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Abstract

We present an interpretable end-to-end computer-aided detection and diagnosis tool for pulmonary 

nodules on computed tomography (CT) using deep learning-based methods. The proposed 

network consists of a nodule detector and a nodule malignancy classifier. We used RetinaNet to 

train a nodule detector using 7,607 slices containing 4,234 nodule annotations and validated it 

using 2,323 slices containing 1,454 nodule annotations drawn from the LIDC-IDRI dataset. The 

average precision for the nodule class in the validation set reached 0.24 at an intersection over 

union (IoU) of 0.5. The trained nodule detector was externally validated using a UCLA dataset. 

We then used a hierarchical semantic convolutional neural network (HSCNN) to classify whether a 

nodule was benign or malignant and generate semantic (radiologist-interpretable) features (e.g., 

mean diameter, consistency, margin), training the model on 149 cases with diagnostic CTs 

collected from the same UCLA dataset. A total of 149 nodule-centered patches from the UCLA 

dataset were used to train the HSCNN. Using 5-fold cross validation and data augmentation, the 

mean AUC and mean accuracy in the validation set for predicting nodule malignancy achieved 

0.89 and 0.74, respectively. Meanwhile, the mean accuracy for predicting nodule mean diameter, 

consistency, and margin were 0.59, 0.74, and 0.75, respectively. We have developed an initial end-

to-end pipeline that automatically detects nodules ≥ 5 mm on CT studies and labels identified 

nodules with radiologist-interpreted features automatically.
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7.CODE AVAILABILITY
The code for RetinaNet was adapted from https://github.com/yhenon/pytorch-retinanet. The HSCNN was reimplemented in PyTorch 
based on the Keras code provided by the original paper [8].
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1. INTRODUCTION

Lung cancer is the leading cause of cancer-related death in men and the second leading 

cause of cancer-related death among women globally [1]. Computed tomography (CT) is an 

essential clinical imaging procedure for lung cancer detection and diagnosis. The National 

Lung Screening Trial (NLST) demonstrated that screening with low-dose CT (LDCT) 

reduced lung cancer mortality [2], leading to the United States Preventive Services Task 

Force (USPSTF) recommendation that high-risk populations be routinely screened [3]. 

While patients will benefit from earlier diagnosis of lung cancer through screening, the 

potential harms cannot be neglected [4]. One notable downside of screening is the high 

number of false positives, such as when a pulmonary nodule detected on LDCT turns out to 

be a benign lesion upon biopsy. Moreover, many cancerous nodules are also detected 

incidentally on diagnostic CTs in a non-screening setting. To help reduce unnecessary 

invasive procedures, we aim to build a computer-aided detection and diagnosis tool for 

pulmonary nodules in CTs.

We propose an End-to-end Detection and Interpretable Classification Network (EDICNet) 

for pulmonary nodules. A similar end-to-end network has been proposed recently, achieving 

performance that rivals six radiologists [5]; however, their classification network focused on 

moderately homogeneous low-dose CT scans and did not incorporate clinical information 

such as the semantic features of pulmonary nodules. Semantic features are important 

because radiologists often use them to help determine a nodule’s suspicion level for 

malignancy, informing follow-up recommendations based on guidelines such as Fleischner 

[6] and Lung-RADS [7]. We extend our prior work on the hierarchical semantic 

convolutional neural network (HSCNN) [8] to interpret semantic features from deep features 

in the hopes of making the network more human understandable.

2. METHODS

2.1 Overall pipeline

EDICNet is comprised of two modules: 1) a nodule detection module and 2) a nodule 

malignancy classification module (the first row of Figure 1). Two independent datasets were 

used to build EDICNet, the Lung Image Database Consortium image collection (LIDC-

IDRI) [9] and an annotated diagnostic CT dataset from our institution. The LIDC-IDRI 

dataset has pixel-level annotations for all nodules, whereas the UCLA dataset provides 

pixel-level annotations for one primary lesion in each CT scan, clinical semantic labels of 

the primary lesion, as well as the diagnosis of the primary lesion (benign or malignant). We 

utilized these two datasets to build our two-stage pipeline. First, CT slices with pixel-level 

annotations of nodules from the LIDC-IDRI dataset were used to train the nodule detection 

model. Second, a set of nodule-centered patches together with semantic and diagnostic 

labels from the UCLA dataset were used to train the nodule malignancy classification 

model. During the inference phase (the second row of Figure 1), the nodule detector 

generates regions of interest (ROIs) with the highest probability to be a pulmonary nodule 

given the full CT volume as input. For each proposed ROI, the nodule malignancy 
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classification model is used to generate predictions of cancer/non-cancer along with a set of 

semantic features.

