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ABSTRACT

Deep learning algorithms have become the golden standard for segmentation of medical imaging data. In most
works, the variability and heterogeneity of real clinical data is acknowledged to still be a problem. One way to
automatically overcome this is to capture and exploit this variation explicitly. Here, we propose an approach
that improves on our previous work in this area and explain how it potentially can improve clinical acceptance
of (semi-)automatic segmentation methods.

In contrast to a standard neural network that produces one segmentation, we propose to use a multi-path
Unet network that produces multiple segmentation variants, presumably corresponding to the variations that
reside in the dataset. Different paths of the network are trained on disjoint data subsets. Because a priori it may
be unclear what variations exist in the data, the subsets should be automatically determined. This is achieved by
searching for the best data partitioning with an evolutionary optimization algorithm. Because each network path
can become more specialized when trained on a more homogeneous data subset, better segmentation quality can
be achieved. In practical usage, various automatically produced segmentations can be presented to a medical
expert, from which the preferred segmentation can be selected. In experiments with a real clinical dataset of
CT scans with prostate segmentations, our approach provides an improvement of several percentage points in
terms of Dice and surface Dice coefficients compared to when all network paths are trained on all training data.
Noticeably, the largest improvement occurs in the upper part of the prostate that is known to be most prone to
inter-observer segmentation variation.

Keywords: Medical Image Segmentation, Deep Learning, Observer Variation, Evolutionary Algorithms,
Prostate Segmentation

1 INTRODUCTION

This work is focused on (semi-)automatic segmentation of medical images with deep learning algorithms while
capturing data variation. Fundamentally, our approach can detect and tackle any existing source of variation in
the data, e.g., different scanning devices or different patient groups. Specifically, we focus on observer segmen-
tation variation and, particularly, consider the following scenario: (1) In a dataset there are multiple scans, one
scan per patient. (2) Each scan is segmented by one observer, the name of the observer is normally unknown. In
contrast to other works which focus on medical image segmentation taking into account the observer variation,1,2

our goal is not to model the data uncertainty and use a probabilistic model to produce a set of possible segmenta-
tions, but to explicitly capture observer variation, and produce segmentation variants corresponding to different
ways of segmenting residing in the dataset. Moreover, we do not assume that for each scan segmentations by
mutiple observers are available. We believe such a situation is quite common in clinical practice.

We envision a clinical usage scenario as follows. For each scan that needs to be segmented (e.g., for a
brachytherapy treatment planning), our neural network (previously trained) produces multiple organ segmenta-
tion variants. A medical expert can choose one of those for further clinical usage. Additional manual adjustments
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are possible but much less likely needed since there were multiple options in-line with the original variation in
the data to choose from. Thus, the goal of the neural network is to produce segmentations such that at least one
of them is close to the expert’s segmentation understanding for that particular scan. We propose an approach to
get more accurate and more diverse segmentation variants by using different data subsets during training. The
best dataset partitioning is found automatically using an efficient optimization algorithm. Such an approach has
two major goals: (1) Improve the segmentation quality as each net is trained on more homogeneous data and
thereby more accurately learn each possible specific segmentation variant rather than learning just one, most
probably an average, segmentation. (2) Multiple variants of segmentation can be presented and it is more likely
that an observer agrees with one of the variants than with an average segmentation. These two points may well
contribute to the ultimate goal of our work - increased acceptance and uptake of (semi-)automatic segmentations
in clinical practice.

To the best of our knowledge, the only similar approach was initially proposed by us in.3 However, in our
previous work substantially large simulated segmentation variations were used, and the approach was mainly
suited for only two types of variations. Here, we propose an efficient algorithm capable of capturing an arbitrary
number of variations (defined by the user beforehand) and apply it to segmentation variations present in real
clinical data.

2 METHOD

2.1 Multi-path segmentation networks

Ultimately, in our approach, each segmentation variant is supposed to be learned by a separate segmentation
network. In common Unet-like segmentation architectures,4 which consist of an encoder and a decoder, an
encoder learns compressed representations of image features, while the decoder translates them to a segmentation
prediction. It is reasonable to utilize the same encoder for different segmentation variants, while connecting it
to muiltiple decoders because (1) We can expect that the image features required to properly predict variants
are common. (2) A shared encoder improves computational efficiency.

