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Abstract

This work applies deep variational autoencoder learning architecture to study multi-cellular 

growth characteristics of human mammary epithelial cells in response to diverse 

microenvironment perturbations. Our approach introduces a novel method of visualizing learned 

feature spaces of trained variational autoencoding models that enables visualization of principal 

features in two dimensions. We find that unsupervised learned features more closely associate with 

expert annotation of cell colony organization than biologically-inspired hand-crafted features, 

demonstrating the utility of deep learning systems to meaningfully characterize features of multi-

cellular growth characteristics in a fully unsupervised and data-driven manner.

1. INTRODUCTION

The presence of constituent components within the cellular microenvironment and their 

effect on growth, differentiation, and therapeutic response of tissue is of paramount 

importance in the field of spatial systems biology.1, 2 Recent advances in high-throughput 

systematic screening technologies enable quantification of phenotypic differences among a 

variety of cell populations in response to diverse chemical and genetic treatments.3, 4 The 

microenvironment microarray (MEMA) platform5, 6 is designed to generate images that 

capture diverse phenotypic changes of cellular populations exposed to soluble ligands and 

insoluble extracellular matrix (ECM) proteins. High-throughput generation of these types of 

data require powerful and sophisticated algorithms to capture features of interest to better 

form and validate biological hypotheses. Presently, image-based cell profiling methods 

utilize classical image quantification approaches to extract hundreds of features from high 

content images to quantify the perturbagens’ effects on feature gradients. However, defining 

and characterizing microenvironment-dependent multi-cellular spatial organization has 

remained an unmet computational challenge. Although popular techniques extract features 

such as cell counts, cellular spatial relationships (i.e., neighborhood information), or 

distance to cells in a specific sub-cellular structure,4 these features are limited to 
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characterizing spatial organization of individual cells and often require significant biological 

expertise to design.

In biomedical imaging analysis, deep learning techniques that employ convolutional neural 

networks (CNNs) to extract deep hierarchical spatial features directly from raw pixel image 

data have been shown to outperform classical methods that analyze hand-crafted features.7 

Applications of deep convolutional neural networks in cellular imaging have shown 

promising utility for classification, segmentation, and dimensionality reduction in diverse 

biomedical contexts.8, 9 Multi-agent learning models, including generative adversarial 

networks (GANs)10 and variational autoencoders (VAEs),11 have recently been shown to be 

capable of learning salient features of high-throughput imaging screens at cellular and sub-

cellular resolution.7, 12 Although powerful, GAN architecture has been shown to struggle in 

capturing multiple modes of input data, which limits the interpretability of their learned 

features.13 Unlike GANs, VAE latent features conform to expected prior distributions, which 

enables elegant interpretation and visualization of what these models learn. To characterize 

features of multi-cellular growth patterns associated with microenvironment perturbation, 

this work applies convolutional variational autoencoding architecture to analyze images of 

normal human mammary epithelial cells grown on the MEMA platform. The main 

advantages of our approach are:

• Multi-cellular spatial organization characterization: Unlike current image-based 

cell profiling methods that focus on single-cell analysis, our approach is designed 

to learn biologically meaningful spatial organization of multi-cellular 

populations.

• Principal Feature Manifold: We introduce a novel method to visually interpret 

meaningful high-dimensional learned features of a VAE model by generating 

synthetic samples within the principal component plane of the model’s learned 

feature space.

2. METHODS

2.1 Deep Variational Autoencoding Networks

The variational autoencoder (VAE) architecture introduced by Kingma and Welling11 is 

designed to elucidate salient features of data in a data-driven and unsupervised manner. A 

VAE model seeks to train a pair of complementary networks: an encoder network θ that 

seeks to model an input xi as a hidden latent representation z, and a decoder network ϕ that 

seeks to reconstitute xi from its latent representation z. The VAE loss function shown in 

