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Abstract

Spectral imaging is a ubiquitous tool in modern biochemistry. Despite acquiring dozens to 

thousands of spectral channels, existing technology cannot capture spectral images at the same 

spatial resolution as structural microscopy. Due to partial voluming and low light exposure, 

spectral images are often difficult to interpret and analyze. This highlights a need to upsample the 

low-resolution spectral image by using spatial information contained in the high-resolution image, 

thereby creating a fused representation with high specificity both spatially and spectrally. In this 

paper, we propose a framework for the fusion of co-registered structural and spectral microscopy 

images to create super-resolved representations of spectral images. As a first application, we 

super-resolve spectral images of retinal tissue imaged with confocal laser scanning microscopy, by 

using spatial information from structured illumination microscopy. Second, we super-resolve mass 

spectroscopic images of mouse brain tissue, by using spatial information from high-resolution 

histology images. We present a systematic validation of model assumptions crucial towards 

maintaining the original nature of spectra and the applicability of super-resolution. Goodness-of-fit 

for spectral predictions are evaluated through functional R2 values, and the spatial quality of the 

super-resolved images are evaluated using normalized mutual information.
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1. INTRODUCTION

The chemical nature of a biological sample is often investigated through various microscopic 

spectral imaging modalities such as fluorescence, mass spectroscopy, and others.1 These 

methodologies allow for the spatial localization of bio-chemical sources which may be 

crucial to specific applications. However, they may have poor spatial resolution due to 

physics-based limitations, such as spreading a relatively small number of photons over 

multiple spectral channels for example. Conversely, high resolution structural modalities 

provide unparalleled spatial detail but can lack spectral specificity. This has led to several 

lines of research attempting to super-resolve the spectral images by leveraging spatial 

information in a co-registered structural modality.

Image fusion has been studied extensively in the satellite imaging community, 2 fusing 

information from cameras of high spatial resolution and high spectral resolution. The 

medical image analysis literature focuses largely on transferring details between structural 

modalities measuring disparate properties. This can be either macroscopic such as with MR 

and CT,3 or microscopic such as with scanning acoustic microscopy and histology.4 

However, there has been a recent emergence of work for the fusion of microscopic spectral 

images and structural images. Van de Plas, et al.5 fuse imaging mass spectrometry (IMS) and 

high-resolution color histology (H&E) images by using multivariate regression and feature 

engineering. This method uses spectral channels with high SNR only, and cannot 

accommodate single channel structural images. Vollnhals, et al.6 combine electron 

microscopy with IMS by creating image pyramids and injecting the high-frequency 

structural image components into the spectral image pyramid. This can cause unwanted 

artifacts when combining images of different modalities, as reported by the authors.

In this paper, we propose a framework for the super-resolution of multispectral images by 

using a blind linear degradation model from remote sensing which uses information in a 

corresponding co-registered structural image. The adopted framework has a secondary 

denoising effect. We show the potential of the proposed framework to two challenging 

biomedical applications, where both spatial and spectral information are important. To test 

the assumptions of the linear degradation model, we validate the predictions of the model 

using functional R2 values and perform a residual analysis, finding a high degree of 

agreement with observed data. As the parameters of the blind model are unintuitive to tune 

by hand for disparate imaging modalities, we perform a principled blind parameter search 

using Bayesian optimization.7 The spatial quality of the resulting images is evaluated by 

using normalized mutual information with respect to the structural image.

2. MATERIALS AND METHODS

2.1 Data Description

In our first dataset, human tissue from the retinal pigment epithelium was imaged by two 

different fluorescence microscopy modalities excited at 488 nm. The first is Structured 

Illumination Microscopy (SIM), a form of 3D fluorescence microscopy with twice the 

resolution of diffraction-limited instruments. The second is confocal Laser Scanning 

Microscopy (LSM), which in addition to volumetric data, can capture 24 spectral channels 
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over the visible spectrum for each voxel, thus acquiring 4D data. The first and last spectral 

channels of the LSM data are discarded due to noise. No external fluorescent label was 

added, and thus these images correspond to autofluorescence measurements. For more 

details, see Ach, et al.8 In this study, we focus on spectral super-resolution at the slice level, 

leaving a fully 3D treatment as future work.