2.2 Datasets

2.2.1 LIDC-IDRI dataset—The LIDC-IDRI dataset is a publicly available dataset that 

consists of 1,018 diagnostic and lung cancer screening thoracic CT scans with marked-up 

annotations created by up to four radiologists per lesion [9]. Among the 1,018 scans, we 

excluded those with a slice thickness greater than or equal to 3 mm, resulting in 897 CT 

scans. Among the annotated nodules from the 897 scans, we included nodules that were 

annotated by at least three radiologists. We used the union of the contours made by all the 

annotators as the final contour for a nodule, thus in our study each nodule on a specific slice 

was only included once. If a nodule was identified on multiple slices, all annotations on 

these slices were included. For one scan, slices that contained at least one qualified nodule 

(i.e., slice thickness < 3 mm and annotated by at least three radiologists) were included, and 

the largest dimension of the nodule on the slice must be equal to or greater than 5 mm (e.g. a 

nodule was detected on six slices and on two of the slices the largest dimension was less 

than 5 mm, so the two slices were excluded). In total, we had 5,445 slices with nodules. To 

balance the dataset with a comparable number of negative samples, for each scan, we 

randomly sampled five slices without nodules, adding another 4,485 slices. In total, 9,930 

CT slices were used to train and validate the nodule detector. Figure 2 shows the inclusion of 

CT slices from the LIDC-IDRI dataset.

2.2.2 UCLA dataset—The UCLA dataset contains 149 diagnostic CT scans collected 

between 2003 and 2014. There was only one predetermined primary lesion for each scan as 

identified by a thoracic radiologist (DRA), and this lesion was determined as the most 

critical lesion to a patient’s disease progress. The mask of this lesion was provided by a 

board-certified thoracic radiologist with more than 10 years of experience and verified by a 

board-certified thoracic radiologist (DRA) with more than 30 years of experience. The 

demographic and clinical information of the included scans is shown in Table 1. Three 

semantic features (mean diameter, consistency, and margin) and diagnosis were used as 

labels for classification. The semantic features were also annotated and validated by the 

aforementioned two board-certified thoracic radiologists.

2.3 Data preprocessing

2.3.1 RetinaNet—Prior to training, all slices were normalized from the Hounsfield (HU) 

scale of (−1000 HU, 500 HU) to a range of (0, 1). CT slices were input into RetinaNet using 

their original dimensions (i.e., 512 by 512 pixels). The coordinates of the upper left and 

bottom right vertices of the bounding box for a nodule were required inputs for training the 

nodule detector. We used the minimum and maximum values on x- and y-axes from the 

union of a nodule’s annotation mentioned in 2.2.1 as the two index vertices for generating 

the bounding box around the nodule (i.e., upper left was [x_min, y_min] and bottom right 

was [x_max, y_max]).

2.3.2 HSCNN—The same data preprocessing method was applied to the raw DICOM 

images in the UCLA dataset before extracting the nodule-centered patches, including HU 
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transformation and normalization (mentioned in 2.3.1). We resampled x, y spacing and slice 

thickness to 1 mm for all CT scans. After that, we applied a mask onto the nodule in order to 

separate it from the background, which could be part of the chest wall, great vessels, or the 

heart. Then, the non-nodule regions were assigned a value of zero. We posited that this 

process would eliminate potential noise from the background, forcing the network to learn 

features only from the nodule. A 52 × 52 × 52 nodule-centered patch was generated from 

each CT scan. We augmented the data through flipping along the x-, y-, and z-axes before 

training.

The coding of the malignancy and semantic feature prediction tasks are shown in Table 2. 

