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ABSTRACT   

Quantitative imaging of retinal arteries and veins offers unique insights into cardiovascular and microvascular diseases 

but is laborious. We developed and tested a method to automatically identify arterial/venular (A/V) vessels in digital 

retinal images in conjunction with a semi-automatic segmentation technique. Methods of segmentation of blood vessels 

and the optic disc (OD) was performed as previously described, using a dataset of 10 colour fundus images. Using the 

OD as a reference a graph representation was constructed using the vessel skeletons. Vessel bifurcations and crossings 

were identified based on direction and local geometry, and A/V classification was carried out by fuzzy logic 

classification using colour information. Results were compared with expert classification. Preliminary results showed an 

average true positive rate for arteries of TPRA=0.83 and TPRV=0.74 for veins. With an overall average of TPRall=0.79 for 

both vessel type jointly. Computer-based systems can assess local and global aspects of the retinal microvascular 

architecture, geometry and topology. Automated A/V classification will facilitate efficient cost-effective assessment of 

clinical images at scale. 
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1. INTRODUCTION  

 
The retina is one place in the human body where an almost entire network of blood vessels can be viewed directly in 

vivo and examined for pathological changes. By using an ophthalmoscope to look through the pupil, one can see a 

magnified image of the retina and the blood vessels that course across its anterior surface. 

Blood vessel morphology can be an important indicator for many diseases such as diabetes, hypertension and 

arteriosclerosis. Arteries and veins have many observable features such as diameter, length, branching angle, colour and 

tortuosity. The measurement of geometrical or topological changes can be applied to a variety of clinical studies: 

screening, diagnosis and evaluation of treatment [1-3]. 

The retina is perfused by the central retinal artery which enters the eye in, or beside the optic nerve and branches in the 

optic disc generating arterial/arteriolar trees that supply the capillaries of the retina. The retinal venules/veins collect the 

blood from the capillaries and merge into a single central retinal vein that exits the eye through the optic nerve. Both the 

arterial and venous vessels form binary trees which are relatively random in structure. It is observed that artery-artery 

and vein-vein crossing seldom, if ever, occur. Additionally, arteries look brighter and thinner than corresponding veins. 

Many methods for artery/vein (A/V) classification have been published [4-7]. They differ mainly in the way that they use 

local information (colour, vessel size, etc.) and global structural/network information. In this work we report a 

methodology that combines structural information with graph representation and features based on colour to classify 

vessel trees using fuzzy c-means. The method is preliminary and has been applied and tested using a local database of 10 

fundus colour images which have been semi-automatically segmented, and manually marked by one of the authors for 

evaluation purposes. 

Twelfth International Conference on Machine Vision (ICMV 2019), edited by Wolfgang Osten,
Dmitry Nikolaev, Jianhong Zhou, Proc. of SPIE Vol. 11433, 114331A · © 2020 SPIE

CCC code: 0277-786X/20/$21 · doi: 10.1117/12.2557519

Proc. of SPIE Vol. 11433  114331A-1
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 17 Apr 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



 

 
 

 

2. METHOD 

 
The method involves three main tasks: i) segmenting blood vessels and the optic disc (OD), erasing the optic disc area 

from the binary image of vessels; separating the resultant binary image into connected objects (forests); for every forest 

in the image: thinning the segmented blood vessels to produce their skeletons and detecting terminals and branching 

points in the skeleton; ii) correcting the crossing points in the skeleton by generating a graph representation of the 

network; and extracting the vessel trees;  iii)  computing the fuzzy c-means of the colour features of each forest in a 

cascade fashion obtaining two classes, P and Q, until all forest are classified. Finally vessel trees are classified as A/V 

from classes P and Q based on the values of the average cluster centres. Figure 1 depicts a diagram of the method. 

 

 

 
 

Figure 1.  Diagram of the stages for the A/V classification method. 

 

The input image for the method is the colour image, the segmented blood vessels and the localisation of the OD, which 

are derived from the colour image, as shown in Figure 2. 

 

 

 

Figure 2.   a) Colour image, b) segmented blood vessels and c) localisation of the optic disc. 
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2.1 Derivation of the vascular skeletons 

2.1.1 Binary segmentation of vessels and OD 

Blood vessels are segmented and the centre of the OD is localised and used as a reference to establish binary rooted trees 

[8,9]. For each image, a connected forest with one, two or more rooted trees, are labelled and analysed independently 

(Figure 3(a)).  

 

2.1.2 Extraction of vascular skeletons 

 
For each connected forest, the skeletons of the vascular trees are obtained by a thinning process where pixels are 

eliminated from the boundaries towards the centre without destroying connectivity [10]. From the skeleton lines, 

terminal and branching points are identified and marked. Pixels with only one neighbour in a 3x3 neighbourhood in the 

skeleton are labelled as terminal points, and pixels with 3 neighbours are labelled as bifurcation points. Bifurcation 

points are labelled as –r, where r is the radius of the maximum circle centred on that point that fits inside the boundary of 

the segmented vessel, see Figure 3(b). Three different configurations of circles exist: single, two intersecting and three 

intersecting circles.  Some of these configurations will be used during the task of correction of crossing points. 