For the second experiment, we use cropped sample data provided by Van de Plas, et al.5 This 

consists of a high-resolution RGB image of a mouse brain H&E section and a corresponding 

IMS image. The IMS image is 20 times smaller than the RGB image, with 7945 spectral 

channels corresponding to mass over charge (m/z) bins.

2.2 Image Registration

For LSM-SIM registration, a reference spectral channel was chosen (600 nm) from the LSM 

volume, and 3D affine registration with normalized cross correlation as an image matching 

metric was performed. Corresponding 2D slices out of 4D and 3D data are used in this 

paper. For IMS-histology registration, scalar images of both modalities are formed via a 

mean projection and registered with 2D affine registration using normalized cross-

correlation. All registrations were computed with the SimpleITK library.9 In both cases, 

non-rigid registration was skipped so as to not affect the estimated blurring kernels.

2.3 Fusion Methodology

We adopt the well-established linear degradation model used in remote sensing for our 

problem.2 Let the multispectral image have p channels and m total pixels in each channel. 

Let the high-resolution image have c channels and n pixels in each channel. Each channel in 

both modalities is vectorized, thereby converting an image with two dimensions of space and 

one of spectra into a matrix. The model is as follows,

YM = ZBS + NM
yP = rZ + nP

where,

YM ∈ ℝp × m is the original spectral image,

Z ∈ ℝp × n is the target fused image,

B ∈ ℝn × n is the blurring matrix,

S ∈ ℝn × m is a downsampling matrix,

yP ∈ ℝc × n is the original structural image,

r ∈ ℝc × p is the spectral response of the structural image,

NM ∈ ℝp × m is the reconstruction noise for the spectral image,

nP ∈ ℝc × n is the reconstruction noise flor the structural image .
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Using the approach of Wei, et al.,10 we break the problem of estimating B, r and Z for both 

modalities into two separate stages. First, we estimate B, r by using the method proposed by 

Simões, et al.11 via the convex minimization of the following objective function,

min
B, r

rYM − yPBS 2
2 + λbϕb(B) + λrϕr(r),

where ϕb and ϕr are quadratic regularizers and λb and λr are their respective weights. S is 

easily estimated from the dimensions of the co-registered data. We then estimate the target 

fused image using the method proposed by Wei, et al.12 for robust fast fusion via solving the 

following problem,

argmin
Z

1
2 YM − ZBS

F
2 + 1

2 yP − rZ 2
2 + λ Z − Z

F

2
,

where the third term acts as a regularizer, corresponding to a Gaussian prior over the target 

fused image where Z is the prior mean. Importantly, these methods rely on the assumption 

that the target fused image Z lies in a low-dimensional subspace.

2.4 Bayesian Parameter Optimization

As opposed to remote sensing, we do not have any heuristics on parameter tuning in the 

image fusion optimization for vastly different microscopy modalities. Therefore, we take a 

principled approach to blind parameter selection. For both sets of images, the three 

regularization parameters and blurring kernel widths were tuned by using Bayesian 

optimization for parameter selection,7 by maximizing the normalized mutual information 

(NMI) between the fused image and the high-resolution structural image. NMI is a common 

measure of image matching when comparing co-registered multi-modal images. By 

selecting parameters that maximize it, we ensure that our fused image is close to the quality 

of the high-resolution structural image. All results reported have had their parameters tuned 

in this manner, with thirty evaluations via Bayesian optimization.

2.5 Validation Methodology

A common goodness-of-fit measure is R2. We create prediction and observation pairs by 

mapping each pixel of the original spectral image to the center of the corresponding patch in 

the generated image. As each pixel has a spectrum, we consider each pixel as an observation 

and each spectrum as a functional measurement. Inspired by common practice in functional 

data analysis,13 we report the per-pixel R2 measure for an pixel spectrum, defined as,

Ri
2 = 1 −

∑ j = 1
p yi( j) − yi( j) 2

∑ j = 1
p yi( j) − yi( j) 2
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where i is the pixel index, j is the spectral channel index, yi is the observation, yi is the 

predicted value and yi is the mean of the observed values. We also report the per-channel R2 

as,

R2( j) = 1 −
∑i = 1

n yi( j) − yi( j) 2

∑ j = 1
n yi( j) − yi( j) 2 .