Equation 1 regularizes model training with an additional Kullback-Leibler (KL) divergence 

term that penalizes the distribution of z with respect to a given prior, which in our case is the 

standard normal Gaussian distribution, p(z) = N(0,1). By specifying a latent dimension z less 

than the input dimension of xi, a VAE model learns optimized encoding and decoding 

functions that enable reconstruction of an input sample subject to capacity constrains of the 

latent feature space within the model.
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ℒi xi, θ, ϕ = − 𝔼
z qθ z xi

logpϕ xi z + KL qθ z xi p(z)

The VAE model trained in this study incorporates two-dimensional convolutional layers to 

encode spatial information of multi-cellular organization of cells grown in diverse 

microenvironments. Specifying a limiting bottleneck on the latent feature space forces the 

model to learn salient features of the dataset and reduce the dimensionality of input features 

for further downstream analyses.

2.1.1 Learning Model Design—The encoder and decoder models used in this study are 

congruent and composed of five 2D convolutional layers each containing 64 filters with 

same padding and rectified linear unit activations on all layers except for the final sigmoidal 

decoder layer. The outer two convolutional layers have a 3×3 kernel, the inner two layers 

have a 2×2 kernel, and the latent layer is composed of 16 hidden features, which illustrated 

good trade-off between model capacity and training loss. Both the encoder and decoder are 

optimized with the RMSProp optimizer against the custom variational loss function that 

penalizes the binary cross entropy between input and reconstruction as well as the KL 

divergence between the latent space sample and standard normal distribution. The models 

designed for this study were written in Python using Keras14 with Google’s Tensorflow 

backend,15 and trained using Nvidia Tesla V100 GPUs mounted on the Exacloud high 

performance computing environment at OHSU. The code used to train and evaluate the 

models used in this study is publicly available at https://www.github.com/schaugf/

ImageVAE.

2.2 MEMA Dataset

This study seeks to uncover the role of microenvironmental perturbations in the growth of 

normal human mammary epithelial cells (HMECs) by evaluating phenotypic response to 57 

ligands and 47 extracellular matrix (ECM) components using the microenvironment 

microarray platform.5 In this assay, ECM proteins are robotically printed into micro-well 

plates to form 300 μm spots upon which cells bind and grow. Additionally, soluble ligands 

are added to each well, thereby creating a combinatorial microenvironmental perturbation 

comprised of one ECM and one ligand per spot. After three days of growth, cells are fixed 

and stained for Keratin 19 (luminal marker in the red channel), Keratin 5 (basal marker in 

the green channel), and DAPI (nuclear marker in the blue channel). Input data from this 

study are 37,269 images of individual MEMA spots down-sampled from full-resolution 

(1200×1200) to 256×256 pixels. Detailed experimental description, data, and meta-data of 

the data-generating process are available at the MEP-LINCS Synapse wiki: https://

www.synapse.org/mep_lincs.

3. RESULTS AND DISCUSSION

3.1 VAE Analysis

A VAE model was trained for 100 epochs on the 37,269 MEMA spot images evaluated in 

this study. Input image reconstructions shown in Figure 1 illustrate that the trained model 

Schau et al. Page 3

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2019 August 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.github.com/schaugf/ImageVAE
https://www.github.com/schaugf/ImageVAE
https://www.synapse.org/mep_lincs
https://www.synapse.org/mep_lincs


learns sufficient spatial features of spot organization to reconstruct an input image from 16 

learned latent features. Although the reconstructions are clearly lossy, they suggest that 

organization, intensity, and distribution of signal within the spots is learned. Notably, despite 

the clear heterogeneity in the dataset, the learned reconstructions are generated from a set of 

16 learned features that conform to the expected standard normal prior placed on the 

learning loss function. Because the prior places no constraint on relationships between 

learned features, correlations between learned features exist. Interestingly, both the number 

of cells on each spot and localized abundance of the KRT19 luminal marker, both of which 

are typically used to characterize spot organization, appear to associate within the learned 

VAE feature space, which is visualized in two dimensions with the t-SNE algorithm.16

Local sub-regions of the learned VAE feature space are further visualized in the two-

dimensional t-SNE projection by superimposing the input images onto the t-SNE 

coordinates as illustrated in Figure 2. By examining the embedding space in this manner, 

local regions of the learned feature space appear to group MEMA spots by similar features 

such as shape, color, and morphology.

