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Abstract

Deep brain stimulation (DBS) has the potential to improve the quality of life of people with a 

variety of neurological diseases. A key challenge in DBS is in the placement of a stimulation 

electrode in the anatomical location that maximizes efficacy and minimizes side effects. Pre-

operative localization of the optimal stimulation zone can reduce surgical times and morbidity. 

Current methods of producing efficacy probability maps follow an anatomical guidance on 

magnetic resonance imaging (MRI) to identify the areas with the highest efficacy in a population. 

In this work, we propose to revisit this problem as a classification problem, where each voxel in 

the MRI is a sample informed by the surrounding anatomy. We use a patch-based convolutional 

neural network to classify a stimulation coordinate as having a positive reduction in symptoms 

during surgery. We use a cohort of 187 patients with a total of 2,869 stimulation coordinates, upon 

which 3D patches were extracted and associated with an efficacy score. We compare our results 

with a registration-based method of surgical planning. We show an improvement in the 

classification of intraoperative stimulation coordinates as a positive response in reduction of 

symptoms with AUC of 0.670 compared to a baseline registration-based approach, which achieves 

an AUC of 0.627 (p < 0.01). Although additional validation is needed, the proposed classification 

framework and deep learning method appear well-suited for improving pre-surgical planning and 

personalize treatment strategies.
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1. INTRODUCTION

Deep brain stimulation (DBS) surgery is a neurosurgical procedure to alleviate symptoms in 

patients with movements disorders such as Parkinson’s Disease (PD), essential tremor (ET), 

or primary dystonia [1]. During DBS surgery, a set of micro-electrodes is introduced into the 

brain parenchyma to test the effect of electrical stimulation at predetermined anatomical 

targets. Deep gray matter targets have been reported as having high efficacy for specific 

conditions, such as the subthalamic nucleus (STN) for PD, the ventral intermediate (VIM) 

nucleus of the thalamus for ET, or the globus pallidus interna (GPi) for dystonia [1]. The 

goal of the procedure is to find the anatomical location that maximizes efficacy in terms of 

symptomatic relief while minimizing the side effect profile of electrical stimulation to 

neighboring structures. An approximate target location is identified during presurgical 

planning and adjusted intraoperatively according to the stimulation profile of efficacy and 

side effects. A key challenge lies in identifying a presurgical target with a high likelihood of 

success, since accurate targeting can reduce surgical time and testing at multiple anatomical 

locations. Improved prediction may result in a diminishing intraoperative functional 

response from the patient and reduce medical morbidity.

Current methods of estimating the anatomical likelihood of stimulation efficacy use an 

image registration approach [2]. A probability map is created from intra-operative data of 

previous patients who have undergone the procedure. A profile of symptom relief and side 

effects is recorded at a number of intraoperative stimulation coordinates. The area affected 

by electrical stimulation is modeled as a sphere that represents the distribution of the electric 

field around the point of stimulation [2]. The radius of the sphere is a monotonic function of 

the current applied [2]. Previous work has used truncated Gaussians [3, 4] and annuli [2] as 

kernel functions for stimulation with similar results. Although symptom relief is a subjective 

measure (susceptible to patient variability and interpretation by the neurologist performing 

the exam), previous work has used a decrease in symptoms of over 50% intraoperatively as a 

robust measure of positive response across patients and examiners [2]. If a stimulation point 

has a positive response, it is mapped to a standard space, or atlas, using a non-rigid 

registration and modeled as a uniform probability distribution over the volume of the sphere. 

The positive response volumes from a population of patients are averaged to produce an 

efficacy probability map. The efficacy map is the registered to a new patient to identify the 

regions with high efficacy. Figure 1 shows the result of data acquisition during intraoperative 

stimulation in the STN. The blue regions represent the stimulated areas with a null response 

and the red regions the stimulated areas with a positive response. Each stimulated area is 

modelled as a sphere where the radius is a function of the current applied. These data show 

that only a few stimulation locations can be tested in each patient and are sparse with respect 

to the potential areas of interest.

