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ABSTRACT

Microscopy image analysis can provide substantial information for clinical study and understanding of biological
structures. Two-photon microscopy is a type of fluorescence microscopy that can image deep into tissue with near-
infrared excitation light. We are interested in methods that can detect and characterize nuclei in 3D fluorescence
microscopy image volumes. In general, several challenges exist for counting nuclei in 3D image volumes. These
include crowding and touching of nuclei, overlapping of nuclei, and shape and size variances of the nuclei. In this
paper, a 3D nuclei counter using two different generative adversarial networks (GAN) is proposed and evaluated.
Synthetic data that resembles real microscopy image is generated with a GAN and used to train another 3D
GAN that counts the number of nuclei. Our approach is evaluated with respect to the number of groundtruth
nuclei and compared with common ways of counting used in the biological research. Fluorescence microscopy
3D image volumes of rat kidneys are used to test our 3D nuclei counter. The accuracy results of proposed nuclei
counter are compared with the ImageJ’s 3D object counter (JACoP) and the 3D watershed. Both the counting
accuracy and the object-based evaluation show that the proposed technique is successful for counting nuclei in
3D.
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1. INTRODUCTION
Quantitative information obtained from microscopy images is vital for biomedical research and clinical diagnosis.
For example, analyzing the distribution of cells or extracellular structures can provide a better understanding
of the physiological and pathological status of the tissue. Two-photon microscopy is a type of fluorescence mi-
croscopy that is favored for living tissue imaging. With the use of near-infrared excitation to increase penetration
depth in tissue, large image volumes in 3D are produced. The large 3D image sizes and the high cost of manual
processing require automated means to analyze quantitative biological information [1].

Many challenges exist for counting objects in 3D image volumes, which include crowding and touching of
objects, overlapping of two or more objects, and variances in object shape and size. There are many real-
life examples where counting is needed, for example, traffic surveillance, pedestrian counting, and cell density
estimation.

Several semi-automatic techniques have been proposed for counting. In [2], a supervised machine learning
counting method that can estimate the object count with manual annotation input was introduced. Another
method that uses machine learning to count objects and estimates the density of the objects in images was
described in [3]. The ImageJ toolset [4] has a 3D object counter, known as JACoP [5], that is a subcellular
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colocalization analysis tool that uses a statistical approach with a manually selected threshold to analyze intensity
information to obtain the object count and location. In some counting approaches, segmentation is done prior
to counting in order to distinguish the counting targets (foreground) from the background. The 3D nuclei
segmentation presented in [6] classifies each voxel in the microscopy image volume as nuclei or non-nuclei using
3D active contours. Typically the nuclei count can be obtained from the segmentation results using 3D connected
component analysis. However, multiple nuclei could be counted as one nucleus if they are close enough to be
connected. Thus, using segmentation for counting is less accurate when nuclei are crowded. One way to address
this problem is to use morphological operations [7]. Morphological watershed (2D or 3D) is one of the techniques
commonly used for separating overlapping objects [8], [9]. In the watershed, the topographical distance transform
is used to find the number of local minima in the image, which indicates the object count [10]. However, a
drawback of the watershed is over-segmentation when more than one local minimum is found for each object,
producing inaccurate counting results [11].

Deep learning has recently become a prominent approach to address the counting problem [12]. A way
of counting that uses convolutional neural networks (CNN) to estimate the number of pedestrians in a video
was presented in [13]. Similarly, a tumor cell counting CNN is trained to provide both cell count and the cell
locations in [3]. In another example, cell counting using fully convolutional regression networks (FCRNs) was
introduced [14]. The networks were trained to find the locations of the cells from which cell count was obtained. A
combination of a CNN nuclei segmentation and 3D watershed was used for 3D segmentation and nuclei counting
in [15].

