
Performances of Multiprocessor Multidisk Architectures

for Continuous Media Storage

Benoit A. Gennart, Vincent Messerli, Roger D. Hersch

Ecole Polytechnique F�ed�erale de Lausanne (EPFL), Switzerland

ABSTRACT

Multimedia interfaces increase the need for large image databases, capable of storing and reading streams of

data with strict synchronicity and isochronicity requirements. In order to ful�ll these requirements, we consider a

parallel image server architecture which relies on arrays of intelligent disk nodes, each disk node being composed

of one processor and one or more disks. This contribution analyzes through bottleneck performance evaluation

and simulation the behavior of two multi-processor multi-disk architectures : a point-to-point architecture and

a shared-bus architecture similar to current multiprocessor workstation architectures. We compare the two ar-

chitectures on the basis of two multimedia algorithms : the compute-bound frame resizing by resampling and

the data-bound disk-to-client stream transfer. The results suggest that the shared bus is a potential bottleneck

despite its very high hardware throughput (400Mbytes/s) and that an architecture with addressable local mem-

ories located closely to their respective processors could partially remove this bottleneck. The point-to-point

architecture is scalable and able to sustain high throughputs for simultaneous compute-bound and data-bound

operations.

Keywords : image computing for image, video and multimedia database ; multiprocessor multidisk storage

architectures ; architecture throughput and jitter.

1 Introduction

In the �elds of scienti�c modeling, medical imaging, biology, civil engineering, cartography and graphic arts,

there is an urgent need for huge storage capacities, fast access and real-time interactive visualization of pixmap

images and multimedia streams. Interactive real-time visualization of full color pixmap image data or of high-

quality video streams requires at the application level a throughput of 1 to 100 MBytes/s. With the availability

of high-speed networks such as FDDI, fast Ethernet and ATM broadband, high-performance high-capacity image

and media servers must provide client stations located on local or public networks with a set of adequate services

for immediate access to image, video and sound streams. Parallel mass storage devices are required in order to

access and manipulate multimedia data at high speed.

A multimedia server does not only need to access requested data streams at the required throughput. It

also needs to be able to o�er processing services such as conversion from one video format to another, from

compressed to uncompressed and from uncompressed to compressed stream formats. Existing video streams

need to be converted from one resolution to another, and from one frame rate to another to suit the client's

requirements. Furthermore, a multimedia server also needs to provide continuous media editing facilities for

creating superimpositions, titles, inserts and special e�ects, such as transitions between clips.

fabienne
In Proc. Storage and Retrieval for Still Image and Video Databases IV, 1-2 February 1996, San Jose, USA, SPIE Proc. 2670, 286-299

fabienne

The RAID-II architecture approach
1
o�ers high-bandwidth disk arrays hooked directly onto high-speed net-

works. Although the RAID-II approach o�ers very high bandwidth, it requires an expensive high-speed network

and its interface. The present contribution considers architectures where storage devices are closely coupled with

processing power in order to avoid unnecessary and costly transfers of data across high-speed networks. In the

authors' mind, an image and multimedia server should only transfer those pieces of data which are of immediate

use to the clients. All preprocessing operations such as frame resizing, stream compression, format conversion,

overlay of streams, and windowing operations should be executed by the server. The server should also be able,

by reducing the frame rate, resizing the frames to a lower size and increasing the compression factor, to adapt

the video stream rate to the network throughput.

We consider two di�erent multiprocessor-multidisk (MPMD) architectures as multimedia server architectures.

We are interested both in the throughput of the architecture and in the delay jitters introduced by hardware

devices such as disks and shared buses.

In order to evaluate the architecture's capabilities and to compare the point to point and the shared bus

architectures, we de�ne two operations to be executed in parallel by the multiprocessor-multidisk multimedia

server running on these architectures. These operations are representative for the services which have to be

o�ered by multimedia servers. The �rst operation consists of continuous accesses to video streams segmented

in strands striped over the set of available disks. The second operation consists of accessing in parallel an

uncompressed video stream striped across the disks, resizing it by applying to its frames a resampling operation

and compressing it by dedicated compression hardware.

The two analyzed multiprocessor-multidisk systems are a point-to-point-communication architecture based

on the GigaView concept,
2
and a shared-bus architecture similar to high-end general-purpose workstation clus-

ter architectures. Our approach is to evaluate through experiments on single-processor single-disk workstations

individual component performance (e. g. memory initialization throughput, memory read, write and copy through-

puts, disk access throughput and latency). We then use the performance parameters to establish a qualitative

performance model based on the analysis of potential bottlenecks. Bottlenecks are determined by analyzing the

time spent by each component to produce one byte at the output of the multiprocessor multidisk architecture.

The slowest component in the architecture is the bottleneck. We give a qualitative prediction of the perfor-

mances we obtain for the considered operations and validate these predictions by simulating the modeled MPMD

architectures.

The result of the analysis suggests that the two considered multiprocessor multidisk architectures both o�er a

very high throughput for both stream access and stream data processing. It also shows that, in theory, a shared bus

architecture can provide a high throughput since it is hard to saturate a 400MBytes/s backplane bus. However,

the caching mechanisms that improve the computing speed of such architectures have an adverse e�ect on the

performance of data-bound applications, by requiring the data to travel many times over the bus. We suggest

that an architecture where the data ow is under the control of the application developer and where addressable

distributed local memories are available to run processing operations locally o�ers a better performance than a

single shared memory architecture where the data ow is controlled by cache coherency schemes.

Section 2 lists related research and section 3 speci�es the modeled architectures : the intelligent disk-node,

the shared-bus architecture, the point-to-point architecture. Section 4 speci�es the modeled operations. Section 5

presents the results obtained from estimations and simulations.