The current best practice method of producing efficacy probability maps follows anatomical 

guidance to identify the areas with the highest efficacy in a population. In this work, we 

propose to revisit this problem as a machine learning classification problem, where each 

voxel is a sample informed by the surrounding anatomy. We posit that the efficacy at each 

location can be learned from examples of intraoperative data to identify high efficacy areas 

without the use of a template space. We propose the use of a patch-based convolutional 
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neural network to classify each patch centered at the stimulation coordinate as a positive 

response point. We present results for this classifier on 187 patients with a total of 2869 

stimulation points and show that we can identify areas of high efficacy with higher accuracy 

than atlas-based methods.

2. METHODS

2.1 Data Preparation

A set of preoperative T1 magnetic resonance images (MRI) was acquired for each patient 

while they were anesthetized and their head was taped to the table to minimize motion under 

institutional review board approval. These images were acquired using a 3D SPGR sequence 

(TR 7.92 ms and TE 3.65 ms) in a 3T scanner. These MRI volumes consist of 256×256×170 

voxels with a voxel resolution of 1×1×1 mm3. DBS electrode implantation was then 

performed with a miniature stereotactic frame, the StarFix microTargeting Platform® 

(501(K), Number K003776, Feb. 23, 2001, FHC, INC; Bowdoin, ME). During surgery, a 

micropositioning drive (microTargeting® drive system, FHC Inc., Bowdoin, ME) was 

mounted on the platform. Recording and stimulating leads were then inserted using the 

microdrive. Details on the platform can be found in [5]. Intraoperative stimulation data used 

in this study were assessed by a clinical neurologist. For each stimulation coordinate, the 

efficacy was recorded as the percent decrease in symptoms. We also recorded current, side 

effects, and whether or not there was pass effect present. We used a total of 2869 stimulation 

points across 187 patients.

2.2 Registration-based Approach

We first replicate the current state of the art registration-based approach on the same dataset. 

First, we separate each stimulation coordinate as having a positive or null response with the 

protocol described above. Coordinates with a positive response are mapped to the Montreal 

Neurologic Institute (MNI-305) standard space using a non-rigid registration proposed by 

Rohde et al [6]. Once in standard space, the area affected by stimulation is modeled as a 

sphere centered at the stimulation coordinate with a radius proportional to the current 

applied [2]. The radius of the stimulation sphere was determined empirically from 

intraoperative measurements and recorded as a lookup table (Table 1). The radius for current 

values between those recorded on Table 1 was obtained by linear interpolation of known 

values. Each positive response stimulation volume is modeled as a uniform probability 

density function inside the sphere. We then average these probability density maps across all 

stimulation coordinates in standard space to obtain an efficacy probability map that can then 

be projected to a new test subject space.

In order to test the efficacy of these maps we perform a five-fold cross-validation scheme. 

For each fold, we use 80% of the subjects to generate the efficacy probability map in 

standard space and then project this to the remaining 20% of subjects to use as test subjects 

using a non-rigid registration [6]. This protocol was repeated a total of five times so that all 

subjects were used for testing only once. Once the probability efficacy map is projected to 

test subject space, we evaluate the probability of positive stimulation on the ground truth 

coordinates from intraoperative testing. First, we generate a sphere at each coordinate using 
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the radius relationship in Table 1. The probability of classifying this coordinate as positive is 

the cumulative probability of the efficacy probability map within the stimulation sphere. 

Therefore, we obtain a probability estimate of classifying the intraoperative stimulation 

coordinate as positive or null using the population-based efficacy map registered from 

standard space. We assess the accuracy of this method with the receiver-operator 

characteristic (ROC) curve to find the best sensitivity and specificity that discriminates 

positive and null response spheres.

2.3 Patch-based Classification

In this work, we propose a patch-based neural network classifier to learn the function 

underlying the registration-based approach. The input data consists of two 3D volumes: first, 

the raw MRI of the patient and second, anatomical context provided by a volume with four 

labels: background/CSF, cortical gray matter, deep gray matter, and white matter. These 

labels were obtained using a multi-atlas approach where 45 atlases were non-rigidly 

registered [7] to the target image and non-local spatial staple (NLSS) label fusion [8] was 

used to fuse the labels from each atlas to the target image using the BrainCOLOR protocol 

[9].