Acquiring image groundtruth for the training of deep learning networks is labor intensive and in many
applications difficult to obtain. Synthetic data has been used to train and test the networks [16]. An approach
for generating synthetic microscopy images in 3D was presented in [17]. Recently, generative adversarial networks
(GAN) [18] have been useful for generating realistic synthetic data. There are two different networks in a GAN,
a generative network and a discriminative network. More specifically, the generative network is trained to
generate sample images whereas the discriminative network is used to estimate the probability of a generated
sample being a real image. Both networks are trained to minimize their loss functions simultaneously. A deep
convolutional generative adversarial network (DCGAN) was described in [19] for unsupervised learning which
uses a GAN together with a CNN for synthesizing images. Another example of using GANs to synthesize
image is the cycle-consistent adversarial network (CycleGAN) [20]. However, the synthetic images generated by
CycleGAN can be geometrically distorted which includes spatially shifting of objects [21]. More recently, 3D
realistic synthetic microscopy volumes were generated by a spatially constrained CycleGAN (SpCycleGAN) and
utilized with corresponding synthetic binary volumes to achieve 3D nuclei segmentation [22].

In this paper, we introduce a nuclei counting technique using two GANs, a SpCycleGAN and a 3D GAN for
nuclei counting. The 3D GAN is trained with synthetic microscopy data generated by the SpCycleGAN and
tested with both synthetic and real microscopy data. Our approach is evaluated with respect to the number of
groundtruth nuclei and compared with common ways of counting used in the biological research. Fluorescence
microscopy 3D image volumes of rat kidneys are used to test our 3D nuclei counter. The data contains fluorescent
labeled (Hoechst 33342 stain) nuclei of kidney cells collected using two-photon microscopy.

2. PROPOSED METHOD

In this paper, I denotes a 3D image volume of size X × Y × Z. Figure 1(a) shows the block diagram of our
proposed way of nuclei counting. There are two main steps in our nuclei counter: 3D synthetic data generation
and 3D nuclei counting. Iorig denotes a subvolume of the original microscopy volume used for training, and
Itest is a subvolume of original or synthetic microscopy volume that is used for testing. During the evaluation,
Itest is used as an input to the 3D nuclei counting network to estimate the number of nuclei, N . Isyn denotes a
synthetic microscopy volume generated with 3D synthetic data generation based on the features of Iorig. Idist is
a distance map volume that contains information regarding the locations of the nuclei of the microscopy image
volumes. Here, Idist is paired with Isyn to train the 3D nuclei counting network. Figure 1(b) and Figure 1(c) are
the detailed block diagrams for 3D synthetic image generation and 3D nuclei counting, respectively. Ibitr and
Ibi denote the synthetic binary volumes used for SpCycleGAN training and inference, respectively. Idistg is a
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Figure 1. Block diagrams of (a) the proposed nuclei counter, (b) 3D synthetic data generation, (c) 3D nuclei counting

synthetic distance map volume generated by 3D nuclei counting network that contains nuclei location information
of Itest.

As shown in Figure 1(b), synthetic binary volumes, Ibitr, are generated first. Ibitr is used together with Iorig

to train a SpCycleGAN from which a generative model C is obtained. A different synthetic binary volume, Ibi,
is then used to generate corresponding Isyn with the trained model C. For each Isyn, the corresponding Idist is
generated. In Figure 1(c), paired Isyn and Idist are used to train a 3D GAN for nuclei counting and obtain a 3D
GAN generative model G. Model G is used to transform Itest to its synthetic distance map volume, Idistg, for
counting purposes. Then, post-processing steps which include thresholding and connected component analysis
are used on Idistg to obtain the number of nuclei N .

2.1 3D Synthetic Data Generation

Three dimensional synthetic data generation includes synthetic binary volume generation, distance transforma-
tion of the synthetic binary volume, SpCycleGAN training, and SpCycleGAN inference. A synthetic binary
volume is generated by drawing ellipsoidal shapes in 3D according to randomly selected locations of nuclei
centroids and their orientations.

