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ABSTRACT

Medulloblastoma (MB) is the most common malignant brain tumor in childhood. The diagnosis is generally based
on the microscopic evaluation of histopathological tissue slides. However, visual-only assessment of histopatholog-
ical patterns is a tedious and time-consuming task and is also affected by observer variability. Hence, automated
MB tumor classification could assist pathologists by promoting consistency and robust quantification. Recently,
convolutional neural networks (CNNs) have been proposed for this task, while transfer learning has shown
promising results. In this work, we propose an end-to-end MB tumor classification and explore transfer learning
with various input sizes and matching network dimensions. We focus on differentiating between the histological
subtypes classic and desmoplastic/nodular. For this purpose, we systematically evaluate recently proposed Effi-
cientNets, which uniformly scale all dimensions of a CNN. Using a data set with 161 cases, we demonstrate that
pre-trained EfficientNets with larger input resolutions lead to significant performance improvements compared
to commonly used pre-trained CNN architectures. Also, we highlight the importance of transfer learning, when
using such large architectures. Overall, our best performing method achieves an F1-Score of 80.1%.

Keywords: Transfer learning, convolutional neural networks, digital pathology, histopathology, image analysis,
medulloblastoma

1. INTRODUCTION

Medulloblastoma (MB) is the most common malignant central nervous system tumor in childhood and consti-
tutes a heterogeneous disease that can be divided in four main molecular subgroups, which are associated with
different histopathological and clinical features.1 For establishing a diagnosis, pathologists assess microscopic
histopathology slides or high-resolution images of digitized images and follow human-based decision rules. The
histological subtypes of MB, which differ both in their appearance under the microscope and in their molecu-
lar tissue properties, impact the patient prognosis and the decision on the type of therapy.1 According to the
WHO1,2 MB can be dived into four histological subtypes, classic type (CMB), desmoplastic/nodular type (DN),
MB with extensive nodularity (MBEN) and large cell anaplastic MB (LCA). However, visual-only assessment
of histopathology patterns requires expert knowledge and is a time-consuming task, while being affected by ob-
server variability.3 Hence, a decision support tool for pathologists that helps to classify the different histological
subtypes would promote consistency and objective inter-observer agreement.
Recent studies have shown the feasibility of discriminating between different MB subtypes using feature extrac-
tion methods on image regions.4–7 However, manual feature engineering is task-dependent and requires careful
adaptation to the specific problem and data set.8 In contrast to that, the digitization of histology slides, e.g.
the availability of high-resolution whole slide images (WSI) and the recent success of deep learning for various
medical applications motivated end-to-end deep learning for digital pathology.9–11 Notably, convolutional neural
networks (CNNs) outperform manual feature engineering on a variety of digital pathology tasks.8,11–14 However,
training these models typically requires thousands of training examples, while annotated data is highly limited,
especially for rare entities like pediatric brain tumors. A common approach to overcome limited data in digital
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Figure 1. Our models differentiate end-to-end the histological subtypes classic (CMB) and desmoplastic/nodular (DN).
An image tile with dimensions h × w is cropped from the entire WSI. For classification, the tile is downsampled to the
input resolution hp × wp of a pre-trained network.

Figure 2. Two example tiles for each of the histological subtypes classic type (CMB) and desmoplastic/nodular type (DN);
CMB is shown on the left side and DN is shown on the right side.

pathology is transfer learning.8,11,13 Here, a network pre-trained on a different domain with a large annotated
data set is transferred to the task at hand and optimized on few available annotated images. While different
transfer learning strategies exist, a recent study demonstrates that fine-tuning a pre-trained network leads to the
best results across various data sets.15 These networks, optimized on the natural image domain, mainly use a
fixed input resolution, e.g. of 224×224 pixels,16 which induces a limiting factor for the extremely high-resolution
images of digitized histology slides.
Recently, EfficientNets17 have been proposed which uniformly scale all dimensions of a CNN, specifically input
resolution, network depth, and width. This novel architecture design achieves top-performance on several bench-
mark data sets while using significantly fewer parameters than competitive architectures. A key advantage of
pre-trained EfficientNets is transfer learning with larger input sizes and matching network dimensions.
In this work, we provide a systematic evaluation of pre-trained EfficientNets with different input resolutions
for the challenging task of MB tumor classification. We use a data set with WSI from 161 different patients
and focus on the task of differentiating between types CMB and DN. Overall, the contribution of this study is
threefold: (1) We systematically evaluate pre-trained EfficientNets for MB tumor classification and assess the
impact of several different input resolutions. (2) We reveal that pre-trained EfficientNets with an increased input
size significantly outperform commonly used pre-trained networks such as VGG16, AlexNet, or ResNet50. (3)
We demonstrate the importance of pre-training in combination with large-scale EfficientNets.