2 Related work

Multimedia storage architectures. Besides the RAID architectures presented in the introduction, several

authors propose speci�c solutions for storing multimedia streams. Reddy
3
discusses disk scheduling strategies in

a multimedia I/O system. His analysis concerns the way multiple-streams should be allocated on a single disk.

Lougher presents a continuous multimedia storage server (CMSS
4
) consisting of a disk array connected to an

interface processor. Tobagi
5
presents StarWorks, a video applications server and discusses both the required disk

array bandwidth and the memory size in the case of simultaneous access to multiple video streams. Vin and

Rangan
6
describe a multiuser HDTV storage server, but do not consider striping single streams across multiple

disks. Druschel discusses the use of workstations for multimedia access and processing.
7

He points out the

inadequacy of cache-based workstation architectures for multimedia applications and discusses ways of reducing

the number of memory copies in multimedia processing applications. He predicted that shared bus throughput

will not increase at the same rate as processing power and that therefore the shared bus will remain a major

bottleneck in multimedia applications. However, the recent evolution of bus transfer rates shows that the raw

bus throughput has increased nearly as fast as processing power (for example by a factor of 5 between a Sparc

2 and a Sparc 20 workstation). The present contribution shows that the shared bus is not a bottleneck anymore

for single processor workstations, but that it tends to remain a bottleneck for certain classes of operations in the

case of multiprocessor multidisk workstations.

Multiprocessor-multidisk point-to-point architectures. The �rst attempt to combine processors and disks

in a point to point architecture was presented by Wilkes in 1991 in order to speed up disk input-output oper-

ations
8
. The authors have implemented a multiprocessor-multidisk image server, called the GigaView. The

GigaView consists of a server interface processor based on a T800 transputer connected through transputer links

(1.6MBytes/s) to a number of intelligent disk-nodes.
2
Each intelligent disk-node consists of a T800 transputer

connected through a SCSI-2 to a single magnetic disk. A 4-disk GigaView connected through a SCSI-2 standard

interface to a host computer (Macintosh, Unix Workstation) provides a throughput of up to 5MBytes/s at the

application level, and the ability to browse through images and maps of arbitrary size at the rate of three to four

512-by-512 3-byte-pixel visualization windows per second. At 5MBytes/s, the standard GigaView architecture

reaches its peak performance, because its interface processor becomes saturated. Higher throughputs require

more server interface processors. Within the limits of its component performances, the GigaView architecture

demonstrates the bene�ts of associating disks and processors, and of having full control of the data ow inside

the architecture. The authors have analyzed the behavior of the GigaView architecture for simultaneous access

to multiple continuous streams.
9

3 Architecture models

The two analyzed multimedia server architectures are formed by associating disks and processors so as to form

an array of intelligent disk nodes capable of executing in parallel local preprocessing operations. In the point to

point architecture, disk nodes are connected to a server interface processor by communication links. In the shared

bus architecture, disk nodes communicate through the shared bus.

Section 3.1 describes the modeling methodology. Section 3.2 describes the intelligent disk node. Section 3.3

details the elements of a point-to-point based distributed memory architecture. Section 3.4 describes the model

of the shared bus architecture made up of a set of intelligent disk-nodes communicating through the shared bus.

Section 3.5 analyzes in detail the throughput performance of the backplane bus.

3.1 Modeling

The modeling methodology in this contribution is based on (a) measuring the performance of elementary

operations ; (b) de�ning the resources required to execute elementary operations ; (c) combining elementary

operations and resources to model composite operations of complex systems.

Elementary operations such as memory to memory data access, disk data access, or resampling are measured

experimentally on existing single-processor single-disk workstations (Sparc20, DEC 3400), and relevant parameters

such as throughput and latency are evaluated. Simulation models for elementary operations (e. g. the time to

transfer a data packet from disk to shared memory) are created using the measured performance parameters.

A system is modeled as a set of components (bus, disks, processors, links). Components perform elementary

operations sequentially. Systems perform composite operations concurrently. Composite operations (e. g. a multi-

processor multi-disk architecture accessing a multimedia stream) are speci�ed as a series of elementary component

operations. Simulated systems are prospective systems such as a 4-disk-node 16-disk point-to-point architecture

or a 4-processor 8-disk shared-bus architecture. The simulator derives the system performance for speci�c stimuli.

System dependent software overheads have not been included into the model. On Sparc Unix systems, for

example, reading a �le from a disk requires for each piece of data one DMA transfer from disk to kernel space and

an additional memory copy operation from the kernel to the application memory space. Mechanisms are being

developed to avoid this additional memory copy operation.
10

3.2 Intelligent disk node

An intelligent disk-node optimized for multimedia applications consists of a processor connected to memory, to

a compression-chip and to a SCSI-2 controller interfacing disk storage devices through a SCSI-2 channel (Fig. 1).

As is the case in many workstations, the memory is capable of sustaining the peak backplane bus throughput rate.

We therefore assume that the memory throughput is limited by the bus throughput. The SCSI-controller enables

data to be transferred directly from secondary storage to main memory by direct memory access (DMA). The

processor performs software resampling operations. Compression, which in the case of MPEG
11

is a compute-

intensive task, requires dedicated hardware such as for example the C-Cube MPEG processor.

M
PC

S

C : compressor
P : processor
S : SCSI Controller
D : storage device
M : memory

D

D

Figure 1 : Intelligent disk node

From an architectural standpoint, an intelligent disk node behaves like a low-end workstation. The model for

the intelligent disk-node is hierarchical. A disk-node consists of a processor (CPU), a compression circuit, a

backplane bus and a composite I/O component. The I/O component consists of a controller, a SCSI-2 bus, and a

number of magnetic disks. Processors, compression circuits, backplane, SCSI-controllers, SCSI-busses, and disks

act as resources carrying out elementary operations. The performance of each of these components is measured

experimentally. The following paragraphs list the performances of elementary operations.