Following synthetic binary volume generation, the 3D Euclidean distance transform [23] is used to obtain the
distance transformation of nuclei. We denote the distance transform as a function FDT : Ibi → Idist. The Idist

volume is obtained by the distance transform of the binary synthetic nuclei volume Ibi. FDT assigns a number to
each voxel of the binary volume that is the distance from the voxel to its nearest background voxel. Considering
an individual nucleus in Ibi and its corresponding Idist, the voxels close to the center of the nucleus have high
distance values and the voxels at the boundary have low distance values. Thus, Idist can be considered as a
distance map of the centroid locations of nuclei.



The SpCycleGAN described in our work [22] was an extension of the CycleGAN [20] by considering spatial loss
during the training. The goal is to obtain a generative model C that can transfer a binary synthetic nuclei volume
to a synthetic microscopy volume with accurate nuclei locations. During SpCycleGAN training, the objective
function is to solve the minimax problem where the training loss (L) consists of the sum of an adversarial loss, a
cycle consistency loss (Lcyc), and a spatial loss (Lspatial). The cycle consistent term and spatial constrained term
are used in the training loss for regularization of the SpCycleGAN model. The training loss can be expressed as:

L = LGAN + λ1Lcyc + λ2Lspatial (1)

where λ1 and λ2 are the adjustable coefficients for Lcyc and Lspatial. To find the spatial loss, a separate generative
model H is trained by an additional generative network. Model H can generate a binary mask from a synthetic
volume generated by model C. More specifically, model H uses C(Ibitr) as an input and generates H(C(Ibitr)).
This generative model H minimizes L2 loss between Ibitr and H(C(Ibitr)). The spatial loss is then formed as:

Lspatial(C,H, Iorig, Ibitr) = EIbitr [||H(C(Ibitr))− Ibitr||2] (2)

where || · ||2 denotes the L2 norm. Note that an unpaired set of training data, Iorig and Ibitr, is used for the
training of model C.

During SpCycleGAN inference, the synthetic microscopy volume, Isyn, is generated from model C with the
input as the synthetic binary volume, Ibi. Then, Ibi is used to obtain the distance map volume, Idist, using
distance transformation. Since the synthetic microscopy volume, Isyn, and the distance map volume, Idist, are
obtained from the same synthetic binary volume, Ibi, Isyn and Idist are now a paired set of volumes and can be
used for 3D nuclei counting network training.

2.2 3D Nuclei Counting

Three dimensional counting consists of 3D GAN training, 3D GAN inference, and post-processing counting. As
shown in Figure 1(c), we utilize a paired set Isyn and Idist to train a 3D GAN and obtain a generative model
G. Here, the groundtruth distance map volume Idist = FDT (I

bi) provides information on the locations of the
nuclei.

The 3D GAN generative model G is used to map nuclei in Itest to its synthetic distance map volume
Idistg. This approach has the advantage over learning a direct mapping between original microscopy volume and
nuclei count since the distance map volume preserves nuclei location information. The number of nuclei is then
obtained from Idistg using thresholding and 3D connected component analysis. Thresholding of Idistg is done to
keep voxels at or near the nuclei centroids and remove noises. By removing low distance transform voxels around
nuclei boundaries, two or more connected nuclei can be identified as individual nuclei. Then, a 3D connected
component analysis is done to assign different colors to individual nuclei at their centroid locations followed by
obtaining N .

The architecture of the 3D GAN for nuclei counting is shown in Figure 2. For the generative network in
Figure 2(a), a filter size of 3 × 3 × 3 is used for the 3D convolution. Each 3D convolution is followed by a
batch normalization [24] and a rectified-linear units (ReLU) activation function. Similarly, for the discriminative
network shown in Figure 2(b), a batch normalization and a Leaky ReLU activation function are used to follow
each 3D convolution layer. Convolutions (stride 2) are used in replacement of pooling layers, while the number
of features is doubled. Finally, a flatten layer, two dense layers, and a sigmoid activation function are used to
produce the probability of classification P . This probability is used to discriminate groundtruth distance map
volume Idist from the generated synthetic distance map volume G(Isyn). The architecture of the 3D GAN for
counting is designed to have a lightweight generative network for efficient inference. The discriminator is used
to supervise the prediction of the 3D GAN for nuclei counting to have the features of a real distance map.