 

 

 
Figure 3.  Identification of terminal, branching and crossing points. a) Binary image is separated into connected objects (forests), with roots. One, two, 

three or more rooted trees in each forest, b) Using the skeleton, terminal and branching points are identified and circles are marked at bifurcations as: 

single circle, two, or three intersecting circles. c) At first, only two intersecting circles are reconised as crossings, the skeleton is corrected and marked 
as a crossing, using a variable size window, the bounding box that includes the area of both circles. 

 

2.2 Extraction of vascular trees  

2.2.1 Graph representation 

 
Using the segments of the skeletons as edges and the terminal and bifurcating points as nodes, a graph is built 

(Figure 4(a)). A connectivity matrix is defined which contains the connectivity information between nodes. The 

degree of a node (number of edges connected to it) indicates its topology: 1 = terminal; 3 = bifurcation; 4 = crossing 

(Figure 4(b)).  
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Figure 4.  Graph representation and identification of crossing points. a) Vessel segments are edges and terminal or branching points are nodes. b) 

Adjacency matrix between nodes, the sum of the elementes per row identifies the degree of the node. c) Identifying a crossing point, where OD 

represents the optic disc, r is the node being tested as “proper/improper”, ni are the adjacent nodes to r, and xi are the respective distances from the 

nodes to the centre of the OD. 

 

2.2.2 Modification of skeleton at crossing points 

 
Using only the two intersecting circles identified during the task described in section 2.1.2 (Figure 3(b)), a window of a 

variable size is defined as the bounding box around its area (Figure 3(c)); if the skeleton intersects the window at four 

points, this node is defined as a crossing point and a node of degree 4 is updated in the graph. This process fails to 

identify crossings when two vessels cross at a very acute angle so that the two circles do not intersect, given adjacent 

single circles. Therefore these single circles are not always “proper” bifurcation points and can give rise to errors in node 

classification.  

 

Since the rooted trees leave the OD and branch in the direction of the periphery of the retina, a “proper” bifurcation will 

diverge in a distal rather than a proximal direction. Therefore, we used the center of the OD as a reference location and 

for every node of degree 3, we check if it is branching away from the OD (a “proper” node) or not (an “improper” node) 

(Figure 4(c)). For each node r we calculate the distances of the three connected nodes from the OD.  

 

di = xni – xr              (1) 
 

If two, out of three, di are negative then r is an “improper” node and should be joined with the node with a positive di. 

The skeleton and the adjacency matrix are updated accordingly. Figure 5(a) shows the final version of the skeleton 

marked as a forest with three rooted trees, where terminals are marked in blue, branches in red and crossings points in 

green.  

 
2.2.3 Extraction of binary trees 

 

Finally, we remove the nodes of degree 4 from the graph and update the adjacency matrix accordingly to separate the 

rooted tree graphs, see Figure 5(b). 
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Figure 5.  Forests with three rooted trees. a) Final tree skeleton marked based on the information of the graph, terminal points in blue, branching 

points in red and crossing point in green, and b) by eliminating the nodes of degree 4, the binary trees can be extracted. 

 

2.3 A/V classification 

The classification process runs in the following fashion: first all two rooted forests are classified into two classes P or Q, 

using fuzzy c-means of a local feature vector. Since we know a priori that arteries only cross veins, the two trees must be 

of different classes. Then three or more rooted forests are classified knowing that a tree can only cross a tree of a 

different class to itself. All cluster centers obtained by every forest classification are averaged to get a unique cluster 

centre per class P and Q. Finally all single rooted trees are classified depending on the distance of the mean of their 

feature vector to that of the nearest average cluster centre. 

Some important features from the colour fundus images are taken into account when defining the feature vector: first, as 

the wavelength of the green light is largely absorbed by blood but is partially reflected by the retinal pigmentation, green 

light provides excellent contrast and the best overall view of the fundus and the retinal vasculature. Second, in red light, 

retinal vessels look lighter and are less obvious, with the arteries containing oxygenated haemoglobin appearing lighter 

compared to the veins which contain ∼40% de-oxygenated haemoglobin [11]. Blue light provides limited additional 

information to red and green. The fundus images are acquired in RGB colour mode and the feature vector used herein is 

composed of the red (R) and the green (G) channels. 

 

2.3.1 Fuzzy c-means classification into classes P and Q 

 
The information in the R and G channels is extracted for all of the pixels along the skeleton line of the root and first 

branch vessels (RFB) for each root in the connected forest.  The Fuzzy c-means technique is based on the minimization 

of the objective function: 

   

where P is # of data points. N is the # of clusters. m controls the degree of fuzzy overlap. vi is the ith data point. cj is the 

centre of the jth cluster. μij is the degree of membership of vj in the jth cluster. Figure 6(a) shows the plot of G mean 

value versus R mean value, with pixel membership of classes P (magenta) and Q (green) illustrated, for m = 8. 
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Figure 6.  Fuzzy c-means of a two rooted forest. a) Cluster data with cluster centres, features used: green (x-axis) and red (y-axis) channels, for m=8; 

b) pixels membership for each class P or Q using only the pixels of the skeleton that belong to the root and first branches of each tree, and c) final 
classification of trees based on the ratio of P and Q for each tree. 

