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Abstract

With the advent of powerful convolutional neural networks (CNNs), recent studies have extended 

early applications of neural networks to imaging tasks thus making CNNs a potential new tool for 

assessing medical image quality. Here, we compare a CNN to model observers in a search task for 

two possible signals (a simulated mass and a smaller simulated micro-calcification) embedded in 

filtered noise and single slices of Digital Breast Tomosynthesis (DBT) virtual phantoms. For the 

case of the filtered noise, we show how a CNN can approximate the ideal observer for a search 

task, achieving a statistical efficiency of 0.77 for the microcalcification and 0.78 for the mass. For 

search in single slices of DBT phantoms, we show that a Channelized Hotelling Observer (CHO) 

performance is affected detrimentally by false positives related to anatomic variations and results 

in detection accuracy below human observer performance. In contrast, the CNN learns to identify 

and discount the backgrounds, and achieves performance comparable to that of human observer 

and superior to model observers (Proportion Correct for the microcalcification: CNN = 0.96; 

Humans = 0.98; CHO = 0.84; Proportion Correct for the mass: CNN = 0.98; Humans = 0.83; CHO 

= 0.51). Together, our results provide an important evaluation of CNN methods by benchmarking 

their performance against human and model observers in complex search tasks.

1. INTRODUCTION

The use of model observers for image quality assessment has been extensively used in the 

field of medical imaging for computer-generated and anatomical background and signals 

located at one or a few specified locations.1–4 Among these observers, the most used models 

include the Ideal Observer (IO) and the Channelized Hotelling Observer (CHO). The IO is 

restricted to very specific situations in which background and signal statistics are known. 

The Ideal Observer is used to calculate the upper bound performance for a perceptual task 

and used to benchmark human performance.5–9 With more realistic phantom simulations or 

real anatomical backgrounds, the IO is not computationally tractable and researchers rely on 
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approximations like the CHO model which incorporates a feature extraction stage through a 

set of linear channels.10 When these channels mimic the early visual processing of the 

human visual system the CHO model can more accurately predict human performance than 

an ideal observer.11

Convolutional Neural Networks (CNN) have recently been applied to imaging tasks12,13 and 

have proved to be a good approximation to the Ideal Observer14,15 in simple Background-

Known-Exactly and Location-Known-Exactly tasks. Here, we extend such work and 

compare CNN’s performance to human and model observers for the search of two noise and 

possible signals (a simulated mass and a smaller simulated micro-calcification) embedded in 

1/f 2.8 filtered single slices of Digital Breast Tomosynthesis (DBT) virtual phantoms.

In this research, we extend previous evaluations of CNNs in medical imaging relevant tasks 

to complex search tasks, a variety of background and comparisons to standard model 

observers and humans. The results are novel and informative in understanding the potential 

contributions that CNNs might have to the field of medical image quality.

2. METHODS

2.1 Experiment Design

We considered two search tasks with different backgrounds: filtered noise and backgrounds 

generated from a virtual breast digital phantom. The task was a yes/no detection task with 

one of two different possible targets. Targets were present in 50% of the trials with a 50% 

probability of being one or the other. The first version of the experiment used an image 

generated with correlated Gaussian noise (size 1024×820 pixels) filtered to match the noise 

power spectrum of mammograms 1/f2.8.16 In this case, the two targets were a 

microcalcification-like signal (MCALC, a bright sphere of 6 voxels diameter) and a mass-

like signal (MASS, Gaussian blob of about 25 voxels diameter).

The second version of the experiment involved the use of a single-slice Digital Breast 

Tomosynthesis (DBT) virtual phantoms (size 2048×1792 pixels) using the OpenVCT virtual 

breast imaging tool from the University of Pennsylvania.17 OpenVCT generates full 

phantom DBT images including different tissues (skin, Cooper’s ligaments, adipose and 

glandular) in a realistic manner. Two targets were simulated as a single microcalcification 

and a mass in the phantom. Additionally, for DBT images, we designed a psychophysics 

experiment in order to know human performance. On each trial, 6 observers searched only 

for a given type of signal. Each participant participated in 300 trials per signal type. Figure 1 

describes the procedure of the experiment for a single trial for each signal-type condition. 

Observers responded whether the signal was present or absent. The signals were present in 

50% of the trials.

2.2 Model observers

Three different model observers were implemented for the correlated noise images: 1) the 

Ideal Observer (IO), which optimally uses the visual information to calculate posterior 

probabilities and achieves upper bound performance;18 2) the Non-Prewhitening model 

observer with Eye filter (NPWE), which uses the signal as template with an eye filter that 
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attenuates spatial frequencies based on the human Contrast Sensitivity Function;19,20 and 3) 

the Channelized Hotelling Observer (CHO) which processes the stimulus with channels and 

combines them linearly optimally.1,21 On the other hand, for DBT phantoms, the IO is 

mathematically non-tractable and thus we applied only the CHO model observer.