The generative model G learns to transform Isyn into Idist, whereas the discriminative model D distinguishes
between Idist and G(Isyn). As shown in Equation 3, the training loss function of the 3D GAN for nuclei counting
is defined as the sum of an adversarial loss LGAN (Equation 4) and a content loss LMSE (Equation 5). Here,
we used the mean square error between the synthetically generated distance map volume G(Isyn) and the
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Figure 2. Architecture of 3D GAN for nuclei counting (a) generative network structure, (b) discriminative network
structure

groundtruth distance map volume Idist as the content loss. λ is the weight coefficient used to control the relative
importance of the adversarial loss and the content loss.

L(G,D, Isyn, Idist) = LGAN(G,D, Isyn, Idist) + λLMSE(G, Isyn, Idist) (3)

LGAN(G,D, Isyn, Idist) = EIdist [log(D(Idist))] + EIsyn [log(1−D(G(Isyn)))] (4)

LMSE(G, Isyn, Idist) = EIdist,Isyn [||G(Isyn)− Idist||2] (5)

Table 1. Experimental Settings

Data-I Data-II

Network SpCycleGAN 3D GAN counting SpCycleGAN 3D GAN counting

Training volume size 128× 128× 128 64× 64× 64 128× 128× 32 64× 64× 64

Number of pairs of training volumes 1 80 4 80

Inference volume size 128× 128× 128 128× 128× 64 128× 128× 128 128× 128× (64 or 32)

Number of inference volumes (total) 15 20 15 20

Model CData−I GData−I CData−II GData−II

3. EXPERIMENTAL RESULTS

The testing of our counting approach involves two different rat kidney data sets which are denoted as Data-I ∗

and Data-II. Data-I has size of X × Y = 512 × 512 pixels with Z = 512 (grayscale images), whereas Data-II
consists of Z = 32 with the same size in X and Y as Data-I. The experimental settings are listed in Table 1.

∗Data-I was provided by Malgorzata Kamocka of Indiana University and was collected at the Indiana Center for
Biological Microscopy.



The size of the training and inference volumes were selected according to the original size of the volumes. The
total training volume size of SpCycleGAN is 128× 128× 128 for both data sets. Then, 10 synthetic microscopy
volumes of size 128× 128× 128 were generated and divided into 80 pairs of synthetic microscopy volumes of size
64 × 64 × 64. These volumes were used together with their corresponded distance map volumes to train a 3D
GAN for nuclei counting for each data set. We selected λ = 10 in Equation 4 for both data sets. Our network
architecture is implemented in TensorFlow [25] using Adam optimizer [26] with a learning rate of 0.005.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3. Comparison of slices of the synthetic binary volume, the distance map volume, the synthetic microscopy volume,
and the original volume (a) Data-I synthetic binary image, (b) Data-I distance map image, (c) Data-I synthetic microscopy
image, (d) Data-I original image, (e) Data-II synthetic binary image, (f) Data-II distance map image, (g) Data-II synthetic
microscopy image, (h) Data-II original image

Figure 3 shows the synthetic binary images, their corresponding distance map images, the synthetic mi-
croscopy images, and the original microscopy images. The synthetic images are similar to the original microscopy
images in terms of nuclei size and shape, nuclei distribution, intensity, and noise level. Using the trained model
C, we can generate a paired set of training data for the 3D nuclei counting network. The trained model G is
used to transform previously generated synthetic microscopy volumes into its corresponding synthetic distance
map volumes, which contains nuclei centroid location information. Post-processing is done by first thresholding
each voxel v with value vi in Idistg as in Equation 6:

vi =

{

0 if vi ≤ T or 245 ≤ vi

vi if T ≤ vi ≤ 245
(6)

The threshold T is selected experimentally where T = 45 for Data-I and T = 55 for Data-II. Connected
component analysis is then used to count and label each nucleus into a different color. For better visualization
and evaluation on the object level, the labeled nuclei are dilated in 3D with a spherical mask to match the
original nuclei sizes. In Figure 4, we show the post-processing steps of 3D nuclei counting with example slices
from both synthetic and real microscopy image volumes.