We assume that our segmentation network consists of an encoder E and multiple decoders D1, . . . , Dα. The
i-th segmentation variant for input image x is produced as Di(E(x)). The architecture scheme is shown in
Figure 1. In each training epoch, each decoder is trained using the corresponding training data subset Pi.
Note that the encoder is trained using the full dataset P . This training procedure is shown in pseudocode in
Algorithm 1.

2.2 Optimization procedure

We formulate the problem of partitioning a set of scans P (|P |=N) into α disjoint subsets P1, P2, . . . , Pα: P1 ∪
P2 · · · ∪ Pα = P, P1 ∩ P2 · · · ∩ Pα = ∅ as an optimization problem. The search space (space of solutions) is
the space of vectors of length N over alphabet {1, 2, . . . , α}, i.e., {1, 2, . . . , α}N . These vectors determine the
partitioning: a value k in position i determines that the i-th scan belongs to Pk. For optimization we use
a recently introduced efficient surrogate-assisted evolutionary algorithm SA-P3-GOMEA5 that was specifically
designed for discrete optimization problems with expensive function evaluations. In this optimization problem,
one function evaluation means a full training and evaluation of a network with a suggested dataset partitioning.
As this is a computationally expensive procedure, an efficient optimization algorithm might be used to reduce
the overall computational costs.

To define the function to be optimized, resulting in the best partitioning, we explain how each partitioning
is evaluated. After a net is trained using Algorithm 1, we use a fixed validation set V for evaluation. For each
scan from V , the trained network produces α segmentation variants. For each variant, its quality is computed
using a segmentation performance metric. The variant with the best score, is selected for that scan. The final
validation score is averaged over all scans in V . This score is the optimized (maximized) function value. Such
an evaluation procedure simulates a usage scenario, such, that for each scan a medical expert is shown multiple
segmentation variants and is interested in selecting the best one. To avoid overfitting on the validation set,
we use an additional test set, which is left out during the optimization and is used only for obtaining the final
results.
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2.3 Segmentation quality evaluation

We consider common segmentation performance metrics: the Dice-Sørensen Coefficient (DSC), and the Surface
Dice-Sørensen Coefficient6 (SDSC). While the DSC measure considers only global segmentation quality accuracy
without focusing on the accuracy near organ borders, the SDSC indicates the ratio of the contour that deviates
from the reference by no more than τ mm (the tolerance value τ is a chosen constant). An SDSC value of
one means no manual adjustment is needed if the acceptable deviation from the reference is τ mm. Inside the
optimization procedure we use the average of DSC and SDSC (with τ = 2mm) to combine both global and local
segmentation quality metric values.

2.4 Segmentation neural network architecture

Our approach is not limited to a particular segmentation network architecture. However, due to the compu-
tational complexity (many trainings inside the optimization loop), the used segmentation network has to be
computationally efficient. Thus, we selected two simple, yet efficient (found in preliminary experiments) Unet
architectures from.7 The selected networks differ in the implemented encoder network. The first one is based
on the ResNet18,8 while the second one has the VGG199 encoder. Preliminary experiments demonstrated that
VGG19-Unet shows better performance than ResNet18-Unet at the cost of a longer training time. While ulti-
mately we are interested in using the best performing network, we show results on both selected networks in
order to demonstrate the independence of our approach from a particular architecture.

Algorithm 1 Training routine for the proposed
segmentation approach

Input: the number of demanded segmentation
variants α; dataset partitioning P1, . . . , Pα;

architecture encoder E, decoders D1, . . . , Dα, the
number of training epochs nEpochs

▷ X denotes an image, y is a corresponding reference
segmentation, ŷ is a predicted segmentation

1: for epoch← 1, nEpochs do
2: for i ∈ randomPermutation([1, . . . , α]) do
3: for batch of pairs(X, y) ∈ Pi do
4: ŷ ← E(Di(batch))
5: L← loss(y, ŷ)
6: update weights of E,Di by backpropa-

gation using L
7: end for
8: end for
9: end for

Figure 1: A schematic illustration of the used
multi-path Unet network. Multiple decoders
(3 in this case) are attached to the shared
encoder and produce three different segmen-
tation predictions.