Given our small sample size, we chose to binarize consistency and margin. For consistency, 

solid nodules formed one group whereas part-solid and pure ground-glass nodules were 

grouped together. For margin, smooth margins were in a single group whereas lobulated, 

serrated/spiculated, and poorly defined margins were categorized as a separate group.

2.4 Modeling approaches

2.4.1 Nodule detection—We used a 2D RetinaNet [10] with a ResNet 34 [11] 

backbone for the nodule detection model. Grayscale 2-dimensional CT slices were converted 

to RGB images by copying the same image across all three RGB channels. Then the slices 

were rescaled from 512 × 512 pixels to 608 × 608 pixels and padded to 640 × 640 pixels 

with zeros. Thus, the final input dimensions of the slices were 640 × 640 pixels. The model 

training was initialized using the pre-trained weights from the ImageNet [12]. Real-time data 

augmentation was used, an input slice might be flipped along the y-axis depending on a 

random process. We did not modify the overall structure of the RetinaNet (Figure 3) and we 

used the Adam optimizer. The batch size was 2 during training and 1 during validation. The 

learning rate was set to 1e-5.

2.4.2 Nodule malignancy classification—Figure 4 shows the network structure for 

our multi-task nodule malignancy classification model. The high-level task was to determine 

whether the target lesion is benign or malignant. The low-level tasks were to predict the 

three semantic features. We used the same parameters described in the HSCNN paper [8] but 

instead of assigning varying weighting hyperparameters to low-level tasks (i.e., in the 

HSCNN paper the weighting hyperparameters was 0.1 for calcification, margin, and texture, 

and 0.2 for sphericity and subtlety), we applied roughly equal weighting hyperparameters to 

the three semantic features when calculating the total loss (0.33, 0.34, and 0.33). We set the 

dropout rate to be 0.8 instead of 0.6 comparing to the original HSCNN model to further 

reduce overfitting. The batch size was 6 during training and 1 during validation. The 

learning rate was 1e-3.

2.5 Evaluation metrics

2.5.1 RetinaNet—Average precision (AP), which is the area under the precision-recall 

curve, is the standard metric for evaluating the performance of an object detection model 

[13]. In our case, the nodule detector only labels one class (‘nodule’) per image, (hence, we 

use AP rather than mAP). During validation, the model outputs a set of bounding boxes that 

are called anchors and their corresponding scores. The bounding box is an ROI that the 
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model has identified as containing a nodule. The score associated with each bounding box, 

ranging from 0 to 1, conveys the probability that the ROI contains a nodule.

The reference bounding box is defined based on radiologist-provided annotations, as 

described in 2.2.1. The intersection over union (IoU) is defined as the intersection between 

the reference bounding box and an output bounding box divided by the union of the two. We 

set a threshold for IoU (range of the threshold (0,1]). If the IoU between the reference 

bounding box and the output bounding box is greater or equal to the IoU threshold, then this 

detection is a true positive (TP) detection; otherwise it is considered as a false positive (FP) 

detection (i.e., IoU < 0.5, no overlap, duplicated output bounding box on one reference 

bounding box). Therefore, we are able to know whether each detection is a TP or FP. 

Precision is calculated through TP/(TP+FP) where TP+FP equals the total number of output 

bounding boxes. Recall is calculated through TP/total number of reference bounding boxes.

After examining all images in the validation set, all output bounding boxes will be ranked 

from high to low based on their values of the scores. Since TP or FP is known, precisions 

and recalls can be calculated for the ranked list of detections, later being used to draw a 

precision-recall curve (PR curve). AP is estimated by calculating the area under the PR 

curve. In our experiments, we obtained AP at a predefined IoU threshold, 0.5.

2.5.2 HSCNN—Five-fold cross validation was used when training the HSCNN. The data 

was split into five folds based on the diagnosis label, preserving the percentage of samples 

for the benign nodule class and the malignant nodule class (stratified 5-fold). For each 

training, one out of the five folds was the validation set while the remaining four folds 

served as the training set. Additionally, the preprocessed augmented patches (flipped along 

three axes) were added to the training set. Mean area under the receiver operating 

characteristic curve (AUC) and mean accuracy were calculated for each task.