3.2 Latent Space Walking

To provide a qualitative assessment of the learned VAE features, we employ a latent space 

walking procedure that holds all but one learned feature fixed at the latent dimension’s 

expected value (zero) while the feature of interest is swept through the inverse cumulative 

distribution function (CDF) of the standard normal Gaussian, as in Kingma, et al.11 By 

passing synthetic latent feature samples through the trained decoder network, the VAE 

generates samples that correspond to changes in a single feature of interest while holding the 

rest constant. At left in Figure 3 illustrates the effect each learned VAE feature (shown in 

columns) has on the decoded synthetic sample by sweeping it through the CDF of the 

standard normal distribution (shown in rows). Although this representation can provide a 

qualitative assessment of each of the independent learned features, this established analysis 

does not consider recurring correlations between independent features. The nature of neural 

computing and the covariance matrix shown in Figure 1 suggest that learned features interact 

in complex, non-linear ways that cannot be visualized with this class of latent space walking 

techniques.

3.2.1 Principal Feature Manifold—To improve the interpretability of the learned latent 

feature space, we introduce a novel principal feature manifold (PFM) visualization 

approach. Our technique is based off principal component analysis (PCA), which computes 

a set of principal components that capture sources of significant variation within a dataset. In 

brief, PCA transforms an input dataset into projection matrix T by rotating the input data X 
by a computed weight matrix W, which is derived from the eigen decomposition of the 

data’s covariance matrix.

T=XW
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We leverage the dimensionality reduction properties of PCA to visualize a principal feature 

space. To do so, we first reduce the learned VAE feature space to the first two principal 

components using PCA. Because the variance of each principal component is known, we 

then sample a bivariate percentile distribution X that is scaled to the variance of the first and 

second principal components to span the sampling space we wish to visualize. We next 

multiply the sampled percentile grid by the inverse of the principal component matrix W−1 

to rotate the uniform grid back into VAE feature space. The trained decoder network ϕ then 

transforms the resulting VAE space samples into synthetic input images S which can be 

visualized in two dimensions, as shown at right in Figure 3.

S = ϕ(X) = ϕ TW−1

This approach illustrates variability in the learned feature set by decoding higher-

dimensional feature interactions presented in the first principal component plane. Although 

the information contained in a classical latent space walk and the introduced principal 

feature manifold are similar, the PCA formulation enables evaluation of the entire latent 

feature space in a simple two-dimensional image. While similar to the t-SNE space 

embedding shown in Figure 2, the PFM approach is uniquely capable of generating arbitrary 

synthetic samples using the trained decoder model.

3.3 Measuring Organization with Human Annotation

Presently, measuring organization of MEMA spots requires single-cell segmentation and 

feature extraction to first classify every cell on the spot as either basal or luminal based on 

expression of keratin markers. Spot organization is then computed as hand-crafted metric 

that measures relative abundance of keratin 19 (KRT19), a structural component of epithelial 

cells, within the central core region of the spot with respect to the outer region. Although 

reasonably effective in this experiment, similar types of hand-crafted features require 

sophisticated pre-processing steps and special knowledge of the biological phenomena under 

study to design effectively which profoundly limits translation of one such metric to other 

problems or experiments.

To evaluate how well our model characterizes spatial organization of cells in an 

unsupervised manner, we incorporate annotations from 7 expert biologists who graded 300 

randomly selected MEMA spots as either unorganized (intermixed or single cell-type 

populations), partially organized, or well organized (centrally clustered luminal cells 

surrounded by basal cells). The inter-rater agreement is measured using the Fleiss kappa 

metric (κ = 0.473), which suggests moderate agreement between raters17 while reflecting 

the inherently subjective challenge of characterizing multi-cellular organization. 

