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Abstract

Machine learning models are becoming commonplace in the domain of medical imaging, and with 

these methods comes an ever-increasing need for more data. However, to preserve patient 

anonymity it is frequently impractical or prohibited to transfer protected health information (PHI) 

between institutions. Additionally, due to the nature of some studies, there may not be a large 

public dataset available on which to train models. To address this conundrum, we analyze the 

efficacy of transferring the model itself in lieu of data between different sites. By doing so we 

accomplish two goals: 1) the model gains access to training on a larger dataset that it could not 

normally obtain and 2) the model better generalizes, having trained on data from separate 

locations. In this paper, we implement multi-site learning with disparate datasets from the National 

Institutes of Health (NIH) and Vanderbilt University Medical Center (VUMC) without 

compromising PHI. Three neural networks are trained to convergence on a computed tomography 

(CT) brain hematoma segmentation task: one only with NIH data, one only with VUMC data, and 

one multi-site model alternating between NIH and VUMC data. Resultant lesion masks with the 

multi-site model attain an average Dice similarity coefficient of 0.64 and the automatically 

segmented hematoma volumes correlate to those done manually with a Pearson correlation 

coefficient of 0.87, corresponding to an 8% and 5% improvement, respectively, over the single-site 

model counterparts.
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1. INTRODUCTION

Deep learning has recently become a key approach for computer vision and medical imaging 

problems. Neural networks have been used to skull-strip CT scans,1 segment magnetic 

resonance images,2 locate and segment blood vessels,3 as well as segment brain regions4 and 

lesions.5 A wide variety of models and architectures have been implemented to solve these 

tasks, and there also exist pre-trained models prepared for general use cases.6 Regardless of 

the particular task for which a model is designed or selected, machine learning methods 

generally benefit from the inclusion of more data for training and validating the model.7 

Traditionally, acquisition of multi-site data involves data transfer to a centralized location on 

which the desired model trains; however, it is frequently prohibited or difficult to acquire 

HIPAA-compliant health data transfer permits.8 These data restrictions are vital, though, as 

protected health information (PHI) policies enforce respect for patient privacy and 

anonymity.9,10,11 Herein lies a contradiction: machine learning models benefit greatly from a 

wealth of data, yet datasets related to healthcare cannot be shared between sites easily.

To address this problem, we propose to transfer the models themselves between sites in lieu 

of a dataset transfer. The concept of distributed learning is not new to machine learning, with 

one such example coming from Google’s implementation of Federated Learning, through 

which models are averaged between mobile phones.12 However, this approach does not have 

the goal of gaining accuracy or generalizability, and instead is a decentralized framework 

geared towards mobile devices and their limited computing power. Another distributed 

learning technique is transfer learning,13 which aims to apply useful features learned from 

one task towards a kick-started learning for some other task. Different still is the concept of 

asynchronous stochastic gradient descent,14 wherein a model is copied for some number of 

splits of training data, and their learned weights are aggregated once training is complete.

Recently, a study has embarked to investigate whether a model can perform better if it 

accesses data from different sites,15 wherein the authors simulate a multi-site scenario by 

splitting an open-source dataset into groups and apply different transformations and noise to 

each group with the goal of making the data appear different. The authors investigate 

applying different multi-site training approaches, comparing transfer learning to different 

patterns of passing partially trained models.

In this paper, we expand upon this work by using empirical multi-site data, separately 

acquired from the NIH and VUMC. Because of differences in the acquisition at each site, as 

well as in delineation protocols, improved performance due to the combined training data 

gained by multi-site learning is not guaranteed. Thus, we employ the aforementioned 

paper’s cyclic weight transfer as our training paradigm and forgo the uni-directional transfer 

learning approach.

Our specific contributions are the presentation of an extensible framework through which 

multiple sites can train the same model using private data and the validation of the efficacy 

of two different training schema on the segmentation of hematoma in traumatic brain injury 

(TBI) CT scans. In the latter contribution, we consider single-site learning at each of the two 

sites (NIH and VUMC), and multi-site learning between both sites.
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Here, we target segmentation of hemorrhages and hematomas in patients with TBI (see 

Figure 1). Hemorrhages refer to active bleeding, while a hematoma is any collection or 

swelling of clotted blood outside of the blood vessels, the cause of which could be severe 

trauma or disease. The identification and segmentation of blood is an important 

consideration for diagnosis, prediction of patient recovery, and for examining correlations 

with long-term neurologic disabilities16 such as cognitive impairment.17 Improving the 

efficacy of hematoma segmentation will therefore assist developments in understanding and 

treating TBI.