The pipeline for this work is shown in Figure 2. First, we extract cubic patches from the raw 

T1 MRI and label map in subject space to use as input data. The patches are of size of size 

51×51×51 mm and are centered at the intraoperative stimulation coordinate. A total of 2,869 

3D patches were extracted. Each patch was then sorted into positive and null response 

groups. Positive response coordinates were selected in the same manner as the registration-

based approach, where there must be greater than 50% improvement in symptoms during 

intraoperative stimulation. Exclusion criteria was the presence of pass effect in the 

intraoperative notes. We also select for the lowest current that maximizes efficacy at each 

coordinate. Of the 2,869 patches extracted, 34.37% were positive response coordinates while 

65.63% were null response coordinates. The average current used in positive stimulation 

coordinates was 2.83 mA and the average current in null stimulation coordinates was 2.70 

mA (p = 0.73, Wilcoxon-Mann-Whitney test).

A modified ResNet architecture [10] was used in this model to classify patches between 

positive and null responses (Figure 2). ResNet architectures have shown good performance 

on patch-based classification tasks [11-13]. The extracted patches were used as input and the 

class of positive or null response for the center of the patch was used as the output. The 

architecture is shown in Figure 2, which consists of a large convolution block followed by 

series of four convolutional blocks. All blocks consist of a 3D convolution layer, batch 

normalization, ReLU activation, and 3D max pooling of size 2×2×2 voxels. The initial 

convolution had a kernel of 7 voxels, while the following 4 convolutions had a kernel of 3 

voxels. The first, third, and fifth convolutional blocks were joined via skip connections. 

After the convolutional blocks, there is a 3D average pooling followed by a fully connected 

dense layer of 100 nodes feeding into the final binary output classification with sigmoid 

activation. Dropout layers at 50% were used between the fully connected layers. The 

network was compiled using an Adam optimization algorithm using binary cross-entropy as 

the loss function with a learning rate of 1×10−6 and a batch size of 32 patches.
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Five separate models trained on 80% of the patients, using 10% of this subset as validation, 

with the remaining 20% as the testing set. A five-fold cross-validation scheme was used to 

assess the accuracy of the model on the testing set only. Results shown below reflect the 

accuracy of the testing set folds. All models were trained until the accuracy in the validation 

did not change by more than 5% over 10 epochs. Model accuracy was measured with the 

ROC curve to find the threshold with sensitivity and specificity. To assess the ability of the 

proposed method to generate efficacy maps at every voxel in the image, we generate a 3D 

patch centered at every voxel and use the classification network to compute the probability 

of the patch being classified as having a positive response.

3. RESULTS

3.1 Patch-Based Classification outperforms Registration-based accuracy

The proposed patch-based classification model shows an improvement in accuracy at 

discriminating positive and null response coordinates than the registration-based approach at 

the locations that we sampled. Figure 3 shows that the ROC curve plot for the proposed 

method and the registration-based method. The optimal cutoff was chosen by maximizing 

the true positive rate and minimizing the false positive rate with equal weighting. We show 

that the proposed method achieved an AUC of 0.670 with sensitivity of 0.302 and specificity 

of 0.885 at the point where the slope of the ROC curve becomes less than one. The 

registration-based approach achieved an AUC of 0.627 with a sensitivity of 0.338 and 

specificity of 0.849 at the optimal threshold. The proposed method shows a significant 

improvement in preoperative prediction of efficacy points compared to a registration-based 

approach (p<0.001, McNemar Test [14, 15]).

3.2 Patch-based approach can generate patient-specific efficacy maps

We assess the ability of the proposed method to generate a preoperative efficacy map across 

an entire brain volume. Figure 4 shows the efficacy map of a sample patient in the testing set 

overlaid on the MRI volume. We calculate the probability of a patch centered at that voxel 

being classified as having a positive response. The results show that the target areas 

predicted by our method are close to the positive response (green cross) and null response 

(blue ring) coordinates seen intraoperatively. There are many other areas of activation seen, 

particularly at border regions. It is important to note that all of the patches used to train the 

network were near the center of the image, where the structures of interest like the STN, 

GPi, and VIM are located.