Disk access. For our simulations, we consider disks with a 10msec average seek-time, and a 4MByte/sec

throughput. Current disks support a throughput of a few MBytes/s. Despite raw-throughput increases, the

application-level throughput is unlikely to increase much, as the disk latency will remain of the order of a few

msecs. We make no assumptions as to the position of streams on the disks, and count an average seek-time for

each access. This simpli�cation has little e�ect on the results, as the manipulated packets of data are large (more

than 50KBytes). Detailed analysis of stream allocation on disks can be found in other contributions.
6,5,3

Disk modeling. The disk delay is modeled as the sum of a latency and a data transfer delay. The data transfer

is linear in the size of the data transferred. By assuming equiprobable cylinder positions for strands, the disk

latency is modeled as a random variable of the form S(t) = 2

3�mst(1�
1

3�mstt), where mst is the mean seek-time.

For this random variable, the standard deviation is
mstp

2
. For a 10ms seek-time, the standard deviation is 7.07ms.

SCSI-bus. We consider a fast-wide SCSI-2 bus, in synchronous mode. Experiments made by connecting several

disks to a single SCSI-2 bus in synchronous mode show that 3 IBM disks achieve a maximum throughput of

9.2MBytes/s, for a raw SCSI-2 bus throughput of 10MBytes/s. The fast-wide SCSI-bus in synchronous mode has

a raw throughput of 20MBytes/s. We therefore assume the maximum throughput sustained by the SCSI-bus to

be 18.4MBytes/s.

Stream resampling. The stream resampling procedure uses backward mapping and nearest neighbor resam-

pling. The delay for running this resampling code on a 4MByte output strand is 0.57s on a Sparc20/502, resulting

in a throughput of 7.35MBytes/s. The same code runs in 0.38sec on a DEC alpha 3400, resulting in a throughput

of 10MBytes/s.

Processors. 100MIPS processors are common, and 400MIPS processors exist. However, algorithms that re-

quire less than 100 instructions per bytes are rare, and therefore processors that can process data faster than

1MByte/sec are rare. The nearest-neighbor-resampling algorithm applied to 3-byte-pixel images achieves a rate

of 7.35MBytes/s on a Sparc20, and 10MBytes/s on a Dec3400. Decompression algorithms such as MPEG decom-

pression achieve surprisingly good rates, because their throughput depends on the size of the input data, which

is small. Run-length decompression algorithms also perform very well. MPEG compression algorithms perform

very slowly, as their input data is large and the MPEG compression scheme is strongly asymmetric. A dedicated

compression circuit is required if acceptable performance is to be achieved.

MPEG compression. For modeling MPEG compression, we rely on performance �gures announced for the

C-Cube CL-4000 chip. The CL-4000 is a single-chip encoder circuit that can compress a 352x240 stream at the

rate of 30 frames/s, resulting in an input throughput of 7.6MBytes/s. We assume that uncompressed stream

frames are loaded into the compression circuit's input bu�er by direct memory access.

3.3 Point-to-point architecture

The point-to-point architecture consists of a server interface processor connected through communication links

to an array of intelligent disk nodes (Figure 2). The communication links are modeled as T9000-transputer links,

rated at 100Mbits/s. Experiments show that the T9000 links can achieve throughputs of up to 8MBytes/s. The

communication link controllers transfer data between memory and communication links by direct memory ac-

cesses, allowing the processor to perform other tasks while communication takes place. A number of architectures

based on transputer links have been proposed and built, and achieve excellent performance and load balancing.
12

The transputer links support the concept of virtual channels, allowing any number of virtual channels to be

allocated on a physical link. A single Inmos C-104 crossbar switch is capable of connecting up to 32 bi-directional

links and provides the means to transfer packets between any two connected transputers without noticeable delay.

Such serial communication links limit the single-wire connection bandwidth, but enable crossbar chips of moderate

complexity and with excellent throughput to be designed. The nominal raw throughput of the C-104 crossbar

chip (32 * 100MBits/sec = 400MBytes/s) is as high as the nominal throughput of a Sparc-20 backplane bus. In

the architecture shown in �gure 2, the four server interface communication links are a shared resource and may

limit the global throughput. Adding server interface processors enables this potential bottleneck to be removed

and renders the architecture completely scalable.

3.4 Shared bus architecture

The shared-bus architecture consists of a number of intelligent disk-nodes all sharing the same single backplane

bus (Fig. 3). This multiprocessor workstation cluster architecture is modeled according to the Sparc20. The actual

architecture of a SPARC 20 I/O board, as shown in �gure 3 is more complex than the intelligent disk-node model

of �gure 1 : (a) there is an additional I/O bus , called the Sbus ; (b) the compressor board and the SCSI devices

are hooked onto the Sbus rather than directly onto the shared bus. However, the SBus o�ers su�cient bandwidth

(49MBytes/s read throughput and 55MBytes/s write throughput
13
) to support the combined throughputs of the

disks (at most 4MBytes/s times the number of disks connected to the SCSI bus) and of the compression circuit

(roughly 8MBytes/s). In our model, we therefore ignore the details of the SBus behavior and assume that the

SCSI-2 controller and the compression circuit are directly connected onto the shared bus.

M
PC

S
Intelligent
disk node

P

N

crossbar switch

interface
processor

serverC : compressor
P : processor
S : SCSI Controller
D : storage device
M : memory

D

D

N : network interface

: communication link

Figure 2 : Point to point architecture

P

M
H

MBus/XDBus

N

S
bu

s

S

C

I/O board

intelligent
disk-node

P

H

P

H

I/O
 b

oa
rd

I/O
 b

oa
rd

processor
board

C : compressor
P : processor
S : SCSI Controller
D : storage device
M : memory
N : network interface

Figure 3 : Shared bus architecture

Section 3.5 gives a detailed analysis of the backplane bus performance and of the cache behavior, as these are

critical in the shared bus architecture performance.

