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Abstract

Computed tomography (CT) images can potentially provide insights into bone structure for 

diagnosis of disorders and diseases. However, evaluation of trabecular bone structure and whole 

bone shape is often qualitative or semi-quantitative. This limits inter-study comparisons and the 

ability to detect subtle bone quality variations during early disease onset or in response to new 

treatments. In this work, we enable quantitative characterization of bone diseases through bone 

morphometry, texture analysis, and shape analysis methods.

The potential of our analysis methods to identify the impact of hemophilia is validated in a mouse 

femur wound model. In our results, shape localizes and characterizes the formation of spurious 

bone, and our texture and bone morphometry analysis results provide extra information about the 

composition of that bone. Some of our one-dimensional (1D) textural features were able to 

significantly differentiate our injured femurs from our healthy femurs, even with this small sample 

size demonstrating the potential of the proposed analysis framework. While trabecular bone 

morphometrics have been a pillar in 3D microCT bone research for decades, the proposed analysis 

framework augments how we define and understand phenotypical presentation of bone disease. 

The contributed open source software is exposed to the medical image analysis community 

through 3D Slicer extensions to ensure both robustness and reproducibility.

1. INTRODUCTION

Bone diseases are common in the United States, especially among the elderly and 

individuals of low socioeconomic status, and they take a large toll on the Nation’s overall 

health status. For the first time in 2012, the Centers for Disease Control and Prevention 

(CDC) reported that one-in-two adults (126.6 million total) were affected with a 

musculoskeletal disease, twice the rate of chronic heart and lung conditions.1, 2 Fractures 

and osteoporosis are the biggest problems associated with bone disease; they are common, 
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costly, and can become a chronic burden on both individuals and society.3 Musculoskeletal 

diseases represent $213 billion in health care costs annually for treatment, care, and lost 

wages.4, 5The CDC also reports that muscle and bone diseases are more prevalent in low 

socioeconomic populations, due to their relationships with other comorbidities such as 

diabetes or obesity.6

Despite its increasing burden to our society, there is a paucity of drugs or therapies that to 

prevent or reverse bone damage. Currently, regenerative medicine, tissue engineering, and 

pharmacological therapies are being studied as therapeutic approaches for bone diseases. 

Preclinical testing plays a major role in this process, enabling powerful and clinically 

translatable methods to monitor disease progression and test candidate drugs. Even though 

invasive biomarkers are possible options for preclinical studies, imaging is an important key 

technology to accelerate therapeutic approaches because it is easily translated into the 

clinical setting.

Both clinical and pre-clinical researchers working on the discovery of therapeutic 

approaches to bone deterioration need effective, quantitative, robust and reproducible ways 

to measure the effect of those therapies in bone scans. From among the various diagnostic 

tests available, imaging-based diagnostics are among the most important method to measure 

bone quality. Imaging provides a fast, scalable and non-invasive way to examine bone 

structure. However, image-based evaluation is often performed qualitatively or semi-

quantitative and with disparate analysis paradigms, which is not sufficient to perform robust 

comparisons between studies, nor to detect the subtle variations in bone quality during early 

disease onset.7–9

Hemophilia is a disorder caused by insufficient clotting factors. Patients with this disease 

experience recurrent joint bleeding, which ultimately leads cartilage10 and bone11 

destruction, and results in a pathogenic process that resembles other degenerative 

musculoskeletal processes, such as osteoarthritis.12

In this work we present open source software tools to quantify musculoskeletal health from 

micro-computed tomography images of bone. These methods are evaluated on mouse femur 

wound model images obtained during a hemophilia study. Our bone analysis algorithms are 

developed as part of the Insight Toolkit13 (ITK), and include trabecular bone morphometry, 

texture analysis, and shape analysis methods. Analysis methods developed in ITK are 

computationally efficient, they take advantage of ITK’s fast neighborhood operators, and 

they re-use intermediate computations in order to minimize memory use. More importantly, 

ITK is open-source software that provides access to complex image analysis algorithms 

without any cost for biomedical researchers. This is crucial to ensure both the robustness and 

reproducibility of any scientific study.