2. METHOD

2.1 Data

CT images from 27 acute TBI patients presenting with intracranial hematomas were 

acquired as part of a research study by the Center for Neuroscience and Regenerative 

Medicine (CNRM) and NIH. At VUMC, 18 CT images of TBI patients were obtained in de-

identified form. The resolutions of all scans from both sites were approximately 0.5 × 0.5 × 

5.0 mm3. All scans were converted from DICOM to NIFTI and subsequently transformed 

into Hounsfield units. For training, 10 scans were used at the VUMC site while 17 were used 

at the NIH; the remaining 8 and 10, respectively, were set aside as the test dataset. Images 

from both the NIH and VUMC had a variety of hematoma types, sizes, and locations; 

however VUMC on average had a larger hematoma volume of 41,000 mm3 compared with 

13,700 mm3 in the NIH dataset. For preprocessing, all CT image volumes underwent skull-

stripping by CT_BET18 and were rigidly transformed to a common orientation. To address 

the low number of training images, we collected 1,000 255 × 255 2D patches from each CT 

volume, 20% of which were used as a validation set for hyperparameter tuning. Since voxel 

intensities were in Hounsfield units, no normalization was applied and thus no intensities 

were scaled. Additionally, because the images have low through-plane resolution (5.0 mm) 

compared to the in-plane resolution (0.5 mm), only 2D segmentations were considered. 

Manual segmentations were performed by independent raters at the two sites and reviewed 

independently by a neuroradiologist; quantities are reflected in Table 1.

2.2 Model Architecture

Previously, an Inception Net-based architecture has performed well on hematoma 

segmentation from magnetic resonance images;20 as such, we utilize a similar 2D 

architecture with arbitrary-sized inputs, permitting 2D patch-wise training and full slice 

automatic segmentation. This architecture is illustrated in Figure 2. Training continued to 

convergence, defined as no loss improvement of 1 × 10−4 in 10 epochs on the validation 

patch set. The learning rate was set at 1 × 10−4 with the Adam21 optimizer and the 

continuous Dice coefficient22 (cDC) as the loss. Resultant binary segmentation masks were 

generated by thresholding the probability masks at 0.5.

2.3 Framework Implementation

To implement multi-site learning using cyclic weight transfer, we established a server which 

both the NIH and VUMC could securely access. On this server we mounted a single 

directory where the neural network weights were kept. Identical Python scripts at both 
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institutions allowed the model to be loaded, trained, and saved via secure shell access to this 

tertiary server without opening up public connections to either institution’s data.23

Particularly, in our implementation, data at each site is never accessible to investigators 

outside that institution.

2.4 Training Strategies

Single-Site Learning—As a baseline, each of the sites NIH and VUMC performed 

single-site learning (SSL) to convergence with their respective datasets. Once converged, 

each of the NIH SSL and VUMC SSL models were evaluated on the NIH test and VUMC 

test sets. Concretely, NIH SSL was trained on the NIH training dataset and tested on the NIH 

and VUMC testing datasets and VUMC SSL was trained on the VUMC train dataset and 

tested on both the NIH and VUMC testing datasets.

Multi-Site Learning—Multi-site learning (MSL) involved training the same model 

architecture from initialization (i.e.: no transfer learning), then passing the model to the next 

institution for the subsequent epoch. Thus, MSL would train for one epoch on the NIH train 

dataset, then one epoch on VUMC train dataset, then one epoch on NIH train dataset, and so 

on until convergence. As with the NIH SSL and VUMC SSL models, the MSL model was 

evaluated over both the NIH and VUMC testing datasets.

3. RESULTS

After training, we have three distinct sets of weights for our model: NIH SSL, VUMC SSL, 

and MSL. Each of these was evaluated over both the NIH and VUMC testing datasets. We 

validated all weight sets with two quantitative metrics: the Dice coefficient and hematoma 

volume correlation between the automatic and manual segmentations. Further explanation of 

these measurements follows.

3.1 Qualitative Evaluation

The automatic segmentations of test CT slices in Fig. 3 allow for qualitative comparisons 

between the different training sites. As expected, the model trained at its respective location 

shows fewer false positives than the model trained at the other location. However, in these 

scenarios we see the MSL model generally contains less predicted hematoma voxels. Yellow 

arrows indicate false positives not only near the blood-brain barrier, but also ones that are 

not present in the MSL segmentations.

3.2 Quantitative Evaluation

Separate from the cDC loss function, the traditional Dice coefficient was employed to judge 

the accuracy of the automatic masks. Figure 3 displays example segmentation results from 

four different patients while Table 2 shows the overall averages for all models.

To compare the efficacy of the MSL model against the two SSL models, we used the 

Wilcoxon signed-rank test over the corresponding Dice scores. Our findings, illustrated in 

Figures 4 and 5, show significant improvement between the MSL model and both the NIH 

SSL (p=0.009) and VUMC SSL (p=0.005) models with respect to the NIH test dataset, and a 
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significant improvement between the MSL model and the NIH SSL (p=0.01) over the 

VUMC test dataset. The VUMC SSL model outperformed the MSL model on the VUMC 

test data, but not significantly (p=0.337).