2.6 External evaluation for RetinaNet

Since the UCLA dataset and the LIDC-IDRI dataset are separate datasets, we used the 

UCLA dataset to externally test the performance of the RetinaNet. However, given that only 

a single primary nodule was annotated on each scan in the UCLA dataset, we could not try 

to detect all nodules and calculate AP because we would not have the reference bounding 

boxes for all nodules. Therefore, we were only able to select one primary detected bounding 

box for each scan to make comparisons. For each of the 149 diagnostic CTs, the nodule 

detector performed detection on every slice and only the ROI (or ROIs) with the highest 

prediction score was (were) retained. Each retained ROI was manually compared to the 

primary lesion identified by the radiologist. This manual process was done by a research 

assistant with three years of experience in identifying pulmonary nodules in CT images 

(YL). The total number of identified nodules with the highest prediction score and the 

number of those matched with the primary lesions are reported in section 3.2.

2.7 Implementation details

The EDICNet was implemented in Python 3.5 using PyTorch (version 0.4.1) [14]. The 

RetinaNet model was trained on an Amazon Web Service (AWS) g3s.xlarge instance with an 
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NVIDIA Tesla M60 GPU with 8GB onboard memory. Training 50 epochs took 20 hours. 

The HSCNN model was trained on the same AWS server. The training took approximately 2 

hours for 200 epochs for a single fold. We used a single NVIDIA Tesla V100 GPU from an 

NVIDIA DGX-1 server with 32GB onboard GPU memory to test the nodule detector using 

the UCLA dataset.

3. RESULTS

3.1 Model training

When training the RetinaNet, a total of 7,607 slices (containing 689 nodules with 4,234 

nodule annotations) were used for training and the rest of the 2,323 slices (containing 180 

nodules with 1,454 nodule annotations) for validation. The AP was 0.24 after 50 epochs 

(190,150 iterations). Figure 5 provides examples of detection results from the validation set.

For the HSCNN, we used a total of 149 nodule-centered patches with data augmentation. We 

trained 200 epochs for each fold. The mean AUC for the high-level task achieved 0.89. The 

mean accuracy (prediction threshold at 0.5) for the high-level task achieved 0.74. For the 

three semantic low-level tasks, the mean accuracy for mean diameter, consistency, and 

margin were 0.59, 0.74, and 0.75 respectively. Table 3 summarizes details of AUCs and 

accuracies in each fold.

3.2 External validation for RetinaNet

The trained nodule detector was validated on 149 UCLA scans. As described in section 2.6, 

for each scan only detections with the highest prediction score were included. Among the 

149 scans, the nodule detector detected one ROI for 148 scans and did not detect any ROI 

for one scan. Of the 148 detected ROIs, 59 were primary nodules identified by the 

radiologist, 15 were other nodules that were not identified by the radiologist, and the 

remaining 74 ROIs were not pulmonary nodules. Most of the non-nodule detections were 

either bright bone structures with higher intensity than the background pixels or airway and 

vessel structures that looked like nodules on a single slice. Figure 6 shows some of the 

detections from the UCLA dataset.

4. DISCUSSION

We presented an end-to-end pipeline consisting of two modules: a nodule detection module 

based on RetinaNet and a malignancy classification module based on HSCNN. Our work 

has the following contributions:

1. RetinaNet can be adapted for pulmonary nodule detection in CT but requires 

refinement (i.e., lung segmentation) to improve true positive detections.

2. Along with pulmonary nodule malignancy classification result, semantic features 

can also be generated simultaneously to help radiologists better understand the 

model’s prediction.
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3. Our pipeline provides a tool for radiologists to automate the identification of the 

most important lesion in a CT scan and generates semantic features that could be 

used as the basis of a radiology report.

Pulmonary nodule detection and classification have been widely investigated given the 

availability of publicly available large datasets (i.e., LIDC-IDRI, NLST). With the 

application of convolutional neural networks (CNNs) to medical images, faster networks for 

nodule detection have been proposed and refined resulting in higher sensitivity and lower 

false positive rate per slice [5, 15–19]. A prior study that utilized RetinaNet [15] using 

patches from the LIDC-IDRI dataset reported AP at an IoU of 0.1. They argued that setting 

the threshold at 0.1 “respects the clinical need for coarse localization”. We also investigated 

the impact of IoU on AP by setting the IoU threshold to 0.1. In our experiment, AP 

increased from 0.24 (IoU=0.5) to 0.27 after 25 epochs (95,075 iterations). But for our nodule 

detector module, we used a higher IoU threshold at 0.5 because we would like to be more 

stringent about the definition of true positives. Moreover, while the nodule detector is able to 

detect the primary nodule on roughly 40% (59/149) of the scans in the external validation 

set, the detected ROIs on almost half (74/149) of the CT scans are non-nodule structures. 