 

For each two rooted connected forest the membership of classes P and Q is computed. Figure 6(b) shows the respective 

membership class for every pixel of the RFB section of the rooted trees. As it can be seen from Figure 6(b), each RFB 

section can have pixels that belong to one class or the other, but we know that both trees should be of different class 

(since they cross). To classify each RFB section of tree as belonging to a single class, a proportion for individual 

bifurcation is computed as follows: 

                                                                       (3) 

 

where i ={1,2}, Ni = the number of pixels classified as P plus number of pixels classified as Q for the RFB section of the 

tree i; Ti = proportion of pixels of class P in the RFB section of the tree i; the maximum proportion between two RFB 

section of trees is assigned as class P and otherwise as class Q. Figure 6 (c ) shows the final P/Q classification for both 

complete trees after applying the proportion rule (Eq. 3) and extending the RFB classification to the rest of the tree.  

 

After classifying all connected forests of two rooted trees, a similar idea is applied to three or more rooted trees as long 

as the classification is made with pairs of intersecting trees. An average of all cluster centers is computed. Finally all 

single rooted trees are classified depending on the distance of the mean of their feature vector to that of the nearest 

average cluster centres. 

 
2.3.2 Classification of P and Q into A and V 

 
The P and Q classifications are based only on relative distances within the feature vectors in the image; No prior 

knowledge is used in the P/Q classification. Assigning P and Q to A (arteries) and V (veins) is done at the very last step 

of the process. Using prior knowledge that veins will have a lower intensity than arteries, the class cluster nearest to the 

origin of the G mean vs. R mean plot is assigned to be V, and the class cluster furthest from the origin is assigned to be 

A. 

 

3.  RESULTS 

 
Figure 7 shows the results using a database of 10 retinal colour images. The first column of Figure 7 corresponds to the 

input colour image, the second classification into classes P (magenta) and Q (green), the third to the classification into 

classes A (red) and V (blue); and the last column represents the manual classification made by one of the authors, where 
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A=red and V=blue. The rows of Figure 7 from top to bottom correspond to the best, medium and worst performance in 

the 10 images. 

 

 
Figure 7.  Examples of A/V classification results. First column: colour image; second column: classes P and Q; third column: classes A and V using 

the algorithm; and final column: the hand-classified A and V. From top to bottom: best classification performance TPRA=0.92 (Image 2 from Table 1); 

TPRV=0.92; medium TPRA=0.82, TPRV=0.81 (Image 8 from Table 1); and worst TPRA=0.66; TPRV=0.56 (Image 4 from Table 1). 

 

Performance was measured by computing the true positive rate for arteries and veins compared to that of the manual 

classification, which was considered ground truth (GT). For each centerline pixel from the complete trees, the true 

positive rate for arteries (TPRA) is defined as the ratio of correctly classified arterial pixels to all centerline pixels 

labelled as artery in the GT. The true positive rate for veinular (TPRV) is defined as the ratio of correctly classified vein 

pixels to all centerline pixels labelled as vein in the GT. The overall TPRall is the ratio of all centerline pixels correctly 

classified (arteries and veins) to all centerline pixels labelled as artery or vein in GT. Table 1, summarises the results for 

each of the 10 images tested. 

 

Table 1. True positive rate for arteries (TPRA), for  veins (TPRV) and the overall values for both (TPRall). 

The values in bold correspond to the images in Figure 7. 
 

Image TPRA TPRV TPRall 
1 0.80 0.35 0.62 

2 0.92 0.92 0.92 

3 0.76 0.94 0.85 

4 0.66 0.56 0.61 

5 0.93 0.63 0.79 

6 0.96 0.53 0.75 

7 0.71 0.93 0.81 

8 0.82 0.81 0.82 

9 0.80 0.93 0.86 

10 0.93 0.82 0.88 

Average 0.83 0.74 0.79 
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4. CONCLUSIONS 

 
We have presented an automatic A/V classification method based on global analysis of the vessel network together with 

the local colour information, using a fuzzy c-means classification from already extracted binary tree graphs, integrating 

the properties of connectivity as well as the physiological characteristic that arteries and veins ramify in a distal direction 

from the OD. Preliminary results showed an average of true positive rates TPRA=0.83 for arteries and TPRV=0.74 for 

veins. With an overall average of TPRall=0.79 for both vessel types jointly. The main problem accounting for suboptimal 

values for TPR is the classification of single rooted trees, as seen in the second and third rows of Figure 7.  Other authors 

have reported different metrics for evaluation, they have used different databases as well as different GTs [4-6]. Thus, 

the comparison of our results with others is not a straight forward task. Future work will be focused on improving the 

single rooted tree classification, testing the algorithm performance with a local larger image database as well as on public 

databases for comparisons. Computer-based systems can assess local and global aspects of the retinal microvascular 

architecture, geometry and topology. Automated A/V classification will facilitate efficient cost-effective assessment of 

clinical images at scale. 
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