3 EXPERIMENTS

3.1 Data

We use a real clinical dataset from Mount Vernon Cancer Centre (Northwood, UK) of 196 prostate cancer patients
treated with external beam radiation treatment and brachytherapy. For each patient, we have one CT scan with
the corresponding organ segmentations that were used for brachytherapy treatment planning purposes. In the
preliminary preprocessing step, 13 scans with severe visual artefacts are filtered out. From the remaining 183
scans, 40 and 43 scans were left out for validation and test sets respectively. The remaining 100 scans can be
used for partitioning optimization and training. We consider a segmentation task with two classes: prostate and
background. The initial 3D data is transformed to 2D slices. Each scan consists of 18 slices on average (range:
10 to 27 slices). In order to balance the number of background and prostate pixels, each slice is cropped to the
150mm× 150mm central region of the image. The pixel spacing of the processed slices is 1.17mm× 1.17mm.
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3.2 Experimental setup

To show that our approach works with datasets of different sizes, we perform experiments with 50 and 100
patients in the training part (N = 50, 100). We set the number of evaluated partitionings in each optimization
run in case of N = 50 to 2000. This value was chosen as a tradeoff between computational time and quality
of the found partitionings. As one epoch of training with 100 scans is approximately two times longer than
the epoch of training with 50 scans, we set the number of evaluated partitionings in case of N = 100 to 1000.
We study the results when various numbers of partitions are used: α = 2, 3, 4. As an additional baseline, we
add a standard single-path network (α = 1). As both the neural network training and the used optimization
algorithm are naturally stochastic, we repeat an experiment three times for each value of α, and each used
network architecture (ResNet18-Unet or VGG19-Unet). All results are reported on the test set which guarantees
no overfitting (on the validation set). The reported values are averaged over the three runs.

Our experiments aim at showing that our approach results in better segmentation performance in comparison
to the standard training approach, i.e., with no data partitioning (all network paths are trained on the full training
dataset).

4 RESULTS

Main results are shown in Table 1. The proposed approach shows better performance than a corresponding
multi-path network trained without dataset partitioning by approximately 1% in DSC coefficient when N = 50.
More substantial differences of up to 5% and 1.5% can be observed in SDSC metric with τ = 2mm and τ = 4mm
respectively. Note that the smaller τ value means less tolerance to the deviations from the reference segmentation.
Furthermore, our approach with α values of 2, 3, and 4 shows better performance than a standard single-path
network α = 1. In case of N = 100, the improvements of our approach are smaller (1.5−2.5% in SDSC, τ = 2mm,
0.5−1% in DSC), though it still managed to find an improvement over the baselines in all cases. We hypothesize,
that running optimization for longer might result in finding better partitionings, but such experiment was not
conducted due to limited available computation resources. We separately study the effect of our approach on
the segmentation quality in three parts of the prostate: the middle part (mid-gland), the upper part (base), and
the lower part (apex ). Finally, we visualize the obtained segmentations.

As shown in Figure 3, the main improvement comes from the base of the prostate (on average, approximately
1.2% in DSC, 2.6% in SDSC with τ = 2mm). A smaller improvement is observed in the apex, while in the mid-
gland part it is the most subtle. Naturally, our approach can result in larger improvements if the data variation
is larger. As illustrated in Figure 2, the difference between the produced segmentation variants is largest in the
base and apex parts. The quality of produced segmentations is the highest in the mid-gland part, however our
approach leads to an improvement in segmentation quality in all parts of the prostate. These results are in line
with studies, e.g.,10 that show that the inter-observer variation is the largest in the base, smaller in the apex,
and the smallest in the mid-gland.

We note that the improvement of our approach compared to a training procedure with no data partitioning
is larger for larger α. This means that producing more segmentation variants helps to make at least one of the
variants closer to the reference segmentation though the data amount for training each of the decoders is smaller.

5 DISCUSSION

We applied the proposed segmentation approach to prostate segmentation on CT scans. However, our approach
can be applied to other organs and image modalities as well. Moreover, it is not limited to binary segmenta-
tion and can be naturally extended to a multi-organ segmentation task by corresponding modification of the
segmentation network and segmentation quality metric (to a multi-class one).