This suggests that without lung segmentation the model is likely to be affected by bright 

bone structures, and without learning from consecutive slices the model is unable to 

differentiate nodule-like structures from real nodules.

Malignancy classification task of pulmonary nodules has also benefited from the expansion 

of deep learning-based methods and has demonstrated promising results [5, 8, 19–24]. 

However, one critical issue of the nodule classification task is the difficulty to obtain datasets 

with biopsy- or clinically-proven diagnostic labels for lesions. The majority of the published 

studies used public datasets that lack appropriate diagnostic labels. The LIDC-IDRI dataset 

only provides the likelihood of malignancy serving as the proxy for truth, whereas the NLST 

dataset only provides a patient-level diagnosis. The UCLA dataset used in our study has 

lesion-level biopsy- or clinically-proven diagnosis related to lung cancer, thus, our model 

can show more clinical relevance compared to other models that used datasets with weaker 

diagnostic labels.

We also investigated the effect of resampling the CT slices along the x- and y-axes prior to 

training the nodule detector, making both x and y spacing 1 mm. However, the performance 

of the detector model with resampled training data did not perform as well as without 

resampling. One possible explanation is that the nodule became smaller on resampled slices 

as the dimensions of the slices ranged from 236 × 236 pixels to 500 × 500 pixels after 

resampling (originally 512 × 512 pixels), which increased the difficulty for the detector to 

locate nodules in general. Nevertheless, we resampled the CT scans from the UCLA dataset 

to [1, 1, 1] mm to train the HSCNN model because when the HSCNN model was 

interpreting both high-level (malignant/benign) and low-level (semantic features) tasks, we 

wanted to provide the network with as much information about the nodule as possible. The 

semantic labels in the UCLA dataset were multi-class labels when they were annotated. We 

grouped some of them to avoid sparse data issue in some subclasses; for instance, there was 

only 14 out of 149 pure ground-glass nodules. The performance of the mean diameter task 
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fell behind other tasks, which suggests that the 3D volume of a nodule could not be well 

represented by the nodule mean diameter obtained from a 2D CT image plane.

Our approach has limitations that are being addressed in ongoing work. First, the nodule 

detector was not trained under the assumption that the same nodule appearing on multiple 

slices was one nodule. For radiologists, nodule detection is a 3D task. We intend to modify 

RetinaNet to support 3D volumes as inputs, incorporating nodule information between slices 

to further reduce false positives. Second, we did not perform lung segmentation prior to 

inputting the CT image into the nodule detector. Error analysis of our current 

implementation revealed a number of false positive findings (non-lung structures) such as 

bright bone structures in the chest wall that were detected as nodules. We believe these false 

positives will be reduced with appropriate preprocessing. Third, our external validation of 

the nodule detector was limited to a dataset in which only a single primary nodule was 

annotated by the radiologist per scan. We assumed that the detected ROI from one scan with 

the highest prediction score was the one that the radiologist deemed as the most critical 

pulmonary lesion for a patient. Fourth, the nodule detector was trained on both low-dose and 

diagnostic CT scans and was externally validated using diagnostic CT scans. Evaluating the 

nodule detector on LDCT scans are necessary for future work and may demonstrate 

improved performance. Finally, given our interest in incorporating semantic features into our 

model, we trained the HSCNN with a small dataset from a single institution. These features 

were only annotated by a single radiologist, and we have yet to perform an external 

validation.