Downstream analyses assign the mode rating across all raters to each of the 300 scored spots 

as a simple majority vote decision. Associations between learned VAE features and 

annotated organization are illustrated in Figure 4, which suggests that certain features 

(particularly features 4, 7, 9, and 14) appear to exhibit shifts in their distribution with respect 

to organizational annotation.
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To provide a fair comparison between the learned VAE space and the hand-crafted feature, 

we first reduce the sixteen learned VAE features into a single feature for comparison for both 

supervised and unsupervised settings. In this analysis, we used the first principal component 

(PC1) for unsupervised comparison and the first linear discriminant (LD1) for supervised 

comparison. The relationship between the first principal component (PCA) and first linear 

discriminant (LDA) of the VAE latent space, shown at left in Figure 5, illustrates that the 

fully unsupervised and supervised metrics are strongly associated (Pearson correlation R = 

0.9) while neither the first linear discriminant nor principal component correlate particularly 

strongly with the hand-crafted organizational feature (Pearson correlation R = 0.49 and R = 

0.41, respectively). However, clear class separability is evident for both the hand-crafted 

feature as well as the fully unsupervised characterization by the learned VAE space, shown 

at right in Figure 5.

To test the significance of these observations, ANOVA tests compute statistically-significant 

separation of the three expert annotation classes (unorganized, partially organized, well-

organized) with respect to the first principal components, first linear discriminant, the hand-

crafted organization feature, and the spot cell count. The resulting F values and associated p-

values tabulated in Table 1 suggest that a fully unsupervised trained VAE model (F value = 

717.9) improves class separability over a classically designed hand-crafted feature (F value 

= 254).

3.4 Characterizing Microenvironment Perturbation

This study was designed to evaluate the effect microenvironment perturbations (MEPs) have 

on cellular growth characteristics. If certain groups of MEPs (either ligands or extra-cellular 

matrix components) induce similar changes in growth morphology on the MEMA spots, and 

if the VAE feature space learns to capture those organizational characteristics, then similarly 

treated spots should be closely associated in the learned VAE feature space. This analysis 

first computes the mean principal latent space projection of spots treated with the same 

ligand-ECM combination and then performs hierarchical clustering on both ligand and ECM 

conditions which are shown as a heatmap in Figure 6. In addition to reflecting understanding 

that ligands have an overall more pronounced effect on cell spot organization than ECMs, 

this analysis highlights microenvironmental factors most strongly associated with multi-

cellular organization characteristics. For example, this visualization associates certain 

ligands known to be highly associated with cellular growth and organization (TGFB, FGF2, 

FGF6, WNT3A, WNT10A, IL6, IL13, and BMP2). Interestingly, TGFB and BMP ligands–

two closely related signaling molecules–tend to be associated with cellular organization in 

cancer.18 They are also implicated in epithelial–mesenchymal transition, which is relevant to 

the shift in KRT markers. This observation is intriguing, as these molecules are also known 

to play a key role in cellular differentiation and morphogenesis. Additionally, this analysis 

also identifies independently observed technical artifacts in a few of the ECM conditions, 

which are clearly distinct as the furthest two right columns of the heatmap and shown as 

technical artifacts in Figure 2. Though preliminary, this type of analysis provides a rapid, 

unsupervised inference approach to evaluating sets of microenvironment perturbations that 

similarly affect cellular organization and allow prioritization of factors for more detailed 

experimental studies.
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4. CONCLUSION

This work evaluates the role of variational autoencoding models to learn latent space 

representations of high-throughput imaging screens of human mammary epithelial cells in 

response to microenvironment perturbations. We illustrate that convolutional VAE 

architecture provides a powerful approach for capturing high-level features that associate 

with expert human annotation and hand-crafted features designed to measure cellular 

organization. Additionally, we introduce the Principal Feature Manifold technique designed 

to visualize interactions between learned VAE features beyond typical latent space walking. 