2.2.1 Ideal Observer Model—The ideal observer uses statistical information from the 

noise field and the target to build an optimal template.18 The ideal observer template w was 

convolved (*) with the image g thus calculating a decision variable λ = wIO * g. To build the 

template we used the inverse of the covariance matrix of the noise field Kg and the signal 

s:wIO = Kg−1s.

2.2.2 Non-prewhitening with Eye Filter Model—The non-prewhitening observer 

with eye filter (NPWE) makes use of a mathematical representation of the target (matched 

filter) and an eye filter that considers the contrast sensitivity function of the human visual 

system.19 The spatial filter used the following expression.

E ρ = ρα exp −βργ

Where ɑ = 1.4, β = 0.013 and γ = 2.6 and ρ is the radial spatial frequency in cycles per 

degree2.

The model observer’s template wNPWE and decision variable λ are constructed as follows.

s = FFT s
wNPWE = FFT−1 E⌢2s
λ = wNPWE * g

Where FFT is the fast Fourier transform and the carat symbols ^ refer to the frequency 

domain.

2.2.3 Channelized Hotelling Observer—The channelized hotelling observer (CHO) 

was built using Gabor channels (8 orientations and 6 spatial frequencies: 0.5, 1, 2, 4, 8 and 

16 cycles per degree)21. The set of channels T is used to extract different features from the 

signal and build the template wCHO and decision variable λ as follows.

v = Tts
Kv = TtKgT
wCHO = TKv−1v
λ = wCHO * g

2.3 Convolutional Neural Network

The Convolutional Neural Network (CNN) developed was based on Mask R-CNN22,23 

(Region-based CNN). It was pre-trained to do instance segmentation for objects from the 
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MSCOCO image dataset. This network is an extension to Faster R-CNN24 originally trained 

to do object classification and localization. Both Mask R-CNN and Faster R-CNN have two 

stages. The first stage is the same for both networks and utilizes a Region Proposal Network 

(RPN), which proposes candidate object bounding boxes. The second stage of Faster R-

CNN operates on these candidates using RoIPool25, pooling convolutional features at 

candidate locations and performs object classification and bounding-box regression. On the 

other hand, the second stage of Mask R-CNN has an additional pathway to output a binary 

mask for each Region of Interest (RoI). The method used by Mask R-CNN to separate 

segmentation from object classification contributes to better performance.

The MSCOCO dataset had 81 different classes including the background. Mask-RCNN 

implementation26 was adapted for detecting cell nuclei in divergent images as part of the 

2018 Data Science Bowl challenge. We reduced the number of classes to two. ResNet-5027 

was used as the backbone of this network. Anchor sizes in the RPN network are based on the 

expected tumor size. By default, the anchor is a square and has five possible side lengths, (8, 

16, 32, 64, 128) pixels. For some tasks, these prior sizes are modified based on dataset 

statistics. For training, the network requires the signal image along with a binary mask 

corresponding to each of the signal locations. For the filtered noise images, we have access 

to the exact signal information and the Gaussian noise that was added to the signal. We 

thresholded this signal with a Gaussian noise mask in order to generate the binary mask 

segmentation ground truth. For the phantoms, we do not know the exact noise mask added to 

the signal. Therefore, we used a bounding box around the signal location in order to generate 

the binary segmentation mask where the bounding box size is determined by the original 

signal size used in all phantoms.

Data were separated into training, validation and test subsets. For filtered noise backgrounds, 

the split was 1000 images (training), 200 (validation) and 200 (test) respectively. For 

phantoms, the split was 468 (training), 52 (validation) and 52 (test) respectively. There was 

no overlap between different sets. We initialized the network weights with ResNet-50 

classification network weights. We started with training the final layers for a few epochs (40 

for filtered noise backgrounds, 20 for phantoms) and after that, we trained the whole 

network for the remaining epochs (80 for filtered noise backgrounds, 20 for phantoms) with 

a learning rate of 0.001. For the filtered noise backgrounds, we had additional training for 

the whole network for 40 epochs with a learning rate of 0.0001. After training for a 

predefined number of epochs, we chose the model corresponding to the epoch which gave us 

the least validation loss. We tested the model on signal present and signal absent images.

2.4 Figures of merit for model and human performance

For the model observers (IO, CHO, and NPWE), we constructed a ROC curve using, for 

each trial, the highest template response across locations. We obtained the Proportion 

Correct (PC) by choosing the corresponding optimal decision threshold (PC maximizing) 

from the ROC curves for each model.