3.5 Backplane-bus throughput

The detailed bus performance measurements were performed on a 2-processor SPARC20 workstation. The

information on the SPARC20 architecture is found in two SUN publications.
13,14

The Sparc20 backplane bus

is an 8-byte wide synchronous bus called MBUS, running with a 50Mhz clock. Its raw throughput is therefore

400MBytes/s. We are interested in measuring the throughput for simple operations such as the UNIX memset

and memcopy operations, and in establishing the relationship between the memset operation throughput and

the raw bus throughput. The biggest di�culty in this study is to understand how many times the data actually

travels through the bus for a given operation, taking into account the e�ect of the cache. Intuitively, the memset

and memcopy operations only require one and two bus transfers respectively. In fact, due to cache interaction,

the memset operation operation requires two bus transfers and the memcopy operation requires three transfers.

When setting at a speci�c address, the memset operation at �rst causes a cache miss, resulting in the entire

cache line (32 bytes in the case of a Sparc20) to be loaded into the cache. The line is immediately overwritten by

the memset operation, and at the next cache miss, the data will be transferred back to memory resulting in two

transfers over the bus for a single memset operation.

For the experiments, we used the Solaris libfast.a library, which guarantees that data transfers are carried out

using all 8 bytes of the bus and we aligned the data to 32 bytes boundaries, so as to ensure that 32 bytes packets

�t exactly in one cache line.

Read operation. To measure a single read transfer on the bus, we speci�ed a test program that repeatedly

reads 4 bytes in every cache line (program 1, left). As a result of each instruction, a 32-byte data packet is

transferred from memory to processor cache. As the data is clean, it never gets transferred from the processor

cache back to memory. The memory read or cache �ll throughput of the test program is 105.3MBytes/s, or an

average of 300nsec (15 clock cycles at 50Mhz) per cache line.

Considering that the instruction costs 1 clock cycle, we can derive that a cache miss costs 14 cycles. This

is compatible with the MBUS speci�cation which guarantees a 90MByte/sec memory read throughput with a

40Mhz clock. The MBUS blocks the bus during read accesses. The newer XDBus (SparcCenter 2000) with a

packet-based protocol does not block the bus during read accesses.

LD [%io],%lo
LD [%io+32],%lo
LD [%io+64],%lo
LD [%io+96],%lo
LD [%io+128],%lo
...

ST [%io],%lo
ST [%io+32],%lo
ST [%io+64],%lo
ST [%io+96],%lo
ST [%io+128],%lo
...

Program 1 : Test programs (left : read bus-transfer ; right : read-write bus-transfer)

Write operation. To measure the write throughput, we speci�ed a test program that repeatedly writes 4 bytes

in every successive cache line (program 1, right). As a result of each write instruction, a 32-byte data packet is

transferred from the memory to the cache. As the cache data is now dirty, it gets transferred from the cache

back to memory at the next cache miss. The throughput obtained in this experiment is 63MBytes/s, or 500nsec

per 32Byte-cache-line. Considering that 300nsec are taken by the read operation to �ll the cache line, this leaves

200nsec for the pipelined write operation, resulting in a pure cache to memory write throughput of 160MBytes/s.

The announced MBUS write performance is of 200MBytes/s. Our experiment exhibits a performance which is

closed to the announced peak performance. This test program sustains the same throughput as the memset

operation.

Memory copy operation. The third experiment measures the throughput for two memory read and one

memory write accesses, corresponding to the memcopy operation. One memory read access �lls the cache line

with the source data, the second read access �lls the cache line with the destination data, and the write access

transfers the modi�ed cache line back to its destination location in memory. The expected time for a 32Byte

packet is 800nsec, with 2*300nsec for the two read operations and 200nsec for the write operation, resulting in a

40MByte/sec throughput. The actual experiment results in a 39.4MByte/sec throughput, or almost the predicted

40MBytes/s.

Disk access. The fourth experiment measures the e�ect of disk accesses on the bus throughput. In the ex-

periment, there are two processes running on two separate processors. The �rst process applies a memcopy

operation to a 500MBytes data set. The second process reads continuously data from the disk using the raw

device driver. By comparing the delay of the memcopy operation in the third experiment (memcopy alone) and

in this experiment (memcopy combined with disk read operation), we derive the time required by the bus to

perform I/O operations. The experiment is performed with disk-read requests divided either in 50KBytes- or in

500KBytes-packets. Table 1 shows the results of this experiment.

packet

size

500MB

memcopy

memcopy

+ disk read

disk

read time

disk

read size

nbr. of cycles

per 8-byte word

50KB 12.82s 14.37s 1.55s 57.52MB 10

500KB 12.82s 13.84s 1.02s 55.66MB 7

Table 1 : Bus disk-read utilization

For 50KByte-packets, the time used by the disk-read operation is 1.55s, and the amount of data transferred is

57.52MBytes. This means that, on the average, the bus takes 200nsec (10 cycles) to transfer an 8-Byte word.

The maximum bus throughput for a read operation using the raw driver is therefore 38.9MBytes/sec.

Summary. Let's summarize how throughput decreases as we increase the complexity of operations. The raw

bus throughput is 400MBytes/s. Yet pure read, respectively pure write transfer throughput is 105, respectively

160 MBytes/s for the MBUS. A memset operation results in two transfers at a throughput of 63MBytes/s, and

a memcopy results in three transfers at a throughput of 40MBytes/s. Roughly, the memcopy operation is done

at 1/10th of the raw bus throughput. For reference, we ran tests of the memset and memcopy operations on the

DEC alpha 3400 workstation, resulting in throughputs of 84MBytes/s and 42MBytes/s respectively.

