation inspired by 

[12] is proposed. The framework is implemented on maps derived from each of the 

abovementioned dMRI models (i.e., DT, CSD, NODDI, DKI and SMT) in the squirrel 

monkey brain. Meanwhile, the histological thalamic nuclei in the same brain were identified 

on the basis of cytoarchitecture and myeloarchitecture. The agreement of each dMRI 

clustering with histological nuclei was evaluated in order to compare the performance of 

various dMRI models.
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2. METHODS

The overall pipeline for our data acquisition, processing and analysis is graphically shown in 

Fig. 1. The squirrel monkey brain was scanned in a 9.4 Tesla MRI system to acquire high 

resolution multi-shell diffusion weighted images. The diffusion weighted images were 

preprocessed and then fit to five dMRI models (DT, CSD, NODDI, DKI and SMT). The k-

means clustering algorithm was performed based on features calculated from each dMRI 

model. After the MRI scan, the monkey brain was sectioned, stained for Nissl and 

Acetylcholinesterase (AChE). The thalamic nuclei were outlined by an expert and then 

transformed into dMRI space. Finally, the agreement between each dMRI clustering and 

histology was evaluated. All animal procedures were approved by the Vanderbilt University 

Animal Care and Use Committee.

2.1 dMRI acquisition, model fitting and clustering

The fixed monkey brain was immersed in phosphate-buffered saline medium with 1mM Gd-

DTPA in order to reduce longitudinal relaxation time [14]. After 2–3 weeks, the brain was 

placed in a container filled with liquid Fomblin and scanned in a 9.4 Tesla Agilent scanner 

(3D spin-echo EPI sequence with bipolar diffusion pulses, NSHOTS = 4, NEX = 1, TR = 

410ms, TE = 41ms, voxel size = 0.3mm×0.3mm×0.3mm, data matrix = 128×192×128). The 

b-values for four shells were set to 3000, 6000, 9000 and 12000 s/mm2. Diffusion gradient 

duration and separation were 8ms and 22ms, respectively, for all the four shells. A gradient 

table of 107 uniformly distributed directions [15] was used as diffusion gradient directions 

for each shell. There were 3 b=0 scans interspersed among the 107 directions. Additionally, 

a single b=0 volume with reversed phase encoding direction was acquired immediately 

before each diffusion shell. The total scan time was approximately 50 hours.

FSL TOPUP [16] and EDDY [17] tools were used to correct susceptibility and eddy current-

induced distortion and head movement on the raw diffusion data. Five dMRI models (DTI 

[6], CSD [8], NODDI [9], DKI [10] and SMT [11]) were implemented on the corrected data. 

The software used to fit the models and output maps of the models are listed in Table 1.

The left and right thalamus was manually segmented using ITK-SNAP software [18] 

(www.itksnap.org). The lateral geniculate nucleus and medial geniculate nucleus were not 

included in the thalamus masks.

The commonly used k-means clustering algorithm in MATLAB was modified to cluster 

thalamic nuclei (k=16) for each hemisphere. Inspired by the work of Wiegell et al [12], the 

distance metric dik between the ith thalamic voxel and the centroid of the kth thalamic 

cluster was defined as a linear combination of the normalized Mahalanobis spatial distance 

and the normalized Euclidean distance in dMRI parameter space, i.e.,

dik = {Tr(WX)}
− 1

2‖Xi − Xk‖
Wk

+ γ{Tr(WP)}
− 1

2‖Pi − Pk‖, (1)
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where Xi is the spatial location of the ith thalamic voxel, X̅k is the mean spatial location of 

the kth thalamic cluster, Pi is the vector composed of the given dMRI model output values at 

the ith thalamic voxel, P̅k is the mean vector of the dMRI output values of the kth cluster, 

WX is the covariance matrix for spatial locations of all thalamic voxels, and WP is the 

covariance matrix for dMRI output values of all thalamic voxels. The Mahalanobis distance 

is defined as

‖Xi − Xk‖
Wk

= (Xi − Xk)TWk
−1(Xi − Xk), (2)

where Wk is the covariance matrix for the voxels in cluster k. The constant coefficients 

{Tr(WX)}−1/2 and {Tr(WP)}−1/2 are used for normalizing spatial distance and dMRI 

distance, respectively. The constant γ is the weighting factor to control the dMRI 

contribution and was kept the same across all the dMRI models. The cluster centroids for k-

means were initialized by the center of mass for each histological nucleus in dMRI space. 