The network outputs multiple detections within the same image with associated probability 

values for signal presence. We pick the maximum value within the image as the probability 

of the signal’s presence in the image. Finally, we built a ROC curve with the maximum 
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probabilities across each of the images. We chose the optimal decision threshold value that 

maximized the PC. This is the PC that is reported as the CNN performance (see Results).

For the filtered noise images, in order to compare model efficiency, we calculated a PC for 

each target amplitude (contrast). Then, we took an amplitude that matched CNN and model 

observer performance and calculated the efficiency using the following formula:

efficiency =
amplitudemodel12
amplitudemodel22

We note that such procedure to use efficiency for the DBT phantoms was not possible given 

the computational cost of generating the phantoms with varying signal amplitudes. For the 

DBT phantoms, we simply compared the performance of CNN to that of human observers.

3. RESULTS

Figure 2 shows the corresponding amplitudes for the signals in order to achieve the same 

performance (PC of 0.6 for MCALC and 0.77 for MASS) for the CNN and the 

corresponding model observer (IO, CHO or NPWE). We tuned the signal amplitude to 

achieve similar performance for the four models. The efficiencies relative to the IO for the 

CHO, NPWE, and CNN were: 0.16, 0.09, 0.88 for the MCALC and 0.9, 1, 0.9 for the 

MASS, respectively).

Figure 3 shows proportion correct detection for the two signals for human observers, the 

CHO model, and the CNN in the single slice of the DBT phantoms. Due to a lack of access 

to the exact statistical properties of the signal and backgrounds, the ideal observer 

implementation is not possible. We did not calculate the NPWE model which also requires 

knowledge of the mathematical function describing the signal luminance modulation 

through space. The interaction between CNN/CHO model performance and signal type for 

single slice DBT images was opposite to the filtered noise background. For the DBT images, 

the CHO model performed better relative to the CNN for the microcalcification rather than 

the masses.

4. DISCUSSION

For the filtered noise images, the efficiency of the CHO and the NPWE was low for the 

microcalcification but higher for the mass signals. This reflects the bottleneck in the NPWE 

and CHO models to access high spatial frequency information for the microcalcification 

signal. The CHO model has a set of spatial frequency channels with the highest channel at 

32 cycles/degrees. The contrast sensitivity function of the NPWE also has a drop-off in 

sensitivity for high spatial frequencies. CNN does not have such a bottleneck and thus 

outperforms these two model observers for such small signals. For the masses which are 

larger and do not contain as much power in high spatial frequencies, the CHO and NPWE 

performed similar to the IO and also better than the CNN.

In terms of the comparison across signal types. All models performed better with the 

microcalcification signal relative to the mass signal. Models required less signal amplitude 
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to detect the microcalcification than the mass signal. This result is explained by the 

differences in shape for each target and interaction with the noise background. While the 

microcalcification has very sharp and clear edges, the mass blends with the background, thus 

making it more confusing with a background that is already low-frequency noise. This 

follows the trend seen in previous publications.28,29

One limitation of the filtered noise backgrounds is that they are a statistically stationary 

process and do not contain anatomical structures.30 To evaluate the CNN with a more 

realistic anatomical background we investigated model performance for search in single 

slice DBT phantoms. For the phantom images, IO calculation is not possible. We 

benchmarked CNN performance against the CHO model and human observer performance. 

Our results show a steep deterioration of the CHO model performance model compared to 

human observers, mainly because of the inhomogeneity of these backgrounds, which can 

look very different in different regions of the phantom image. In particular, the CHO had 

difficulty detecting searching for the mass signal. For the microcalcification, the CHO model 

achieved better performance but still falls below human observer performance. In contrast, 

the CNN performance is comparable to human performance and seems to cope better with 

the non-stationary anatomical structured in the background of the DBT phantoms.

5. CONCLUSIONS

Convolutional neural networks can approximate ideal observers for more complex search 

tasks. In addition, CNNs have the attribute of learning to discount potential distractors 

related to anatomical backgrounds which are a limitation of traditional model observers31. 

Together, the results extend previous results with CNNs to visual search and a variety of 

backgrounds and show the potential of CNNs for image quality evaluation.
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Figure 1: 
Outline of the psychophysical search experiment with DBT phantoms
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Figure 2: 
Signal amplitudes for the same proportion correct for the ideal observer (IO), convolutional 

neural network (CNN), channelized hotelling observer (CHO) and non-prewhitening 

observer with eye filter (NPWE) in correlated noise.
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Figure 3: 
Proportion correct (PC) for human observers, channelized hotelling observer (CHO) and 

convolutional neural network (CNN) in DBT phantoms.
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