Table 2 summarizes the throughput �gures that will be used in the simulations. These �gures are a summary

of all the performance measurements. We consider the best performance for each operation. Concerning the

bus and memory access performance, a write-to-memory operation requires two bus transfers (equivalent to the

memset operation), and a read from memory operation requires a single bus transfer.

operation input (MB/s) output (MB/s)

Disk.Read 4MB/s+10ms lat.

I/O.WriteToMemory 38.9MB/s

Processor.WriteToMemory 60MB/s

Processor.ReadFromMemory 100MB/s

Cpu.MPEGDecompression 0.33MB/s 5MB/s

Cpu.Resample 7.5MB/s

MPEGCompressor.Recompress 7.5MB/s 0.5MB/s

Link.Transfer 8MB/s

ScsiBus.Transfer 18.4MB/s

Table 2 : Throughput summary

4 Multimedia operation modeling

As mentioned in the introduction, we consider two multimedia operations which are representative for the

operations of a parallel multimedia server : (1) the data-bound multimedia-stream reading operation ; (2) the

compute-bound uncompressed multimedia-stream resizing-by-resampling and compression operation. We prefer

the expression data-bound to I/O-bound, as it is not certain that in data transfers, the I/O is always the slowest

part. To achieve parallelism, multimedia streams are divided into strands, allocated on the various disk nodes in

the architecture. Load balancing is achieved by placing consecutive strands on consecutive disk-nodes. Previous

research has shown that the overriding concern in designing multimedia architectures is in achieving throughput.

A further concern consists in evaluating the delay jitter induced by hardware, such as the random disk access

time and the contention over shared resources (shared bus, shared communication links). We are however mainly

interested in demonstrating the architecture's throughput capabilities. We have suggested that if the throughput

is large enough, respectively the utilization rate of the architecture's components is low enough, isochronicity and

synchronicity requirements may be ful�lled by appropriate bu�er allocation strategies and possibly by constraining

the frame rates to some integer multiples of a basic frame rate .
9

Strands are su�ciently large (at least 50KBytes) so as to ensure that data transfers take at least as long as

disk seek-times. On the other hand, strands are not too large to allow pipelining within the architecture and with

the network interface.

Intelligent disk-node operations on strands. A disk-node is capable of accessing a strand, and resampling

a strand. Accessing a strand requires generating appropriate SCSI requests for disks, sending the requests to the

I/O SCSI-controller, accessing the disks and transferring the data back to memory by direct memory accesses.

In the case of multimedia operations, the data is transferred immediately to the right place in memory, without

intervention from the disk-node processor.

Reading and resampling a strand consists (a) of applying the previously described operations for reading the

strand, which consist essentially in transferring the strand from disks to memory (1 bus transfer) ; (b) resampling

the strand (CPU, 2 bus transfers) ; (c) compressing the resampled strand (compressor hardware, 2 bus transfers).

The resampling operation requires therefore stream parts to be read once from memory to cache, to be processed

within the cache and to be written once from cache to memory. Each cache-miss requires 25 bus cycles (10 to

write the cache line back to memory, and 15 to read the new line from memory to the cache) or 500nsec. For

the compression operation, we assume that the compression circuit's input bu�er is loaded by direct memory

accesses.

Point-to-point architecture operations. The parallel read operation running on the point-to-point architec-

ture requires dividing a stream access request into multiple strand access requests and sending the strand access

requests to the appropriate disk-nodes. Each disk-node reads its requested strands from the disks and transfers

them back to the server interface processor which merges the strand requests to form the requested stream. The

parallel resize-by-resampling operation on the point-to-point architecture requires dividing a stream request into

multiple strand requests and sending the strand requests to the appropriate disk nodes. Each disk-node accesses

its strands from its disk, resamples them independently and transfers the resampled strands to the server interface

processor.

Shared bus operations. The continuous stream read operation on a shared bus architecture requires broad-

casting a stream access request to all disk nodes in the architecture. All disk nodes then generate in parallel

strand access requests and access the strands from their disks. Accessing a strand consists in transferring the

strand from disk storage to its appropriate location in shared memory.

The stream read and resample operation on the shared bus architecture requires broadcasting a stream access

and resampling request to all disk nodes in the architecture. All disk nodes generate in parallel strand access

requests, read the strands from the disks and resample them.

5 Simulation results

In this section, we run simulations using the models of section 3 and 4, and the performance parameters

gathered in table 2. For the two operations under consideration (stream access, and stream read and resampling)

we plot the global throughput and component utilization as a function of the number of disks and disk nodes in

the architecture. For all experiments, the number of disks per disk-node is one.

5.1 Reading streams in parallel from the disks

In this experiment, a stream is requested from the server. Whether the stream data is compressed or uncom-

pressed does not a�ect the experiment since reading an uncompressed stream at a low frame rate is equivalent to

reading a compressed stream at high frame rate. All strands are requested at the beginning of the experiment and

the experiment is �nished when the last strand has been processed. The throughput is de�ned as the total stream

size divided by the maximum time. Reading the stream requires accessing the strands in parallel from secondary

storage, and assembling them in shared memory. The requested stream consists of 256 352-by-240 2-byte-pixel

uncompressed frames. Each strand consists of a single 352-by-240 2-byte-pixel uncompressed frame.

The numbers selected for the frame size, the number of frames per stream and the number of frames per

strand are chosen so as to optimize the point-to-point architecture's internal pipelining. This pipelining occurs

at the strand-level : streams are divided into strands, and strands stored on the same disk-node are processed in

pipeline : disk-node accesses are followed by transfers to the server interface processor. The largest detrimental

e�ect on the delay comes from ine�ective data pipelining. If strands are too large the total delay becomes too

large as only a few strands are processed by each node. If the strand becomes too small, disk access time increases

due to an increased number of seek-times.