4. DISCUSSION & CONCLUSION

Current state of the art in DBS preoperative planning uses a registration-based approach to 

produce an efficacy map that represents structures likely to respond to stimulation. This 

efficacy map serves as a surrogate for structures that are difficult to visualize from 

presurgical imaging such as the STN or the VIM. In this work, we propose a patch-based 

deep learning method to assist in preoperative planning for DBS surgery. We show that we 

can use data acquired from intraoperative recordings to learn the function between anatomic 

location and a positive response to stimulation at the points that have been sampled intra-
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operatively. Compared to a baseline registration-based approach, the proposed method can 

better predict the response to stimulation at the observed points when posed as a 

classification problem (Figure 3). However, it also leads to several infeasible responses with 

potential issues of symmetry and target localization (Figure 4). Note that the proposed 

classifier is a conditional classifier in that it is only valid in the domain upon which it was 

trained. The only data available are the points at which intraoperative recordings have been 

made, so no information is present at the cortex (and many other brain regions). So, the 

extrapolation seen in Figure 4 shows a high likelihood of positive response in the 

background and the cerebral cortex, which are outside the domain of stimulation of DBS 

surgery, likely due to similar intensity patterns. We include these results to demonstrate the 

differences in this tool from registration-based approaches, which are tied to the underlying 

anatomy and registration.

In this work, we see that we can better predict the response to stimulation in the observed 

coordinates. However, the proposed network is only valid when applied to regions that 

would have been sampled based on the clinical procedure. Hence, it is invalid to apply the 

classifier to areas such as the cortex. Further exploration is needed for the proposed machine 

learning approach to be ready for surgical consideration. For example, validation of the 

resulting efficacy maps could be achieved by comparing the efficacy probability against the 

final position of the electrode or even the active contact being used for symptomatic relief 

months after the surgery. The work presented here is a preliminary study that aims to 

demonstrate the feasibility of a machine learning approach to predict intraoperative clinical 

data. The clinical applicability of this work remains to be thoroughly tested and validated as 

described above before deploying to patient care.

The framework proposed herein introduces a new method to estimate efficacy maps during 

DBS presurgical mapping. This technique could potentially facilitate the development of 

accurate and patient-specific targets to improve functional outcomes during surgery. 

Moreover, an agnostic machine learning approach benefits from the lack of restrictions of 

registration and prespecified kernels, resulting in a personalized marker obtained from 

patient-specific anatomical context through imaging. As shown by the integration of 

segmentation labels, the proposed method is a natural framework to integrate additional 

contextual information, such as diffusion tensor imaging or clinical variables, which are 

difficult to include in the registration-based approach. These efforts will further refine and 

personalize the efficacy maps to discriminate between patient subpopulations, potential risk 

factors, and unique anatomical context. Further work should also include the side effects 

recorded during intraoperative stimulation to further refine the classification task to 

maximize efficacy while minimizing the side effect profile of stimulation, e.g., through 

multi-task learning.
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Figure 1. Data acquisition process during DBS surgery in the subthalamic nucleus.
An example patient is shown with the efficacy data acquired intraoperatively. The region 

shown in blue represents all merged coordinates with the corresponding stimulation spheres 

that did not show a significant improvement in symptoms (ie. null response). The region 

shown in red are all merged coordinates with corresponding stimulation spheres with a 

significant reduction in symptoms (ie. positive response). The overlap between the two maps 

is resolved in favor of the positive response. This figure exemplifies the sparse nature of the 

data acquisition process and difficulty in visualizing underlying structures.
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Figure 2. Proposed pipeline for classification of response patches.
We use a modified 3D ResNet to train a classifier that discriminates input patches according 

to positive or negative intrasurgical response. The input data are two 3D patches centered 

around a stimulation coordinate: one is the raw MRI image and the other is a set of labels to 

provide anatomical context. The labels provided are background/CSF, cortical gray matter, 

deep gray matter, and white matter. The output of the network is the probability of the patch 

corresponding to a stimulation coordinate with a positive response.
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Figure 3. ROC Curve for registration-based approach (baseline) and machine learning approach 
(proposed).
The AUC for the proposed method is 0.670 compared to an AUC of 0.627 using the 

registration-based approach (p<0.001, McNemar test).
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Figure 4. Machine-learning approximation of an efficacy map.
Patient MRI image overlaid with probability of positive response assessed on a sliding patch 

basis (assuming an infeasible stimulation at every voxel). Green crosses indicate actual 

intraoperative stimulation locations with a positive response. Blue circles indicate 

intraoperative stimulation locations with a null response.
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Table 1.

Lookup table for radius of stimulation sphere as a function of applied current.

Current
(mA)

Radius of stimulation
sphere (mm)

< 1 1.00

1 1.80

2 2.42

3 2.94

4 3.33

5 3.72

6 4.05

7 4.35
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