To inspect whether the model misses systematic variation, we perform a residual analysis. 

We finally report a qualitative measure of the super-resolved image by using NMI with 

respect to the high-resolution image.

3. RESULTS

3.1 LSM and SIM

A 328 × 328 × 22 LSM image stack is upsampled by a co-registered 1312 × 1312 SIM 

image via the proposed image fusion framework. Using dataset 1 in Fig. 1 as an example, 

the average per-channel NMI between the original LSM and SIM images is 0.2205, whereas 

the super-resolved image has an NMI of 0.6874 indicating higher spatial similarity to the 

high-resolution image. We find a per-channel R2 of 0.3853 and a per-pixel R2 of 0.4973. 

While these values are lower than the subsequent experiment, this is easily explained as the 

original spectra are much noisier (see Fig. 1, Col. 4 for an overlay of raw spectra). Hence, as 

predictions are denoised, they explain a smaller portion of the total variation which consisted 

of the noise as well. Importantly, the mean prediction matches the mean observation (Fig. 1, 

Col. 4).

3.2 IMS and H&E

We super-resolve a 20 × 20 × 7945 IMS image stack to a 400 × 400 × 7945 image stack by 

using spatial information from a 400 × 400 × 3 histology image. We find a pixel-wise 

average R2 of 0.6943 and a channel-wise average R2 of 0.8493, indicating excellent 

agreement with the data overall. The average per-channel residuals have a mean and 

standard deviation of –5.36 × 10–4 and 1.7 × 10–3. The per-channel statistics of the data 

itself have a mean of 0.1451 and standard deviation of 0.2233, which are orders of 

magnitude higher than the residual statistics, signifying small error. The average per-channel 

NMI between the interpolated IMS and histology images is 0.2394, whereas the super-

resolved image has an NMI of 0.2401. Instead of using 7945 channels, we can compute NMI 

on only high SNR channels.5 This computes an NMI to the structural image of 0.4072 via 

cubic interpolation and 0.4322 via super-resolution, indicating higher average structural 

similarity with the super-resolution.

4. DISCUSSION

The presented model uses a linear approach for estimating spectral responses. It is possible 

that there may be non-linear models that better fit specific image modality-pairs. Future 

work will explore and validate the various nonlinear models that might better describe the 
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relationships between the specific modalities presented in this paper. Specific to IMS 

images, the number of features (m/z bins) exceeds the number of observations (pixels). In 

this case, more robust super-resolution results may be obtained by incorporating Elastic Net-

style regularization14 into the optimization process. Finally, there has been a recent 

emergence of deep learning based approaches for spectral image super-resolution via image 

fusion in remote sensing. Currently, these methods are either supervised,15 or require a 

known spectral response,16 precluding their direct application to this work.

Multispectral super-resolution via image fusion can potentially be used in biomedical 

research for better spatial localization of chemical signatures, past the resolving ability of 

spectral imaging systems. Furthermore, it can benefit image analysis pipelines by providing 

a high-quality reference for segmentation of features which might not be present in the 

structural image and vice-versa.
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Figure 1. 
Results from two datasets (rows 1 and 2) of co-registered LSM and SIM images. Column 1: 
The high-resolution SIM image. Column 2: A reference channel of the LSM image 

upsampled with cubic interpolation. Column 3: The super-resolved image using the 

proposed framework. Best case reference channels are shown. Yellow-framed insets show 

improved resolution using the proposed framework. Column 4: Raw observed spectra from 

segmented granules showing a high degree of noise. Their mean spectra are reported in blue 

and the mean prediction of the model is shown in green.
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Figure 2. 
a) An overview of the super-resolution pipeline. Spectral information from IMS and spatial 

information from H&E is used to create a super-resolved IMS image. b) An overlay of the 

original, predicted and residual spectrum for an arbitrary pixel. A zoomed section is shown 

in the adjacent box. Red and blue lines overlap significantly. c1) and c2) Two examples of 

super-resolved image channels compared to naive cubic interpolation. Zoom-boxes are 

shown in yellow.
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