These analyses represent a preliminary exploration into the utility of deep learning systems 

to capture experimentally meaningful features of spatial organization with which to 

characterize tissue growth patterns in response to microenvironment perturbation. Future 

investigations are extending this approach towards the study of breast cancers to begin 

quantifying changes in growth response characteristics in competing biological contexts.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

We thank Elliot Gray and Erik Burlingame for their helpful comments and discussion. The resources of the 
Exacloud high performance computing environment developed jointly by OHSU and Intel and the technical support 
of the OHSU Advanced Computing Center are gratefully acknowledged.

This work was was supported in part by the NIH Common Fund Library of Network Cellular Signatures (LINCS) 
grant HG008100, the NCI U54CA209988, and the OHSU Center for Spatial Systems Biomedicine (OCSSB). YHC 
acknowledges grant support from the Brendon-Colson Center for Pancreatic Care and CRUK-OHSU Spark Award.

REFERENCES

[1]. Lin CH, Jokela T, Gray J, and LaBarge MA, “Combinatorial Microenvironments Impose a 
Continuum of Cellular Responses to a Single Pathway-Targeted Anti-cancer Compound,” Cell 
Reports 21(2), 533–545 (2017). [PubMed: 29020637] 

[2]. Junttila MR and de Sauvage FJ, “Influence of tumour micro-environment heterogeneity on 
therapeutic response,” Nature 501, 346 (9 2013). [PubMed: 24048067] 

[3]. Pegoraro G and Misteli T, “High-Throughput Imaging for the Discovery of Cellular Mechanisms 
of Disease,” Trends in Genetics 33(9), 604–615 (2017). [PubMed: 28732598] 

[4]. Caicedo JC, Cooper S, Heigwer F, Warchal S, Qiu P, Molnar C, Vasilevich AS, Barry JD, Bansal 
HS, Kraus O, Wawer M, Paavolainen L, Herrmann MD, Rohban M, Hung J, Hennig H, 
Concannon J, Smith I, Clemons PA, Singh S, Rees P, Horvath P, Linington RG, and Carpenter 
AE, “Data-analysis strategies for image-based cell profiling,” Nature Methods 14(9), 849–863 
(2017). [PubMed: 28858338] 

[5]. Lin C-H, Lee JK, and LaBarge MA, “Fabrication and Use of MicroEnvironment microArrays 
(MEArrays),” Journal of Visualized Experiments (68), 1–7 (2012).

[6]. Watson SS, Dane M, Chin K, Tatarova Z, Liu M, Liby T, Thompson W, Smith R, Nederlof M, 
Bucher E, Kilburn D, Whitman M, Sudar D, Mills GB, Heiser LM, Jonas O, Gray JW, and 
Korkola JE, “Microenvironment-Mediated Mechanisms of Resistance to HER2 Inhibitors Differ 
between HER2+ Breast Cancer Subtypes,” Cell Systems 6(3), 329–342.e6 (2018). [PubMed: 
29550255] 

[7]. Goldsborough P, Pawlowski N, Caicedo JC, Singh S, and Carpenter A, “CytoGAN: Generative 
Modeling of Cell Images,” bioRxiv (Nips), 227645 (2017).

Schau et al. Page 7

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2019 August 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[8]. Eulenberg P, Köhler N, Blasi T, Filby A, Carpenter AE, Rees P, Theis FJ, and Wolf FA, 
“Reconstructing cell cycle and disease progression using deep learning,” Nature 
Communications 8(1), 1–6 (2017).

[9]. Christiansen EM, Yang SJ, Ando DM, Javaherian A, Skibinski G, Lipnick S, Mount E, O’Neil A, 
Shah K, Lee AK, Goyal P, Fedus W, Poplin R, Esteva A, Berndl M, Rubin LL, Nelson P, and 
Finkbeiner S, “In Silico Labeling: Predicting Fluorescent Labels in Unlabeled Images,” Cell 
173(3), 792–795.e19 (2018). [PubMed: 29656897] 

[10]. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, and 
Bengio Y, “Generative Adversarial Networks,” arXiv preprint, 1–9 (2014).

[11]. Kingma DP and Welling M, “Auto-Encoding Variational Bayes,” arXiv preprint (Ml), 1–14 
(2013).