Two considerations are made regarding low Dice scores. First, specifically regarding the 

disparity of average Dice scores between the NIH and VUMC visible in Figures 4 and 5, 

data from the NIH had a lower average hematoma volume than VUMC data (13,700 mm3 

for NIH data versus 41,000 mm3 for VUMC data), and Dice coefficients between two 

segmentations are known to be dependent on the volumes of the objects being considered. 

Second, regarding overall average Dice scores for both institutions, some 2D image slices 

near the top and bottom of the brain as well as along the blood-brain barrier suffer from 

increased false positives. These are shown in Figure 3, marked by yellow arrows.

As an alternate means to evaluate the accuracy of the automatic segmentation, we calculated 

the Pearson correlation coefficient between the total volume in the segmentation and manual 

masks, as provided in Table 2. Although the automatic segmentations contain some small 

false positives which reduce the Dice coefficient, overall, the volume correlations remain 

high.

4. DISCUSSION

To our best knowledge, this is the first application of multi-site distributed learning applied 

to clinical imaging data from different institutions. In this paper, we have presented and 

validated a technique to distributively train a convolutional neural network over disparate 

data housed at different institutions. While the multi-site model outperformed its single-site 

counterparts, our main contribution is a general framework to allow a neural model to train 

over more data than it would normally have access to while still preserving PHI. We show 

that for this task, multi-site learning did not detract from the network’s ability to learn over 

tasks, and as expected, performance improved with more data availability. Additionally, our 

implementation to transfer the weights between sites automatically is straightforward, 

publicly available and can be generally applied to other epoch-based training scenarios. 

Future work includes exploring alternate neural architectures such as U-net and evaluating 

the generalizablility of the MSL model compared with the SSL models using more than two 

sites.
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Figure 1: 
Representative 5.0 mm thick transverse CT sections through the head in 10 subjects with 

TBI. In-plane resolution is approximately 0.5 × 0.5 mm. In each case, the hemorrhagic 

lesion appears intermediate density between normal brain tissue and bone. Note the 

heterogeneity of size, location, density and configuration.
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Figure 2: 
Illustrated is the proposed model architecture. Convolution layers are indicated in yellow, 

with notation N @ k2 representing N 2D kernels of size k × k. The activation for all 

convolution layers is ReLU, except for the final 1 @ 12 convolution which uses a sigmoid 

activation. Avg @ k2 and Max @ k2 respectively correspond to average pooling and max 

pooling with strides k × k. The modified Inception Module, shown to the right, is a variation 

of the original Inception Module presented by Google.19
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Figure 3: 
Examples of automatic segmentations are shown. From left to right, the images correspond 

to the CT, the manual “ground truth” (GT) segmentation, the NIF1 SSL, VUMC SSL, and 

MSL segmentations. Both the image volume and the specific image slice’s Dice coefficient 

are overlaid on that segmentation. Yellow arrows specify examples of false positives near the 

blood-brain barrier which were not present in the MSL segmentations.
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Figure 4: 
Model Dice coefficient comparison over the NIH testing dataset. The MSL model performed 

significantly better than either SSL models, where the asterisk indicates a significant 

difference (p < 0.05, found via the Wilcoxon signed-rank test).
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Figure 5: 
Model Dice coefficient comparison over the VUMC testing dataset. The MSL model 

performed significantly better than the NIH SSL model, but performed worse than the 

VUMC SSL model. The asterisk indicates significance (p < 0.05, according to the Wilcoxon 

signed-rank test) where “ns” corresponds to “not significant” (p >= 0.05).
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Table 1:

Distribution of CT image volumes between training and test sets for both sites.

Training Location # Training Images # Testing Images

VUMC 10 8

NIH 17 10

Total 27 18
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Table 2:

Average Dice coefficients and Pearson correlation coefficients for the three training strategies over the NIH 

and VUMC datasets. The average result over both datasets is shown to illustrate each model’s general ability. 

An asterisk indicates significant improvements in Dice coefficient (p < 0.05) between the MSL and each of the 

NIH SSL and VUMC SSL models as evaluated by the Wilcoxon signed-rank test, and bold text indicates the 

highest Pearson correlation coefficient between automatic and manual segmented hematoma volumes.

NIH Data VUMC Data Average of NIH and VUMC data

Dice Correlation Dice Correlation Dice Correlation

Inter-Rater 0.687 n/a n/a n/a n/a n/a

NIH SSL 0.512 0.913 0.690 0.752 0.601 0.832

VUMC SSL 0.407 0.859 0.745 0.754 0.576 0.807

MSL 0.552* 0.943 0.725 0.791 0.63* 0.867
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