The evaluation of microscopy image counting is difficult since groundtruth information is hard to obtain. We
evaluate our results by comparing the results of nuclei counting Ni for the ith subvolume where i ∈ {1, . . . , n}
with two other common ways of counting. N

gt
i is the groundtruth nuclei count for the ith subvolume where

i ∈ {1, . . . , n}. Here, n stands for the number of subvolumes. The mean absolute percentage error (MAPE) is
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Figure 4. Example of slices of the testing volume, the synthetic distance map volume with thresholding, and the color-
coded volume from 3D nuclei counting (a) Data-I synthetic image, (b) corresponding I

distg with thresholding for (a), (c)
color-coded image for (a), (d) Data-II synthetic image, (e) corresponding I

distg with thresholding for (d), (f) color-coded
image for (d), (g) Data-I real image, (h) corresponding I

distg with thresholding for (g), (i) color-coded image for (g), (j)
Data-II real image, (k) corresponding I

distg with thresholding for (j), (l) color-coded image for (j)

then measured with Equation 7 and reported for each method.

MAPE =
100%

n

n
∑

i=1

∣

∣

∣

∣

Ni −N
gt
i

N
gt
i

∣

∣

∣

∣

(7)

The techniques compared with the proposed include the 3D watershed [10] and the ImageJ’s 3D object
counter (JACoP) [5]. Both counting approaches are semi-automatic since a threshold needs to be selected before
counting. We initially selected the thresholding parameters based on the Otsu’s method [27] and adjusted the
parameters to best fit the volumes. Since the original microscopy volume suffers from a large variation of intensity
and noise, we chose subvolumes from different locations of the original volume and processed each of them to
obtain the nuclei count.

Table 2. Comparison of mean absolute percentage error (MAPE) of the proposed 3D nuclei counter with 3D watershed
[10] and JACoP [5]

n=10 Synthetic Data-I Synthetic Data-II Microscopy Data-I Microscopy Data-II

3D Watershed 14.69% 13.78% 19.76% 10.88%
JACoP 11.86% 16.10% 12.67% 18.72%

Proposed 3D Nuclei Counter 5.64% 2.13% 6.68% 6.53%

For evaluation, we generated n = 10 synthetic microscopy image subvolumes for both data sets denoted as
IsynData−I and IsynData−II , respectively. IsynData−I has a size of 128×128×64 with the average number of nuclei
being 256. IsynData−II has a size of 128 × 128 × 64 with the average number of nuclei being 64. We processed
these volumes with the ImageJ’s 3D object counter (JACoP), the 3D watershed, and the proposed 3D nuclei
counter to compare the counting results. The quantitative evaluations for the subvolumes are shown in Table
2. In Table 2, we can see that the 3D watershed and the JACoP method produce less accurate counting result
comparing to our proposed method. Based on our observation for the JACoP, nuclei are often missing around
darker boundaries of the volume. Note that the JACoP has much lower detection accuracy for microscopy volume
of large size due to inhomogeneity of the microscopy volume, so small subvolumes of microscopy image volume
are used for counting. Our proposed nuclei counter achieves lower mean absolute percentage error in counting
than the other two techniques.

We also selected n = 10 subvolumes from original microscopy data for the evaluation purpose. More specif-
ically, we selected 10 subvolumes from IData−I with size of 128 × 128 × 64 with the average number of nuclei