[12]. Burlingame EA, Margolin A, Gray JW, and Chang YH, “SHIFT: speedy histopathological-to-
immunofluorescent translation of whole slide images using conditional generative adversarial 
networks,” in [SPIE], 10581, 1058105–1058107 (2018).

[13]. Hu Z, Yang Z, Salakhutdinov R, and Xing EP, “On unifying deep generative models,” arXiv 
preprint arXiv:1706.00550 (2017).

[14]. Chollet F et al., “Keras.” https://github.com/fchollet/keras (2015).

[15]. Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving G, Isard 
M, Kudlur M, Levenberg J, Monga R, Moore S, Murray DG, Steiner B, Tucker P, Vasudevan V, 
Warden P, Wicke M, Yu Y, Zheng X, and Brain G, “TensorFlow: A System for Large-Scale 
Machine Learning TensorFlow: A system for large-scale machine learning,” 12th USENIX 
Symposium on Operating Systems Design and Implementation (OSDI ‘16), 265–284 (2016).

[16]. Van Der Maaten LJP and Hinton GE, “Visualizing high-dimensional data using t-sne,” Journal of 
Machine Learning Research 9, 2579–2605 (2008).

[17]. Fleiss JL, “The Equivalence of Weighted Kappa and the Interclass Correlation Coefficient as 
Measures of Reliability,” Education and Psychological Measurement 33, 613–619 (1973).

[18]. Massagué J, “Tgfβ in cancer,” Cell 134(2), 215–230 (2008). [PubMed: 18662538] 

Schau et al. Page 8

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2019 August 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/fchollet/keras


Figure 1. 
(A) randomly sampled input images from the full dataset (B) lossy reconstructions of the 

sampled input images after training (C) distributions of each of the 16 features across the 

entire dataset (D) correlation heatmap of the learned VAE features (E) t-SNE projection of 

VAE space colored by the number of cells on each spot (F) t-SNE projection of VAE space 

colored by a hand-crafted feature designed to evaluate cell spot organization.
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Figure 2. 
Video 1: t-SNE embedding of MEMA spots used in this study based on learned latent 

features illustrates distinct sub-regions of feature space populated by spots of similar 

morphology, including a set of technical errors in the bottom right (best viewed at full 10k 

digital resolution). http://dx.doi.org/10.1117/12.2512660
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Figure 3. 
(left) Latent space walking where each column represents one of 16 latent variables in the 

VAE model and each row represents uniformly spaced samples along the CDF of the latent 

variable distribution. (right) The principal feature manifold sampled from the first two 

principal components of the learned VAE feature space embedding visualizes sources of 

significant variation in the VAE encoding dataset in two dimensions. In this analysis, the 

first two components explain 16.8% and 13.8% variance, respectively.
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Figure 4. 
Density separation of human annotation for 300 images across 16 learned latent features.
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Figure 5. 
(left) The first principal component (PC1) and first linear discriminant (LD1) of the latent 

space are tightly correlated and illustrate clear separation between annotation class. (right) 

Associations between the first principal component of the VAE feature space and the hand-

crafted organizational feature are weak. However, ANOVA analysis suggests that the learned 

VAE space improves discriminatory power between the three annotated classes.
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Figure 6. 
Hierarchically clustered MEPs by the mean encoding of their treated MEMA spot images by 

extracellular matrix (x-axis) and soluble ligand (y-axis) conditions. Each square represents 

the mean projection of encoded images for given ligand-ECM conditions onto the first 

principal component of the VAE feature space. In this illustration, red colors are more highly 

associated with cell spot organization and blue colors are more highly associated with cell 

spot disorganization (see Figure 3).

Schau et al. Page 14

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2019 August 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Schau et al. Page 15

Table 1.

ANOVA results of class separation

VAE

PC1 PC2 LD1 HCF Cell Count

F value 717.9 8.2 1073 254 431.5

Pr (>F) <2e-16* 2.83e-4* <2e-16* <2e-16* <2e-16*

*
(VAE vs. hand-crafted feature (HCF) and Cell Count significant)

*
significant)
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