Figure 4 summarizes the results of running the throughput experiment for architectures consisting of 1 to 16

intelligent disk-nodes. The �gure contains throughput and utilizations numbers. The utilization of a component

is de�ned as the ratio of a component's busy time vs. the total simulated time. The left-hand scale displays

throughput numbers (MBytes/s) and the right-hand scale average utilizations (from 0 to 1). The average uti-

lization is plotted for the disks (D-line), the SCSI busses (S-line), the backplane busses (B-line), the disk-node

processors (P-line), the communication links (L-Line) and the server interface processor (I-Line).

16128

4321

number of disk nodes

0

6.

12.

18.

24.

30.

t
h
r
o
u
g
h
p
u
t

(
M
B
/
s
)

Point-to-Point

u
t
i
l
i
z
a
t
i
o
n

T

T

T

T

T

T
D D D D D

D

D

P P P P P P PL

L

L

L

L

L L

I I I I
I

I IS S S S S S SM M M M M M M
C C C C C C C

T : throughput
D : disks util.
P : disk proc. util.
L : links
I : int. proc. util.
S : scsi busses util.
M : local memory util.
C : compressor util.

0.2

0.4

0.6

0.8

16128

4321

number of disk nodes

0

7.

14.

21.

28.

t
h
r
o
u
g
h
p
u
t

(
M
B
/
s
)

SharedBus

u
t
i
l
i
z
a
t
i
o
n

T
T

T
T

T

TD D D D D D

D

P P P P P P P

S S S S S S S

B
B

B
B

B

B
B

C C C C C C C

T : throughput
D : disks util.
P : disk proc. util.
S : scsi busses util.
B : backplane util.
C : compressor util.

0.2

0.4

0.6

0.8

Figure 4 : Reading streams : throughput and utilization

Let us estimate the sustainable throughputs for both architectures. The average delay for a 40KByte-disk-request

is 20ms (10ms seek-time and 10ms data transfer time at 4MBytes/s), or a 2MBytes/s throughput. Larger disk

request size would increase the latency of the architecture, and the ability of the server to start pipelining the

stream onto the network. Smaller request sizes would decrease the disk throughput. For a 16-disk point-to-

point architecture, the disks are capable of sustaining at most 16 times 2MBytes/s or 32MBytes/s. The four

server interface processor communication links become saturated at 32MBytes/s. In the case of the shared-bus

architecture, the backplane bus becomes saturated at 38.9MBytes/s when writing data from the disks to shared

memory (see Table 2). This simple analysis shows that the point-to-point architecture will saturate at around

32MBytes/s throughput, whereas the shared-bus architecture should be able to sustain throughputs of at most

38.9MBytes/s.

Figure 4 con�rms these results. The point-to-point architecture reaches its maximum throughput when all

links become saturated, at approximatively 30MB/s (roughly four times each link throughput). The interface

processor is far from being saturated. The throughput of the point to point architecture could be improved by

increasing the number of links connected to the server interface processor or by increasing the number of server

interface processors. The shared-bus architecture reaches saturation for architectures with more than 12 nodes,

and sustains a maximum throughput of 35MBytes/s.

However, the simulated operation is favorable to the shared bus architecture. In the simulations, data has only

reached the architecture's shared memory. Attempting to transfer the data to the network will require at least one

additional bus transfer, resulting in the architecture being saturated at a much lower throughput. If the network

protocol requires the data to be transferred once across the intelligent disk-node processor, the throughput will

drop very low. Considering a 35MByte/sec transfer from disk to memory, a 40MByte/sec memory-to-memory

round-trip through the disk-node processor for protocol purposes (creation of data packets with headers) and

a 100MByte/sec transfer from the memory to the network, the shared bus throughput drops to
1

1

35
+ 1

40
+ 1

100

= 15.73MBytes/s. In the case of the point-to-point architecture however, once the stream data reaches the

server interface processor, the server interface processor can take care of network protocol requirements without

interfering with stream access from the disks.

To analyze the jitter of the architecture, we run a di�erent experiment, where strands are requested at regular

intervals, and we plot as a function of delay and architecture utilization the probability to process a strand within

the given delay. This is the jitter experiment. The architecture utilization is controlled by modifying the delay

between strand requests.

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

seconds

0

0.2

0.4

0.6

0.8

1
c
p
d
s

PointToPoint

10% (9.802ms)

50% (11.87ms)
80% (13.04ms)

90% (13.46ms)

util. sdev.

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

seconds

0

0.2

0.4

0.6

0.8

1

c
p
d
s

SharedBus

50% (10.01ms)

90% (11.39ms)

util. sdev.

Figure 5 : Reading streams : delay cumulative probability distributions

Figure 5 shows typical strand delay distributions for an 8-disk-node architecture, as a function of the architecture

utilization. The utilization of an architecture is de�ned as the maximal utilization of any component in the

architecture. Each curve represents a cumulative probability distribution (cpd). A (delay; cpd) point on the

curve represents the probability that a strand is retrieved in less than delay. The disk induced delay standard-

deviation is 7.07msec. It represents the major part of the delay's standard-deviation for both architectures (around

10ms). The remaining parts are due either to shared bus contention (shared-bus architecture) or in the case of the

point to point architecture, due to contention on the communication links or on accesses to the server interface

processor's memory.

16128

4321

number of disk nodes

0

8.

16.

24.

32.

