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Abstract

In vivo imaging experiments often require automated detection and tracking of changes in the 

specimen. These tasks can be hindered by variations in the position and orientation of the 

specimen relative to the microscope, as well as by linear and nonlinear tissue deformations. We 

propose a feature-based registration method, coupled with optimal transformations, designed to 

address these problems in 3D time-lapse microscopy images. Features are detected as local regions 

of maximum intensity in source and target image stacks, and their bipartite intensity dissimilarity 

matrix is used as an input to the Hungarian algorithm to establish initial correspondences. A 

random sampling refinement method is employed to eliminate outliers, and the resulting set of 

corresponding features is used to determine an optimal translation, rigid, affine, or B-spline 

transformation for the registration of the source and target images. Accuracy of the proposed 

algorithm was tested on fluorescently labeled axons imaged over a 68-day period with a two-

photon laser scanning microscope. To that end, multiple axons in individual stacks of images were 

traced semi-manually and optimized in 3D, and the distances between the corresponding traces 

were measured before and after the registration. The results show that there is a progressive 

improvement in the registration accuracy with increasing complexity of the transformations. In 

particular, sub-micrometer accuracy (2–3 voxels) was achieved with the regularized affine and B-

spline transformations.
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1. INTRODUCTION

Accurate registration is often required for the analysis and visualization of medical images. 

For instance, 3D optical microscopy imaging of a large region of interest is often performed 

by acquiring stacks of images that tile the region with overlaps [1, 2]. The same region, in 

addition, can be imaged multiple times in a time-lapse manner [3–5]. Because such imaging 

experiments are often done in vivo, registration is required to eliminate artifacts related to 

tissue translation, rotation, as well as linear and non-linear distortions. Three of the most 

common registration problems include (i) registration of image planes within individual 

stacks, (ii) registration of image stacks within a larger region of interest, and (iii) registration 
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of image stacks over time. More than a few algorithms have been developed over the years 

to solve these registration problems [6], however, in our experience, these algorithms do not 

reliably yield high accuracy required to address many biological questions. In particular, 

structural changes in the brain that accompany learning and memory formation can be 

visualized in in vivo imaging experiments, but automated detection and analyses of such 

changes are hindered by the relatively low accuracy of the existing registration methods. 

Because many plastic elements of synaptic connectivity, such as axonal boutons, dendritic 

spines, and terminal branches of neurons, have micrometer-scale dimensions, a sub-

micrometer registration accuracy is required to disambiguate true structural changes in these 

elements from apparent changes brought up by tissue misalignment and distortion. In this 

study, we propose a feature-based registration method, capable of achieving such accuracy 

due in part to a two-step feature matching procedure. The method was validated on a dataset 

of two-photon laser-scanning microscopy images of mouse brain, which were acquired in 
vivo in 18 imaging sessions spanning the 68-day duration of the experiment [7].

2. METHOD

To register two time-lapse stacks of images, referred to as source and target, we detect 

intensity-based features in the two stacks, coarsely match the source and target features, 

refine these matches by eliminating outliers, and use the remaining matches to determine 

optimal registering transformations (Figure 1).

Features in this study are defined as small volumes (9×9×9 voxels) centered at local 

intensity maxima in the stacks (see Figure 1C). Although such features are not invariant 

under rotation or scaling, their use in this study is justified by the facts that the specimen is 

typically pre-aligned during image acquisition [7], and the tissue does not distort 

dramatically between imaging sessions (see e.g. Figure 1A). Other features, such as corners 

[8, 9], SIFT [10], and SURF [11], may be used in cases where the above assumptions are 

violated, so long as they provide dense and uniform coverage of the images. Prior to the 

detection of the maximum intensity voxels, the stacks are filtered with a Gaussian filter 

(3×3×3 voxels in size) to reduce the effects of noise. To achieve a reasonably uniform 

distribution of features in the images, we use a sequential algorithm in which after the 

detection of one local maximum, voxels belonging to the corresponding feature are 

eliminated from consideration, and the algorithm continues until there are no more features 

left. This process is applied to all image stacks in a given dataset, and the detected features, 

along with their positions, are saved. Large numbers of features are typically detected in 

every stack (~1200 features in the left image in Figure 1A), which, in theory, is beneficial 

for the registration accuracy. In practice, however, because the detected features are often 

very similar, conventional matching methods can lead to errors [12] and/or can be time-

consuming if based on a combinatorial search strategy. To address these issues, we 

developed a two-step procedure in which features are first coarsely matched based on 

similarity, and then, matches are refined based on optimal transformations of randomly 

sampled subsets.

To determine coarse matches between m features in the source stack and n features in the 

target stack, we compute an m×n matrix of bipartite feature dissimilarities, S, in which an 
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element sij denotes the mean absolute difference between the mean normalized features i in 

the source stack and j in the target stack. In addition, we introduce a cost, c > 0, for leaving a 

feature without a match. Matrix S and cost c are then used as inputs to the Hungarian 

algorithm [13] to determine an optimal assignment for which the total dissimilarity of 

matched features plus the total cost of unmatched features is minimized:

arg min
A

∑
i = 1

m
∑
j = 1

n
si jai j + c m + n − 2 ∑

i = 1

m
∑
j = 1

n
ai j (1)

Binary adjacency matrix A = (aij) in this expression encodes feature matches, such that aij = 

1 indicates that the feature i in the source stack is matched to the feature j in the target stack. 