5. CONCLUSIONS

EDICNet is an end-to-end approach for localizing pulmonary nodules on CT studies, 

predicting whether the nodule is benign or malignant, and generating semantic labels for 

each nodule that help radiologists interpret the results. Our objective is to develop not only a 

reliable approach for nodule detection and classification but also provide insights about why 

the model believes a nodule is benign or malignant through semantic features. While the 

performance of our model has underperformed other reported models, we believe that 

additional improvements to our approach and the use of larger, more diverse datasets could 

overcome some of the reported issues.
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Figure 1. 
The training and inference pipelines for End-to-end Detection and Interpretable 

Classification Network (EDICNet). CT: computed tomography; 3D: 3-dimensional; 

HSCNN: hierarchical semantic convolutional neural network; ROI: region of interest.
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Figure 2. 
Inclusion of CT slices from the LIDC-IDRI dataset. CT: computed tomography.
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Figure 3. 
The RetinaNet network architecture. ResNet: residual network.
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Figure 4. 
The network structure of the hierarchical semantic convolutional neural network (HSCNN).
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Figure 5. 
Visualization of nodule detection results in the validation set of LIDC-IDRI with a 

prediction score greater than 0.5. A positive slice is a slice of CT image with at least one 

nodule whereas a negative slice is a slice without nodule. TP is defined as the network 

correctly detecting the nodule on a positive slice; FP is defined as the network detecting a 

non-nodule structure on a positive or negative slice; TN is defined as the network detecting 

nothing on a negative slice; FN is defined as the network failing to detect any nodule on a 

positive slice. The first (a1 and a2), second (b1 and b2), third (c1 and c2), and fourth (d1 and 

d2) columns show TP, FP, TN, and FN examples, respectively. The white rectangles are 

bounding boxes generated by the nodule detector and the red circles denote nodules that the 

nodule detector failed to detect. Note that the definitions for TP, FP, TN, and FN used here 

are different from the definitions used to calculate the AP. TP: true positive, FP: false 

positive, TN: true negative, FN: false negative; AP: average precision.
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Figure 6. 
Visualization of detected ROIs in the UCLA dataset using the trained nodule detector. The 

bounding boxes in the first row show four pulmonary nodules in CT scans, including 

primary nodules identified by the radiologist and nodules that were not annotated by the 

radiologist. The bottom row shows four ROIs that are not pulmonary nodules. They are 

either bright bone structures or airway/vessel structures that looked like nodules. ROI: region 

of interest, CT: computed tomography.
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Table 1.

Demographic and clinical information of the UCLA cohort, 2003–2014 (N=149).

Variable Category No. (%)

Age at scan (years) <50 4 (3)

50–70 84 (56)

>70 61 (41)

Sex Female 90 (60)

Male 59 (40)

Smoking status Ever smoker 118 (79)

Never smoker 31 (21)

Lesion mean diameter (mm) ≤10 53 (36)

>10 and ≤20 72 (48)

>20 24 (16)

Lesion consistency Solid 97 (65)

Part-solid 38 (26)

Pure ground-glass (non-solid) 14 (9)

Lesion margin Smooth 36 (24)

Lobulated 49 (33)

Serrated/Spiculated 47 (32)

Poorly defined 17 (11)

Lesion diagnosis Benign 52 (35)

Malignant 97 (65)

Mode of diagnosis Clinical 31 (21)

FNA 74 (49)

Surgery 42 (28)

FOB 1 (1)

 Pathology 1 (1)

FNA: fine needle aspiration, FOB: fiberoptic bronchoscopy.
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Table 2.

Summary of coding for HSCNN.

Label Category Coding

Mean diameter (mm) ≤10 0

> 10 and ≤ 20 1

> 20 2

Consistency Solid 1

Part-solid 0

Pure ground-glass (non-solid) 0

Margin Smooth 0

Lobulated 1

Serrated/Spiculated 1

Poorly defined 1

Diagnosis Benign 0

 Malignant 1

HSCNN: hierarchical semantic convolutional neural network.
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Table 3.

Summary of AUCs and accuracies in each fold for all tasks.

Label Metric Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean

Mean diameter Accuracy 0.77 0.71 0.76 0.41 0.31 0.59

Consistency Accuracy 0.84 0.74 0.83 0.76 0.52 0.74

Margin Accuracy 0.74 0.81 0.72 0.69 0.79 0.75

Diagnosis Accuracy 0.74 0.68 0.76 0.76 0.76 0.74

AUC 0.88 0.98 0.85 0.82 0.89 0.89

AUC: area under the receiver operating characteristic curve.
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