2. METHODS AND MATERIALS

2.1 Data Set

Our data set comes from 12 clinical sites in Germany and consists of haematoxylin & eosin stained images from
161 patients (103 cases CMB and 58 DN) scanned at magnification 200x. Informed consent was obtained for all
patients in accordance with local institutional guidelines. For data set labeling, cancerous regions in the WSI are
labeled as CMB or DN by a neuropathologist. Of note, each WSI has one or more cancers regions. To generate
our data set, we consider image tiles with a size of 2000 × 2000 pixels cropped from the manually annotated
cancerous regions of the WSI. In total, we obtain 2769 image tiles from 161 patients with the corresponding label
CMB or DN, example tiles for the two classes are shown in Figure 2.



Table 1. Results for all experiments given in percent. Sensitivity and specificity are reported with respect to classifying
an image as classic type. 95 % CIs are provided in brackets. The best performing method is shown in bold.

Input Size AUC Sensitivity Specificity F1-Score
AlexNet 224 × 224 69.3(66 − 73) 77.0(74 − 80) 52.1(46 − 58) 71(68 − 73)
VGG-16 256 × 256 78.2(75 − 81) 73.3(71 − 76) 65.6(60 − 70) 72.2(70 − 75)
ResNet50 224 × 224 77.3(74 − 80) 80.3(77 − 83) 60.2(55 − 65) 75.1(73 − 78)
Densenet121 224 × 224 78.2(75 − 81) 79.5(77 − 82) 61.8(57 − 67) 75.2(73 − 78)
EfficientNet-B0 224 × 224 82.6(80 − 85) 76.3(73 − 79) 71.9(66 − 77) 76.0(74 − 78)
EfficientNet-B1 240 × 240 82.5(80 − 85) 78.7(76 − 81) 68.7(64 − 74) 76.6(74 − 79)
EfficientNet-B2 260 × 260 83.6(81 − 86) 80.0(76 − 82) 71.6(66 − 76) 77.7(75 − 80)
EfficientNet-B3 300 × 300 85.5(82 − 87) 81.3(78 − 84) 72.2(67 − 77) 79.3(77 − 82)
EfficientNet-B4 380 × 380 85.5(83 − 88) 80.3(78 − 88) 75.3(70 − 80)75.3(70 − 80)75.3(70 − 80) 79.6(77 − 82)
EfficientNet-B5 456 × 456 85.8(83 − 88)85.8(83 − 88)85.8(83 − 88) 83.7(81 − 86)83.7(81 − 86)83.7(81 − 86) 69.4(64 − 74) 80.1(78 − 82)80.1(78 − 82)80.1(78 − 82)

2.2 Deep Learning Methods

We consider various CNNs, pre-trained on ImageNet, with different input resolutions for MB tumor classification.
Figure 1 describes our overall pipeline for classification. As a benchmark, we use established pre-trained CNNs,
AlexNet,18 VGG-16,19 ResNet50,20 and Densenet12121 that are widely used in digital pathology.8,9, 11,13,22 Next,
we consider recently proposed EfficientNets17 which achieve state-of-the-art performance on several benchmark
data sets, while having significantly fewer parameters than comparable models. The baseline of this architecture,
called EfficientNet-B0, is optimized based on a multi-objective neural architecture search using the ImageNet
data set. A special property of EfficientNet’s concept is the compound scaling method, which uniformly scales
network width, depth, and input resolution starting with the baseline EfficientNet-B0. The compound scaling is
inspired by the idea that a larger input also needs a deeper and wider network, such that features can be learned
effectively from the input. Using this compound scaling method, the authors of this network propose a set of
EfficientNets with increasing scales of the network dimensions and input resolutions. In this work, we consider
EfficientNet-B0 up to EfficientNet-B5, to systematically evaluate the impact of increased input resolution for
MB tumor classification. Note, the corresponding input resolutions are shown in Table 1.
For the evaluation of our models, we randomly split our data based on patients and consider 10-fold cross-
validation. We equally split the data into a test and validation subset for each fold. Note, the subsets consist
of five and two cases for type classic and desmoplastic/nodular, respectively. As the classification is highly
imbalanced, we weight the loss of the individual classes inversely proportional to samples of each class.
Given an image tile with a resolution of 2000 × 2000, we downsample the tile to the corresponding network
input size. To counter stain variation, we employ extensive color augmentation during training, using brightness,
contrast, saturation, and hue augmentation.23 Also, we use random horizontal and vertical flipping of the
images as an additional data augmentation strategy. Note, we evaluate our models based on tile classification
performance.