The proposed solution provides enhanced quantitative characterization of hemophilia-

induced bone pathology, when compared with bone morphometric biomarkers alone.
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2. MATERIALS

We used three, twenty-two week old (skeletally mature), genetically modified, male mice for 

this study. In healthy individuals, the F8 gene provides instructions for making the protein 

coagulation factor VIII. Coagulation factors are a group of related proteins essential for the 

formation of blood clots. After injury, clots protect the body by sealing off damaged blood 

vessels and preventing further blood loss. Gene knockout (FVIII−/−) mice were used as a 

model for hemophilia in this study. These knockout mice have a pathogenic pathway that is 

similar to hemophilia, and they present bleeding-induced bone and joint damage. Each 

mouse was subjected to knee joint hemorrhage in the left limb by puncturing the joint 

capsule with a needle. The right limb served as the uninjured control.14 Two weeks after 

injury simulation, the mice were euthanized. During the injury period, hemorrhage caused 

bone deterioration that we quantitatively characterized with the proposed methods. Hind 

limbs were scanned at 10µm resolution using microCT (µCT80; Scanco Medical AG, 

Brttisellen, Switzerland).

MicroCT analysis was performed on the trabecular bone at the proximal tibia only, inferior 

to the growth plate, which is a common skeletal site for image-based analysis.

3. METHODS

We have developed a pipeline (see figure 2) to segment bone tissue regions and quantify 

biomarkers within those regions. This paper presents an example of analysis of microCT 

images of a hemophilia mouse model, but common components of this pipeline can be 

adapted to target other modalities and pathologies.

The first step, whole femur segmentation, began with a fixed threshold in Hounsefield units 

to the microCT data in order extract all bony structures. Then, we performed morphological 

closing with a large kernel to remove the majority of trabecular latices visible in the scan. 

This was followed by separation of connected components of each bony structures in order 

to isolate the largest connected component (femur) was isolated. Finally, we used active 

contour evolution15 to fill in all the internal structures in the femur.

After femur segmentation, the right anatomy was mirrored onto the left. Then, we performed 

registration to bring both models to the same coordinate frame via the iterative closest point 

(ICP) registration algorithm. The core of the algorithm matches each vertex on one surface 

with the closest surface point on the other. Then the transformation that modifies one surface 

to best match the other (in a least square sense) was applied. Proper convergence of the 

surfaces requires multiple iterations. After femur segmentation and registration our pipeline 

performed the computation of the following biomarkers:

Shape Analysis:

Our analysis framework used Iterative Closest Points (ICP) to quantitatively analyze shape 

differences between left and right limbs. This shape analysis methodology can be performed 

in the absence of shape correspondence (models that have the same number of points). ICP 
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is performed by computing distances or 3D vectors from each vertex of the left (injured) 3D 

femur model to the right (unaffected) 3D femur model.

Texture Analysis:

We incorporated two different texture quantification algorithms to provide a statistical 

description of the local texture of a 3D image.16

Co-occurrence textural features:

The computation of co-occurrence features is based on the grey level co-occurrence matrix 

(GLCM)17 computed for each pixels neighborhood. We computed eight different textural 

features from the GLCM: Energy, entropy, correlation, inverse difference moment (IDM), 

Contrast, Cluster Shade, Cluster Prominence and Haralick’s Correlation.

Run length textural features:

The computation of the run length features was based on the gray level run length matrix 

(GLRLM)18 computed for each pixels neighborhood. A gray-level run is a set of 

consecutive, co-linear picture points having the same grey-level value. The length of the run 

is the number of picture points in the run. The GLRLM matrix describes the local textural 

structure of each pixels’ neighborhood. We compute ten different textural features from the 

GLRLM: short run emphasis (SRE), long run emphasis (LRE), grey level non-uniformity 

(GLN), run length non-uniformity (RLN), low grey level run emphasis (LGRE), high grey 

level run emphasis (HGRE), short run low grey level emphasis (SRLGE), short run high 

grey level emphasis (SRHGE), long run low grey level emphasis (LRLGE) and long run 

high grey level emphasis (LRHGE). Each one of these features characterize a different 

aspect of the 3D textural appearance of an image, as described in previous publications.
16, 19, 20

Bone Morphometry:

Morphometry (or morphometrics) refers to the quantitative analysis of form, quantifying the 

size or the shape of the studied object. Bone morphometry has been typically performed on 

histopathology images. Histomorphometry consists of slicing planes of ex-vivo bone and 

execution of a succession of 2D morphometry analysis on the tissue slices, which destroys 

the tissue. Additionally, due to the 2D nature of the images, even though certain types of 

features such as bone volume fraction (BV/TV) and specific bone surface (BS/BV)21 can be 

computed, computation of other 3D features, such as trabecular thickness (Tb.Th), 

trabecular separation (Tb.Sp), and trabecular number (Tb.N), is not possible.22

We computed five different traditional bone morphometry features: bone volume fraction 

(BV/TV), specific bone surface (BS/BV), trabecular thickness (Tb.Th), trabecular separation 

(Tb.Sp) and trabecular number (Tb.N).19, 23, 24
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4. RESULTS

We analyzed the shape, texture, and morphometry on images from our hemophilia animal 

model. Our metrics were computed on the right unaffected limb and left (mirrored) limb, 

which experienced a bleeding-induced hemophilia-mimicking injury.