being 298 and 10 subvolumes of IData−II with size of 128×128×32 with the average number of nuclei being 25,
respectively. Note that the evaluation size of IData−II is selected according to its total size 512×512×32. From
Table 2, the proposed 3D nuclei counter achieves the lowest error among all three different counting approaches.
Figure 5 shows the comparison of the color-coded images obtained from the 3D watershed, the JACoP, and our
proposed method. It is observed that the 3D watershed and the JACoP method cannot distinguish between nuclei
and non-nuclei structures. Our proposed method achieves better performance in finding nuclei and separating
touching nuclei. The color-coded images from the proposed method have less noise from the inhomogeneity of
the nucleus compared with the results from the other two techniques.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5. Comparison of slices of the original image volume and results obtained from 3D watershed, JACoP, and our
proposed method (a) Data-I original image, (b) Data-I color-coded image from 3D watershed, (c) Data-I color-coded
image from JACoP, (d) Data-I color-coded image from our method, (e) Data-II original image, (f) Data-II color-coded
image from 3D watershed, (g) Data-II color-coded image from JACoP, (h) Data-II color-coded image from our method

Table 3. Object-based comparison of the proposed 3D nuclei counter with 3D watershed [10] and JACoP [5] for Data-I

Microscopy Data-I

NTP NFP NFN P R F1

3D Watershed 121 9 153 93.08% 44.16% 59.90%

JACoP 146 19 128 88.48% 53.28% 66.51%

Proposed 3D Nuclei Counter 212 18 56 92.17% 79.10% 85.14%

Table 4. Object-based comparison of the proposed 3D nuclei counter with 3D watershed [10] and JACoP [5] for Data-II

Microscopy Data-II

NTP NFP NFN P R F1

3D Watershed 171 13 50 92.93% 77.38% 84.44%

JACoP 151 16 62 90.42% 70.89% 79.47%

Proposed 3D Nuclei Counter 193 15 33 92.79% 85.40% 88.94%

To analyze the detection accuracy of the locations of the nuclei found with the counting methods, we use
the object-based evaluation as described in [28]. The evaluation is based on manually annotated groundtruth of



two subvolumes from IData−I with size of 128 × 128 × 64 and from IData−II with size of 512 × 512 × 16. The
groundtruth is obtained using ITK-SNAP [29] where each nucleus is manually labeled individually. If a nucleus
overlaps equal or more than 50% with its corresponding groundtruth nucleus, it is counted as a true-positive,
NTP . If a nucleus overlaps less than 50% with its corresponding groundtruth nucleus or there is no corresponding
groundtruth, it is counted as a false-positive, NFP . A false negative, NFN , is defined as when a nucleus is present
in the groundtruth but no corresponding nucleus is found by the counting method. Then, the F1 score (F1),
Precision (P) and Recall (R) described in [30] can be calculated as:

P =
NTP

NTP +NFP

, R =
NTP

NTP +NFN

, F1 =
2PR

P +R
(8)

For fair comparisons, small objects removal is done to remove objects with sizes less that 5% of the average nuclei
sizes in voxels. In Table 3 and Table 4, our proposed 3D nuclei counter achieves higher F1 score than the compared
methods, which shows that the proposed method can successfully find nuclei at the correct locations. Both the
3D watershed and the JACoP method produce large numbers of NFN , causing low R and F1 score. Overall,
our proposed method outperforms the other two methods in both the MAPE evaluation and the object-based
evaluation.

4. CONCLUSION

In this paper, we described an approach for counting nuclei in 3D microscopy image volumes efficiently and
accurately using synthetic training data. We first generated synthetic microscopy image volumes using a SpCy-
cleGAN. This helps to solve data insufficiency and the lacking of groundtruth annotations for the analysis of
microscopy images. We then developed a 3D GAN for nuclei counting that can predict the distance map volume
for an input microscopy image volume with an arbitrary number of nuclei. The 3D GAN trained entirely on
synthetic data was able to give predictions of nuclei count for microscopy images without fine-tuning. It is able
to do fast inference and count the number of nuclei in microscopy image volumes. Our 3D nuclei counter shows
the potential of counting and locating nuclei without segmentation and classification of each voxel within the
image volume. This greatly reduced the burden of computation and directly provide quantitative information to
biologists for further analysis of the images. We noticed that nuclei that are on the boundary of the volume are
hard to detect, limiting the detection accuracy. In the future, we plan to improve our model for detecting nuclei
more accurately on the boundary.
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