40.

t
h
r
o
u
g
h
p
u
t

(
M
B
/
s
)

Point-to-Point

u
t
i
l
i
z
a
t
i
o
n

T
T

T
T

T

T

D D D D D
D D

P P P P P P P

I I I I I I I

S S S S S S SM M M M M M MC C C C C C C

T : throughput
D : disks util.
P : disk proc. util.
L : links
I : int. proc. util.
S : scsi busses util.
M : local memory util.
C : compressor util.

0.2

0.4

0.6

0.8

16128

4321

number of disk nodes

0

4.

8.

12.

16.

20.

t
h
r
o
u
g
h
p
u
t

(
M
B
/
s
)

SharedBus

u
t
i
l
i
z
a
t
i
o
n

T

T

T

T

T T
D D D D

D

D

DP P P P P

P
P

S S S S S
S S

B

B

B

B

B
B B

C C C C C C C

T : throughput
D : disks util.
P : disk proc. util.
S : scsi busses util.
B : backplane util.
C : compressor util.

0.2

0.4

0.6

0.8

Figure 6 : Resampling uncompressed streams: throughput and utilization

5.2 Resampling and compressing streams

This experiment consists of reading an uncompressed stream from the disks, resampling it, compressing it and

storing it in memory, in order to transmit it to the client through the network . The requested stream consists of

256 352-by-240 2-byte frames, and each strand of a single 352-by-240 2-byte frame. The resampling step divides

the size of each frame by a factor of 4.

A simple evaluation shows that for a 16 disk-node architecture, the disks will achieve a 32MByte/sec through-

put. Each processor resamples its strands at the rate of 7.5MBytes/s (see table 2) and therefore achieves a

combined throughput of 120MBytes/s. The compression circuits compress data at the same rate. The bus must

transfer the data from secondary storage to memory (40MBytes/s), from memory to processor for resampling

purposes, (100MBytes/s), from processor to memory (a quarter of the initial data size at 60MBytes/s), from

memory to the compression circuit (a quarter of the initial data size at 100MBytes/s) and from the compression

circuit to memory. Since the last transfer concerns the transfer of compressed resampled data and a compression

factor of 15 is assumed, only 1/60 of the initial data size needs to be transferred to memory. This last transfer

step can therefore be neglected. The maximum bus throughput for this operation is therefore
1

1

40
+

1

100
+

1

4�60
+

1

4�100

= 24MBytes/s.

Figure 6 summarizes the throughput and utilization for point-to-point and shared-bus architectures. In the

case of the point-to-point architecture, the disks are the bottleneck, regardless of the number of disk nodes. By

adding disks to each node, it is possible to make the disk-node processors become a processing bottleneck. In no

case do the SCSI busses and disk-node memory bandwidth become a bottleneck. The processor utilization rate

of 0.4 shows that two disks per disk-node would increase the processor utilization to 0.8 and double the input

throughput. The point-to-point architecture can be further expanded by adding additional disk-nodes, up to 28

disk-nodes connected to a single crossbar chip. in order to sustain a linear throughput increase for up to 112

Mbytes/s (28 disk-nodes * 2 disks/disk-node* 2 Mbytes/s) of input data. Since the data stream gets reduced by

a factor of 4 and is further compressed, no bottleneck will occur at the server interface processor. The shared-bus

architecture already saturates at 8 disks and 21 Mbytes/s due to the shared bus bandwidth limitation.

The throughput numbers in �gure 6 refer to the uncompressed data throughput before having applied the

resampling operation. These are the e�ective throughput values at the disk and disk-node processor levels.

Assuming a compression factor of 15, and a resampling factor of 2 in both X and Y directions, the throughput

after resampling and compression is 1/60th of the throughput displayed on the �gure. In the case of the shared

bus architecture, the backplane bus becomes a bottleneck when the architecture consists of more than 8 disk-

nodes. The maximum sustainable throughput is 21MBytes/s, slightly less than our estimated 24MBytes/s. The

di�erence between the estimated and simulated result is due to the contention between the large number of packets

traveling on the bus. Many small packets represent strand and SCSI requests that travel between processors and

input/output controllers.

5.3 Discussion of the results

With up to 8 disk-nodes, both analyzed multiprocessor-multidisk architecture o�er excellent performances

for accessing and processing multimedia streams striped over multiple disks. The point to point architecture is

well balanced : up to 30 MBytes/s can be accessed from 16 disks, processed and transferred through the links

to the server interface processor. In the case where an uncompressed stream is accessed from the disks and is

down-sampled or compressed, the bottleneck resides in the disk access throughput. In such a case, the point to

point architecture can be scaled up to 28 disk nodes and 56 disks, reaching an uncompressed data throughput of

112 Mbytes/s, whereas the shared bus architecture saturates at only 8 disk-nodes.

Compared with the point to point architecture, the shared bus multiprocessor-multidisk architecture o�ers a

similar disk access performance due to its high shared bus throughput (400MB/s raw throughput). Nevertheless,

due to the fact that caches do not behave well in data intensive applications, and to the fact that reading and

writing continuous media require shared bus accesses, the bus may become a bottleneck. This occurs when

combining processing and data intensive operations such as for example the pipeline composed of parallel disk

accesses and parallel resampling of video streams.

In the case of the point-to-point architecture, it is possible to run both disk-reading and reading-with-

resampling operations simultaneously on independent streams, and to achieve a substantial fraction of the through-

put of both. With su�cient disk resources, the disk-reading operation saturates the server interface processor

links, with minimal use of the disk-node processors. Under the same circumstances, the reading-with-resampling

operation saturates the processors, with minimal use of the server interface processor links. The two operations

can therefore run with minimal interaction. In the case of the shared-bus architecture, both disk-reading and

reading-with-resampling operations saturate the bus. These two operations are therefore mutually exclusive.