Because feature assignment must be one-to-one, matrix A must contain no more than one 

non-zero element in every row and column.

The results of coarse feature matching typically contain erroneous matches referred to as 

outliers. For example, the pair of stacks shown in Figure 1A contains NH = 930 coarse 

matches (lines), γ = 0.2 fraction of which are outliers (see e.g. Figure 1C). Cost c is the only 

parameter of the Hungarian algorithm. Its scale is defined by the values of feature 

dissimilarities, which are confined to the [0, 1] range. The value of c can affect the fraction 

of outliers, but there is no need to precisely tune this parameter because outlier matches, 

which are inevitably present at this stage of the algorithm, will be eliminated in the feature 

refinement step. All results of this study were generated with c = 0.5.

Course matches could be used to find the optimal registering transformation, however, even 

a small fraction of outliers can lead to a significant reduction of the registration accuracy. 

Therefore, we eliminate outliers by using a random sampling procedure like the one 

described in [14]. In this procedure, a subset of k coarse matches is randomly sampled, and 

an optimal transformation is calculated to register this subset. The detected optimal 

transformation is then applied to all source features, and those that end up within d voxels 

from their corresponding target pairs are deemed to be inliers. This process continues until 

the maximum number of sampling steps, Nsamples, is reached, and the largest set of inlier 

matches is used for the registration (Figure 1D).

In this study we consider and compare four types of optimal rigid and non-rigid 

transformations, p′ = T(p), where T :ℝ3 ℝ3:
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Translation:  p′ = p + b

Rigid:           p′ = Rp + b; R ∈ SO 3

Affine:         p′ = Lp + b; L ∈ GL 3

B‐spline:      p′ = p + ∑
l, m, n = 0

3, 3, 3
X px

nx
+ l − 1,

py
ny

+ m − 1,
pz
nz

+ n − 1
Bl

px
nx

−
px
nx

Bm

py
ny

−
py
ny

Bn
pz
nz

−
pz
nz

B0 u = 1
6 1 − u 3; B1 u = 1

6 3u3 − 6u2 + 4 ; B2 u = 1
6 −3u3 + 3u2 + 3u + 1 ; B3 u

= 1
6u3

(2)

The B-spline transformation is implemented as described in [15]. Positive integers nx, ny, 

and nz define the size of one B-spline cell (in voxels). The numbers of cells required to cover 

the entire stack in all dimensions are ⌈Nx / nx⌉, ⌈Ny / ny⌉, and ⌈Nz / nz⌉, where Nx, Ny, and 

Nz denote the stack dimensions in voxels, and brackets indicate the round-up operation. B-

spline is governed by 3(⌈Nx / nx⌉ + 3)(⌈Ny / ny⌉ + 3)(⌈Nz / nz⌉ + 3) transformation 

parameters, which are included in the set of vectors X px
nx

+ l − 1,
py
ny

+ m − 1,
pz
nz

+ n − 1
.

Optimal transformations are determined by minimizing the mean square distance between 

the transformed source points {T(pi)} and the corresponding target points, {qi}. The affine 

and B-spline transformations, which are non-rigid, are regularized with the Frobenius norm 

squared of the difference between the deformation gradient tensor, ∇TT, and the identity 

matrix, I, averaged over the stack volume:

arg min
T

1
k ∑

i = 1

k
T pi − qi 2

2 + μ
NxNyNz

∫ ∇TT p − I F
2 d3p (3)

In this expression, μ is referred to as the regularization strength. We use μ = 0 for the 

translation and rigid transformations, and μ > 0 for the affine and B-spline transformations. 

The optimization problem of Eq. (3) is solved analytically to find the optimal translation, 
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rigid, and affine transformations, and numerically with the gradient descent method in the 

case of B-spline.

The described feature refinement procedure is governed by parameters k, d, and Nsamples. 

One pair of features is used for translation (k = 1), k = 3 is used for the rigid transformation, 

k = 4 for affine, and k = 6 for B-spline. Larger values of d generally lead to higher numbers 

of inlier matches, however, to avoid errors, d has to be less than the typical spacing between 

features in the stack. The value of d = 2 was used to produce the results of this study. 

Nsamples must be large enough to ensure that at least one subset of sampled matches contains 

no outliers. This parameter can be estimated by using the number of coarse matches, NH, 

resulting from the Hungarian algorithm and the fraction of outliers, γ. For this, we first 

calculate the probability of having no outliers in a single randomly chosen subset of k 
matches:

P =
NH 1 − γ

k
/

NH

k
≈ 1 − γ k (4)

The approximation made in this expression is valid for NH(1−γ)≫k, which is the case for 

the data considered in this study. By setting the probability of not finding a single all-inlier 

subset among Nsamples sampled subsets to 10−9, i.e. 1 − P
Nsamples = 10−9, we obtain:

Nsamples = −9
log 1 − 1 − γ k (5)

We note that Eq. (5) depends only on the fraction of outliers, γ, and the complexity of the 

registering transformation, k. Because the former cannot be estimated reliably by simply 

examining the results of course matching, we used γ = 0.2 for the data in Figure 1 and 

multiplied the output of Eq. (5) by a factor of 10. This procedure led to 130 samples for the 

translation, 290 for rigid, 400 for affine, and 690 for B-spline transformations.