In the results interpretation, we suggested that our algorithm managed to capture and utilize the observer
segmentation variation present in the data. Such suggestion was supported by the fact that our algorithm showed
the most substantial improvement in the base of the prostate - the same part which is known to have the largest
inter-observer segmentation variation. However, it might be possible that there are other sources of variation in
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Figure 2: Results demonstration in case of α = 2 for one of the patients. The reference segmentation is shown
in green, the orange and the blue ones show two produced segmentation variants. The upper row corresponds
to the training with no partitioning (see Section 4), the bottom row corresponds to the training using the best
found partitioning. Scores for the selected (best among the two variants) segmentations are showed with a
corresponding color. The proposed method produces more accurate segmentations. All images are zoomed-in by
a factor of two.

the data such as the presence of patients of different age groups, the use of varying imaging device settings, or
different inclusion criteria of the seminal vesicles in the prostate delineated volume due to different degrees of
prostate cancer spread into the seminal vesicles. Our algorithm does not distinguish between types of variation,
and it only performs the partitioning to maximize segmentation quality. Making our approach insightful to end
users (e.g., explicitly showing different types of variation in data) and validating the practical added value (i.e.,
reducing required time for scan delineation) is an interesting and important question for further research.

As mentioned in Section 4, a larger number of produced segmentation variants leads to better performance
of our approach. However, for practical usage, a large number of segmentation variants might not be convenient
as a medical expert needs time to select one of them. We suggest that the selection of α is done according to the
user preferences as a trade-off between the diversity of segmentation variants and available time to assess them.
Furthermore, we believe that a specialized graphical user interface needs to be developed and used in order to
allow a medical expert to navigate through the suggested segmentation variants quickly and intuitively.

6 CONCLUSIONS

We have proposed a novel approach to medical image segmentation aimed at capturing variation in the data.
Specifically, we proposed to achieve this by training a multi-path Unet-like segmentation network such that each
path is trained on a specific data subset. The best partitioning into subsets is found automatically by solving
an optimization problem using the surrogate-assisted evolutionary algorithm SA-P3-GOMEA. In experiments
with real clinical data consisting of CT scans with prostate segmentations, our approach was found to be able to
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No partitioning Our approach Improvement (%)
Network N α DSC SDSC

2mm
SDSC
4mm

DSC SDSC
2mm

SDSC
4mm

DSC SDSC
2mm

SDSC
4mm

ResNet18-Unet

50 1 0.863 0.670 0.917 - - - - - -
50 2 0.864 0.675 0.920 0.871 0.701 0.931 0.88 3.92 1.15
50 3 0.863 0.672 0.918 0.872 0.703 0.934 1.04 4.52 1.68
50 4 0.865 0.677 0.922 0.874 0.711 0.936 1.14 5.14 1.58
100 1 0.864 0.676 0.919 - - - - - -
100 2 0.866 0.683 0.922 0.870 0.695 0.928 0.55 1.87 0.71
100 3 0.867 0.686 0.923 0.872 0.702 0.930 0.67 2.41 0.83
100 4 0.868 0.691 0.924 0.873 0.708 0.930 0.64 2.51 0.64

VGG19-Unet

50 1 0.868 0.683 0.924 - - - - - -
50 2 0.868 0.686 0.926 0.876 0.713 0.938 0.95 3.94 1.24
50 3 0.868 0.688 0.927 0.877 0.719 0.939 1.00 4.58 1.27
50 4 0.870 0.692 0.929 0.878 0.723 0.942 1.02 4.58 1.38
100 1 0.871 0.700 0.929 - - - - - -
100 2 0.872 0.701 0.933 0.874 0.708 0.936 0.31 1.01 0.29
100 3 0.873 0.702 0.934 0.875 0.712 0.938 0.33 1.38 0.41
100 4 0.871 0.699 0.932 0.875 0.718 0.937 0.47 2.73 0.62

Table 1: Main results. The ”No partitioning” results denote a training procedure in which all network paths
are trained with all samples from the training dataset (see Section 3.2) with the number of paths equal to the
corresponding α (α = 1 means that a single-path network is used). N denotes the total number of patients in
the training dataset (before partitioning). SDSC results are demonstrated for two tolerance values. DSC and
SDSC scores are rounded to three decimal places.

Figure 3: Improvement of the proposed approach for different prostate parts. Values are aggregated over all
experimental setups with N = 50 (two types of nets, three values of α, three net initializations, see Section 3.2).
Dice and Surface Dice with τ = 2mm performance metrics are shown.

detect the subsets of data automatically and produce multiple segmentation predictions resulting in a performance
increase of auto-segmentation compared to not using data partitioning. Analysis of the achieved improvement
showed that most improvement was achieved for the base of the prostate. This corresponds to the literature
reported findings that the largest inter-observer segmentation variation occurs at the base of the prostate. This
is indicative that our approach is indeed capable of capturing observer variation in prostate segmentation.
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