The point-to-point architecture is well suited for building scalable multimedia servers storing highest quality

data, possibly in uncompressed form. Services may be o�ered for editing data (creating special e�ects requiring

the combination of frames, adding text into frames, etc..), for processing frames as series of images and for

reducing the amount of information to be transferred according to the client application requirements and to the

network bandwidth. As long as the operations can be applied independently to strands, every disk node processor

reads its requested stands from the disks, performs the required operations and either stores the result back onto

the disks or transfers them to a server interface processor connected to the client through the network. The only

limitation of the point to point architecture is the maximal 30Mbyte/s communication link throughput of the

server interface processor.

The analysis of the shared bus architectures suggests that the potential bottleneck represented by the shared

bus could be alleviated by considering an architecture where processors and globally addressable local memories

would form subsystems able to execute algorithms in parallel and where the shared bus would be accessed only

to transfer information between disks and subsystems, to exchange data between the subsystems and to transfer

data from subsystems to the network interface. What is needed is a general-purpose DMA controller capable

of executing large-data-set move operations, that transfer packets from one component to another in one pass

across the bus. The large-data-set move operations are similar to the bit block transfer operations (BitBlt)

familiar to the computer graphics community. An architecture where the data would be transferred between

local memories under the control of the application would sustain a higher performance than current workstation

architectures where data ows on demand as a result of cache coherency algorithms that have no prior knowledge

of the application domain. Once the shared bus becomes just a means for communicating between processing

subsystems, its very large raw bandwidth will be hard to saturate.

6 Conclusion

We have analyzed the behavior of two multiprocessor-multidisk architectures for multimedia oriented stream

access and processing operations such as accessing in parallel video streams striped over a number of disks, down-

sizing stream frames by parallel resampling, and parallel compression by special compression circuits located in

the proximity of disk node processors.

The performance evaluation and the simulations show that the point to point architecture o�ers scalable

performances for a reasonable link throughput (8 MB/s link throughput). The shared bus architecture o�ers

similar performances but at the cost of a sophisticated shared bus o�ering a hardware throughput of 400MB/s.

The shared bus is a potential bottleneck for operations combining data-bound and compute-bound operations

such as the pipeline of operations required for reading continuous media from multiple disks and for reducing its

size by applying in parallel resampling operations.

The shared bus bottleneck could be removed with an architecture composed of subsystems with globally

addressable local memories allowing data to be directly transferred from disks to the subsystems local memories

and processing operations to be executed locally.

Both the point to point and the shared bus multiprocessor-multidisk architectures o�er multi-media access

and processing throughputs in the range of 20 to 40MB/s. Such throughputs are su�cient to design multimedia

information servers o�ering a large palette of services to client stations located on the network. Such powerful

servers will become more and more needed, since the growth of the Internet and of similar networks induces a large

number of users to access the same servers. These servers have to respond simultaneously to hundreds of requests

for data streams at various rates. We are currently addressing this problem by developing on a UNIX-based

multiprocessor-multidisk architecture a multimedia server capable of handling a large number of simultaneous

continuous media access and processing requests.

7 REFERENCES

[1] Ann L. Drapeau et al. RAID-II : A high-bandwidth network �le server. In Proc. 21th Int. Symp. Computer

Architecture, pages 234{244, Chicago, Illinois, 1994.

[2] R. D. Hersch, B. Krummenacher, and L. Landron. Parallel pixmap image storage and retrieval. In Grebe

et al., editor, Proceedings of the World Transputer Congress, pages 691{699. IOS Press, 1993.

[3] A. L. Narasimha Reddy and Jim Wyllie. Disk scheduling in a multimedia I/O system. In Proc. First ACM

Conf. on Multimedia, pages 225{233, Anaheim, California, August 1993.

[4] P. Lougher and D. Shepherd. The design of a storage server for continuous media. The Computer Journal,

36(1):32{42, February 93.

[5] Fouad A. Tobagi, Joseph Pang, Randall Baird, and Mark Gang. Streaming RAID| a disk array management

system for video �les. In Proc. First ACM Conf. on Multimedia, Anaheim, California, August 1993.

[6] H. M. Vin and P. V. Rangan. Designing a multi-user HDTV storage server. IEEE Journal on Selected Areas

in Communication, 11(1):153{164, Janvier 1993.

[7] P. Druschel, Mark B. Abbott, Michael Pagels, and Larry L. Peterson. Analysis of I/O subsystem design for

multimedia workstation. In P. Venkat Rangan, editor, Network and Operating Systems Support for Digital

Audio and Video, volume 712 of Lecture Notes in Computer Science, pages 289{301. Springer-Verlag, 1993.

[8] J. Wilkes. Parallel storage systems for the 1990s. In Proceedings of the 11th IEEE Symposium on Mass

Storage System, pages 131{136, Monterey, 1991.

[9] Benoit Gennart and Roger D. Hersch. Comparing multimedia storage architectures. In Proc. Int. Conf.

Multimedia Computing and Systems, pages 323{328, Washington, May 1995.

[10] Orran Krieger, Michael Stumm, and Ron Unrau. The alloc stream facility: A redesign of application-level

stream I/O. IEEE Computer, 27(2):75{82, March 1994.

[11] D. Le Gall. Mpeg : A video compression standard for multimedia applications. Comm. of the ACM,

34(4):46{58, April 91.

[12] Richard Stephens. Parallel benchmarcks on the Transtech Paramid supercomputer. In Proc. World Trans-

puter Congress, pages 136{146, Como, September 1994.

[13] Adrian Cockcroft. Sun Performance and Tuning : SPARC & Solaris. Prentice Hall, Englewood Cli�s, New

Jersey, USA, 1995.

[14] Ben Catanzaro. Multiprocessor System Architectures. Prentice-Hall, Englewood Cli�s, New Jersey, USA,

1994.