3. RESULTS

We report F1-Score, sensitivity, specificity and the area under the receiver operating curve (AUC) with 95 %
confidence intervals (CI) using bias-corrected and accelerated bootstrapping with nCI = 10 000 bootstrap samples
in Table 1. Note, we do not consider accuracy due to our imbalanced data set. For testing of significance, we use
a permutation test with nP = 10 000 samples and a significance level of α = 5%.24 Overall, EfficientNet-B5 with
the largest input resolution of 456× 456 pixels performs best and AlexNet with an input resolution of 224× 224
pixels performs worst. Moreover, we evaluate the impact of pre-training in Figure 3 using a receiver operating
characteristic (ROC) curve. In this regard, pre-training leads to significant performance improvements, especially
for EfficientNet-B5. Also, when no pre-training is used EfficientNet-B0 and EfficientNet-B5 perform similar.

4. DISCUSSION

We consider the task of MB tumor classification, which could assist pathologists by accelerating the visual as-
sessment and reducing observer variability. While pre-trained CNNs with a small fixed input resolution are
commonly used in digital pathology, we evaluate pre-trained CNNs with different input resolutions and scales.
We focus on differentiating between the histological subtypes DN and CMB using image tiles extracted from the
WSIs.
Our results in Table 1 show steady performance improvements when novel architecture design principles and
increased input resolutions are combined. Considering the different architectures shows that classical CNNs such
as AlexNet and VGG-16 perform worse. Also, there is no significant difference between the F1-Score of ResNet,
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Figure 3. ROC curve for pre-trained and non pre-trained EfficientNet-B0 and EfficientNet-B5, shown for the classification
of MB tumor type.

Densenet, and EfficientNet-B0 using a fixed input resolution of 224 × 224. This indicates that performance is
limited due to the input resolution and simply increasing network width, depth, or architecture concept does not
lead to significant performance gains. However, following the principle of EfficientNet and increasing network size
and input resolution leads to significant performance improvements. In particular, using the largest input reso-
lution of 465 × 456 with EfficientNet-B5 performs best with an F1-Score of 80.1% and significantly outperforms
established pre-trained CNNs as well as EfficientNet-B0. This demonstrates that the concept of EfficientNet,
e.g. uniformly scaling network width, depth, and input resolution allows for improved MB classification. Also,
it has been shown that EfficientNet outperforms classical CNNs on a variety of transfer learning tasks,17 our
results confirm this finding and highlight that the concept of EfficientNet also transfers well to MB classification,
outperforming classical CNNs.
We evaluate the importance of pre-training in Figure 3. Notably, when using no pre-training EfficientNet-B0
and EfficientNet-B5 perform similar and the larger input resolution does not lead to performance improve-
ments. However, when pre-training is used, EfficientNet-B5 significantly outperforms EfficientNet-B0. This
demonstrates the importance of pre-training when using such large-scale architectures, which may suffer from an
increased risk of overfitting the training data, especially when training data is highly limited such as in the case
of MB classification. Note, EfficientNet is pre-trained on natural images from the ImageNet challenge. Thus,
pre-training EfficientNets on large-scale histopathology image data sets even from different organs or different
diagnostics tasks might allow for further performance improvements, taking into account the findings of a pre-
vious study on MB classification and transfer learning.4 Moreover, our study focuses on classifying image tiles
pre-extracted from WSIs into the two classes CMB or DN. Hence, the classification of the entire WSI remains
an open challenge that could be addressed by combining our findings with previous works on WSI classification,
where a CNN, such as ResNet50, VGG-16 or inception-v3 is applied to the WSI in a sliding window fashion.25,26

In this regard, using a large-scale EfficientNet instead of classical CNNs for tile feature extraction might be
a promising approach. Overall, our results provide a good starting point to further improve tile classification
performance, by using large scale pre-trained EfficientNets.



5. CONCLUSION

In this work, we address the task of MB tumor classification and highlight the advantage of larger input reso-
lutions and novel architecture design principles combined with transfer learning. In this context, we provide a
comprehensive study on different network architectures using transfer learning or training from scratch. Results
of our study demonstrate significant performance improvements by using large scale pre-trained EfficientNet com-
pared to compared to commonly used pre-trained CNN architectures. Future work could focus on classifying all
subtypes of MB using a larger data set. Moreover, our findings could be extended to other classification problems.
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