In our shape characterization, we observed that shaft volume in the left femur increased for 

all our cases. Our texture features and bone morphometrics provide additional information 

on the composition of bone growth that was induced as part of the pathological healing 

process.

Some one-dimensional (1D) textural features were able to significantly differentiate our 

injured femurs from healthy femurs, even with this small sample size. Those features are 

Short Run Emphasis (p=0.048), entropy (p=0.036), inertia (p=0.037), Short Run Emphasis 

(p=0.048) and Long Run Emphasis (p=0.034). The rest of our 1D textural and bone 

morphometry features trended towards significance, suggesting that significance will be 

reached with a larger sample size. Our power analysis estimates many features will reach 

significance after an increase in the group sample size to 8 subjects. In addition to 1D 

features, our framework can compute 3D textural maps. Figure 3 presents results for one of 

the textural maps, the run length non-uniformity (RLN). RLN is a feature based on the run 

length texture analysis method.18 RLN measures the similarity of the length of runs 

throughout the image. The RLN is expected to be small if the run-lengths are alike 

throughout the image. The RLN map shows and clearly quantifies newly formed highly-

porous bone and non-dense bone within the subcortical plate. Figure 3 a) and b) shows 

corresponding locations in the right (a) and left (b) shafts and demonstrates distinct RLN in 

the subcortical plates of the left limb only (purple, high value areas). These textural maps are 

3D and can be segmented to quantify the volume of pathology-induced tissue. We found a 

volumetric increase in elevated RLN in the injured limb: elevated RLN increased by 4.81% 

(20.38% volume of elevated RLN map values in the right limb compared to 25.19% in the 

left limb).

A principal component analysis (PCA) on the features, Figure 3 c), suggests that the first 

principal component could distinguish injured and unaffected limbs. Furthermore, the first 

principal component of the feature sets appear to coincide.

Figure 4 visualizes the result of our shape analysis. In all cases there are different degrees of 

bone deterioration in the anterior aspect of the left femur compared to the right. In many 

instances, a hematoma resulted from the joint puncture and influences the shape of new 

surface ossification. All left femurs also present spurious bone formation in the third 

trochanter, and bone enlargement in the lateral and medial shafts of the bone. Positive 

distances (red) in this distance map indicate injury-induced bone resorption, while negative 

distances indicate injury-induced bone apposition (blue). Despite joint puncture realized on 

the left limb, which does not impart direct damage to the bone, the anatomy is observed to 

change heavily adjacent to areas where blood pools.
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5. CONCLUSIONS

In a previously published14 study, Scanco analysis software was used to calculate trabecular 

bone volumetric density (BV/TV), trabecular connectivity density, trabecular number and 

thickness, bone tissue mineral density, and volumetric bone mineral density (vBMD) in 3D. 

We computed biomarkers based not only on traditional bone morphometrics, but also texture 

and shape-based metrics to obtain better statistical sensitivity to the impact of hemophilia on 

wound healing.

This work demonstrates that combining bone morphometrics, texture features, and shape 

characteristics have the potential to detect and quantify bone pathology. Open source 

applications to perform analysis are provided as 3D Slicer25 extensions. A package 

containing 3D Slicer with all required extensions * in addition to a dataset† is provided to 

reproduce the results presented in this work.
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Figure 1. 
MicroCT data example. a) Grayscale with region of interest highlighted (femur) in red. b) 

3D rendering of the region of interest.
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Figure 2. 
Workflow of the image analysis framework.
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Figure 3. 
3D texture maps and PCA of features. Run-length non-uniformity texture map for a) right 

(unaffected) femur, b) left (injured) femur. First column: microCT slice intensity. Second 

column: corresponding texture map (note that texture is computed on the 3D image, and that 

texture values in purple clearly identify injury-induced mass.). c) Plotting PCA first 

principal component of Bone Morphometry (5 features) against first principal component of 

texture analysis (18 features).
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Figure 4. 
Shape analysis results for three subjects, including superimposed 3D models (left) and 

visualization of pathological shape changes via signed distances (right).
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