Registration algorithm described in this study was implemented in MATLAB, and the source 

code is available at https://github.com/neurogeometry/registrar.

3. RESULTS

To evaluate the accuracy of the proposed registration algorithm, we applied it to in vivo 
time-lapse images of fluorescently labeled axons from mouse barrel cortex obtained as a part 

of another study [7]. The image stacks, 270×270×250 μm3, were acquired at a voxel volume 

of 0.26×0.26×0.80 μm3 with a 4-day interval in 18 imaging sessions. A subset of axons 

contained in the images was manually traced and optimized with the NCTracer software [16, 

17], to be used for validation. Figures 2A, B show maximum-intensity projections of two 

image stacks acquired four days apart in the same brain region. A custom-built system was 

used to pre-align the animal’s head during imaging [7], but residual misalignment is clearly 
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visible in the red-green superimposed images (Figure 2C). A similar trend is observed in the 

overlay of traces of the same axons acquired in different imaging sessions (see e.g. Figure 

2D). This misalignment makes it difficult to detect and analyze changes in the same 

structures across imaging sessions.

Registration can significantly improve upon the initial pre-alignment of image stacks. This is 

illustrated in Figures 3A, B, which show the overlays of image stacks and traces from 

Figures 2C, D following the registration. To evaluate the registration accuracy, the same set 

of 22 axons was traced in 18 imaging sessions, and the average distances between the 

corresponding traces were calculated before and after the registration. The results show that 

significant improvement over the original alignment is achieved with all four registering 

transformation types (Figure 3C). The average distance between traces monotonically 

decreases with increasing complexity of the transformations, and the highest accuracy (2.3 

voxels or 0.6 μm) was attained with the regularized B-spline transformation. We note that 

the optimal affine and B-spline transformations depend on the value of the regularization 

parameter, μ [see Eq. (3)]. However, this dependence is not very strong (Figure 3D), 

eliminating the need for precise tuning of this parameter. The value of μ = 1000 was used to 

produce the results of Figure 3.

4. CONCLUSION

We present accurate rigid and non-rigid methods for registering 3D optical microscopy 

stacks of images acquired in a time-lapse manner. The registration accuracy gradually 

improved with increasing complexity of the transformations, and sub-micrometer accuracy 

was achieved with the regularized B-spline (Figure 3). The proposed method is not specific 

to time-lapse images; it can be adapted to other essential medical imaging problems, 

including alignment of image planes within individual stacks and registration of overlapping 

stacks acquired in large-scale (e.g. whole brain) imaging experiments.
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Figure 1. 
Two-step feature matching method for accurate registration. A. Maximum intensity 

projections of two 3D stacks of images acquired in vivo with a 4-day interval in the same 

area of mouse barrel cortex (left and right images). Red dots denote the positions of detected 

feature centers. Only 15% of features are shown to avoid clutter. Coarsely matched features 

are indicated with lines. Matches at this step may contain outliers. B. Zoomed-in view of 

correctly matched features from (A). C. Same for incorrectly matched features (outliers). 

Yellow squares outline the feature boundaries. D. Outliers are eliminated with feature 

refinement. Scale bar in (A) corresponds to 50 μm for (A, D) and 4.3 μm for (B, C).
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Figure 2. 
Registration is often required for automated analyses of in vivo time-lapse images of 

neurons. A, B. Maximum intensity projections of two image stacks acquired with a 4-day 

interval showing fluorescently labeled axons of cortical neurons. Traces of some of the 

axons obtained with the NCTracer software are shown with colored lines. Insets in (A) and 

(B) show zoomed-in views of the same axon segment with some structural changes visible 

(bright varicosities in A). C. Superimposed stacks from (A) and (B), based on the pre-

alignment done during the experiment, illustrate displacement and some distortion of the 

tissue between imaging sessions (red-green). D. Likewise, an overlay of traces of an axon 

segment imaged in 18 sessions shows a significant misalignment. Scale bar in (A) 

corresponds to 50 μm for (A, B), and 28 μm for (C, D).
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Figure 3. 
Validation of the registration procedure. A. After registration (B-spline), the red-green 

superimposed images from Figure 2C show a significant improvement in alignment. B. The 

same trend is observed for the axon traces from Figure 2D. Scale bar in (A) is 28 μm for (A, 

B). C. Box plots show the distances between traces of the same axons in subsequent time-

lapse images before (original) and after registration (translation, rigid, affine, and B-spline). 

D. Average distances between time-lapse traces for the affine and B-spline transformations 

as functions of the regularization strength, μ. Corresponding distances based on the original 

images and images registered with the translation and rigid transformations are shown for 

comparison.
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