The clustering iteration was terminated when the maximum movement of the centroid is less 

than 0.1 of the voxel size (i.e., 0.03mm).

The clustering routine was repeated for a total of 100 trials and the initial centroid for each 

trial was shifted by a random distance uniformly distributed between 0 and 2 voxels (i.e., 

0mm and 0.6mm). The maximum likelihood clustering result for each dMRI model was 

calculated by assigning the most frequent cluster label (out of 100 trials) to each thalamic 

voxel.

2.2 Histological nucleus identification and co-registration

After dMRI scanning, the brain was frozen and sectioned coronally at 50µm thickness using 

a microtome. The tissue blockface was photographed after sectioning every three sections by 

a camera rigidly mounted above the microtome. These blockface images were stacked in 

order, composing an intermediate space for registration from microscopy to dMRI space. 

One series of every sixth section was reacted for AChE and another series was reacted for 

Nissl. The two series of sections were both automatically photographed under a light 

microscope with 0.5× magnification in the Digital Histology Shared Resource at Vanderbilt 

University. The borders of primary thalamic nuclei, 16 for each thalamus listed in Table 2, 

were identified and manually traced by a neuroanatomist with more than 20 years’ 

experiences, based on micro-architectonics revealed by the AChE and Nissl stains [5]. The 

manual tracing of each thalamic nucleus was aligned with AChE microscopy and binarized. 

The binary mask of each thalamic nucleus was transformed to dMRI space using 

deformation fields calculated via a multi-step registration procedure, which included 2D 

affine and nonlinear registration [19] from light microscopy to the corresponding blockface 

image (one slice at a time) and then 3D affine and nonlinear registration from the blockface 

stack to dMRI volume (see [20–22] for more details). The 16 thalamic nuclei we identified 

are listed in Table 2 [5].
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2.3 Comparison of dMRI clustering and histology

To evaluate overall agreement of parcellation, we calculated the Jaccard index for all nuclei, 

defined as Ra. To evaluate agreement for each parcellated nucleus, we calculated the Jaccard 

index for each nucleus, defined as ra. Both Ra and ra indicate how many out of the total 

number of voxels were correctly clustered. The average and standard deviation of Ra and ra 

were calculated from 100 trials of k-means clustering (as described in part 2.1) for each of 

the five dMRI models.

3. RESULTS

Figure 2 shows the dorsal views of dMRI clustering results and histological parcellation in 

the same dMRI space. Each panel of fig. 2A–2E shows the maximum likelihood clustering 

calculated from 100 trials of k-means clustering using the given dMRI model.

Figure 3A–E illustrate the average and standard deviation of the 100 trials of agreement 

rates, ra, between histology and k-means clustering for each dMRI model, i.e., DT (Fig. 3A), 

CSD (Fig. 3B), NODDI (Fig. 3C), DKI (Fig. 3D), and SMT (Fig. 3E), for each individual 

nucleus in the left hemisphere (blue bar) and right hemisphere (yellow bar). Figure 3F lists 

the average and standard deviation of overall agreement rate, Ra. The average of Ra is in the 

range of 0.45–0.67.

4. DISCUSSION

This paper proposes a k-means clustering framework to parcellate the thalamus by 

integrating microstructural properties of tissue estimated from dMRI models. The method 

was implemented using five dMRI models and evaluated by comparing with histological 

parcels in the same monkey brain. In figure 2, DKI shows slightly higher overall agreement 

with histology and SMT shows significantly lower agreement than other dMRI models. 

However, the order of overall agreement, Ra, does not necessarily align with the order of 

agreement ra. For example, CSD gives highest ra with respect to the VLp nucleus in monkey 

brain. Note that VLp in monkey brain corresponds to VIM in the human. The Euclidean 

distance between diffusion measures, as shown in Eq.(1), equally weighted each component 

in the parameter set for the dMRI model. Based on our previous work [23], these 

components might contribute differently to clustering. So we will improve our k-means 

clustering in the future by adding appropriate weighting factors.
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Figure 1. 
Graphic pipeline of our methods. (Top row) One monkey brain was scanned in a 9.4 Tesla 

MRI to acquire diffusion weighted images. The diffusion data were fit to five dMRI models 

(DT, CSD, NODDI, DKI and SMT). K-means clustering was performed using maps 

calculated from each dMRI model as features. (Bottom row) The brain was then sectioned, 

stained for Nissl and AChE. Thalamic nuclei were outlined by an expert and then 

transformed to dMRI space. Finally, the agreement between each dMRI clustering and 

histology was evaluated (right and left hemisphere regions shown in blue and yellow, 

respectively).
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Figure 2. 
Dorsal view of k-means clustering of each dMRI model and the histological parcels in the 

same monkey brain. (A)–(E) show maximum likelihood clustering results from 100 trials of 

k-means clustering using five dMRI models: DT, CSD, NODDI, DKI and SMT. (F) shows 

the histological parcels identified on the basis of AChE and Nissl stained micro-

architectonics.
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Figure 3. 
Agreement rates, ra and Ra, between dMRI clustering and histological ground truth. (A)–(E) 

show the agreement rate, ra, for each individual nucleus between histology and k-means 

clustering using five diffusion models: DT, CSD, NODDI, DKI and SMT. Solid bars and 

error bars represent the average and standard deviation of ra distribution obtained from 100 

trials of k-means clustering. (F) displays the overall agreement rate, Ra, over the entire 

thalamus between histology and clustering.
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Table 1

List of dMRI models, corresponding software tools and output maps.

dMRI
Model

Software Tool Output Maps

DTI [6] FSL Diffusion Tool https://fsl.fmrib.ox.ac.uk Di,j – components of diffusion tensor (i, j = 1,2,3)

CSD [8] MRtrix3 www.mrtrix.org cj – coefficients of spherical harmonics (j = 1,2,…,45)

NODDI [9] NODDI toolbox www.nitrc.org/projects/noddi_toolbox νic – apparent intra-cellular volume fraction

νiso – apparent CSF volume fraction

od – orientation dispersion index

V – main fiber bundle orientation

DKI [10] DKE www.nitrc.org/projects/dke Di,j,k,l – components of kurtosis tensor (i, j, k, l = 1,2,3)

SMT [11] SMT tool https://github.com/ekaden/smt νin – apparent intra-neurite volume fraction;

Din – intrinsic intra-neurite diffusivity

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2019 March 01.

https://fsl.fmrib.ox.ac.uk
http://www.mrtrix.org
http://www.nitrc.org/projects/noddi_toolbox
http://www.nitrc.org/projects/dke
https://github.com/ekaden/smt


A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Gao et al. Page 12

Ta
b

le
 2

L
is

t o
f 

16
 th

al
am

ic
 n

uc
le

i i
n 

ea
ch

 h
em

is
ph

er
e 

of
 th

e 
sq

ui
rr

el
 m

on
ke

y 
br

ai
n.

N
uc

le
us

N
uc

le
us

N
uc

le
us

N
uc

le
us

A
A

nt
er

io
r

V
L

a
V

en
tr

ol
at

er
al

 a
nt

er
io

r
V

P
L

V
en

tr
al

 p
os

te
ro

la
te

ra
l

L
P

L
at

er
al

 p
os

te
ri

or

V
A

V
en

tr
al

 a
nt

er
io

r
V

L
d

V
en

tr
ol

at
er

al
 d

or
sa

l
V

P
M

V
en

tr
al

 p
os

te
ro

m
ed

ia
l

P
uI

Pu
lv

in
ar

 in
fe

ri
or

M
D

M
ed

ia
n 

do
rs

al
V

L
p

V
en

tr
ol

at
er

al
 p

os
te

ri
or

C
M

C
en

tr
al

 m
ed

ia
l

P
uM

Pu
lv

in
ar

 m
ed

ia
l

C
L

C
en

tr
al

 la
m

in
ar

V
L

x
V

en
tr

ol
at

er
al

 m
ed

ia
l

P
F

Pa
ra

fa
sc

ic
ul

ar
P

uL
Pu

lv
in

ar
 la

te
ra

l

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2019 March 01.


	Abstract
	1. INTRODUCTION
	2. METHODS
	2.1 dMRI acquisition, model fitting and clustering
	2.2 Histological nucleus identification and co-registration
	2.3 Comparison of dMRI clustering and histology

	3. RESULTS
	4. DISCUSSION
	References
	Figure 1
	Figure 2
	Figure 3
	Table 1
	Table 2

