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ABSTRACT
Among the research efforts to segment the retinal vasculature from fundus images, deep learning models consistently
achieve superior performance. However, this data-driven approach is very sensitive to domain shifts. For fundus images,
such data distribution changes can easily be caused by variations in illumination conditions as well as the presence of
disease-related features such as hemorrhages and drusen. Since the source domain may not include all possible types of
pathological cases, a model that can robustly recognize vessels on unseen domains is desirable but remains elusive, despite
many proposed segmentation networks of ever-increasing complexity. In this work, we propose a contrastive variational
auto-encoder that can filter out irrelevant features and synthesize a latent image, named deep angiogram, representing only
the retinal vessels. Then segmentation can be readily accomplished by thresholding the deep angiogram. The generalizabil-
ity of the synthetic network is improved by the contrastive loss that makes the model less sensitive to variations of image
contrast and noisy features. Compared to baseline deep segmentation networks, our model achieves higher segmentation
performance via simple thresholding. Our experiments show that the model can generate stable angiograms on different
target domains, providing excellent visualization of vessels and a non-invasive, safe alternative to fluorescein angiography.
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1. INTRODUCTION
Retinal fundus photography is a cheap, fast and non-invasive modality that reveals essential anatomical features including
optic disc, optic cup, macula, fovea, vessels and lesions such as hemorrhages and exudates.1 Therefore, it is widely used for
the diagnosis of diseases such as diabetic retinopathy,2 glaucoma3 and age-related macular degeneration.4 While fundus
photography is broadly used as a low-cost screening tool, it does not provide sufficient contrast to resolve clinically relevant
vascular features and exogenous indocyanine green angiography (ICG)/fluorescein angiography (FA) remain the standard
of care for visualization/quantifying retinal vasculopathies. An algorithm that can provide accurate vessel segmentation
from these fundus images would have profound impact on future clinical practice. In recent years, deep learning models 5

have achieved remarkable success in this task. Nevertheless, the domain shift induced by variations in image contrast and
presence of unseen pathological features in testing data can dramatically degrade the performance of deep models.

Recent research explored three main types of domain generalization methods:6 domain randomization, representation
learning and general learning strategy. Domain randomization augments the training data to extend the source domain,7

improving the likelihood that an unseen target domain overlaps with the training domain. Representation learning refers to
the disentanglement of features that are invariant to different domains.8 A typical general learning strategy is meta-learning:
for example, Li et al. simulate the domain shift by splitting the source domain into meta-train and meta-test.9

In this work, we leverage both domain randomization and representation learning approaches to train a model that
has superior generalizability across different domains. We augment the source domain by the contrast limited adaptive
histogram equalization (CLAHE)10 with clip limit ϵ ∈ N . In addition to well-enhanced contrast for vessels, the augmented
images also have exaggerated irrelevant structures including noise and lesions. Inspired by the idea of disentangling
the shared features in two images presented in our previous work,11, 12 we leverage a variational auto-encoder (VAE) to
extract the representation of vessels. However, as we showed in,11 this latent image may have an arbitrary style that
contains unwanted features. We tackle this challenge by introducing a contrastive loss such that vessels are the only
features in the synthetic image. We name the result a deep angiogram. Then, the segmentation task is simply reduced
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(a) model structure (b) source and target domains

Figure 1: (a) The deep angiogram model structure. x is the input fundus image, x′ = Cϵ(x) is the CLAHE-enhanced
image with clip limit ϵ. y is the ground truth. Eθ is a residual U-Net that serves as the encoder of the VAE. Dφ is the
corresponding decoder. Lcont and Lseg represent the contrastive loss and segmentation loss. The dashed line on Dφ

indicates it will not be applied in testing. (b) The source target domains. a, DRIVE, b, HRF, c, STARE, d, ARIA.

to Otsu thresholding.13 Without the irrelevant features, the visibility of the vasculature is drastically improved in the
deep angiogram compared to other vessel enhancement approaches.14 We evaluate the generalizability of our model by
the segmentation performance on the target domains. For baseline models, we trained two segmentation networks on
the source domain that take the green channel fundus image and the principle component analysis (PCA) image as the
input respectively. The result indicates that the proposed method generalizes better on target domains and achieves higher
segmentation performance than deep segmentation networks, by simple thresholding.

2. METHODS
2.1 Causal Feature Extraction
Fig. 1(a) shows our VAE model composed by the encoder Eθ and the decoder Dφ. The input image is x and the supervision
is provided by the label y. As we have previously shown,11, 12 when the latent manifold of the VAE has the same dimension
with input x, the encoder is able to enhance the shared features in x and y. Intuitively, if an image is regarded as a collection
of representations, then (x ∩ y) ⊆ Eθ(x) should hold to guarantee that there is no essential information missing in the
output ŷ. In the context of causal learning, x∩y is the set of causal features for the final prediction. In this implementation,
the fundus image x includes information of many anatomical structures such as optic disc, vessels, macula and lesions,
whereas the causal features for the segmentation task contain just the vessels, so ideally the latent image should be a vessel
map without any irrelevant features, i.e., (x ∩ y) = Eθ(x).

As suggested in Fig. 1, since we want to put most of the workload on the encoder Eθ, it is designed to have more
learnable parameters than the decoder Dφ. Both Eθ and Dφ have residual U-Net architecture. Note that the decoder Dφ

will not be applied in the testing since its purpose is to simply provide supervision to Eθ during training. The segmentation
loss for the decoder is set to be a combination of cross-entropy and Dice loss:
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N

N∑
n=1

yn log ŷn +
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2.2 Domain Randomization
There are two major causes for distribution shift of fundus images. First, within a well-curated dataset (e.g., DRIVE15),
the image contrast is usually consistent. A model trained on such a dataset may struggle with a poor-contrast test image.
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Figure 2: Test examples from the target domains, ARIA and STARE. Below each image, close-up panels show two
highlighted areas (red and yellow boxes) for easier comparison. Deep angiograms provide excellent vessel clarity.

Second, since a given dataset is unlikely to exhaustively provide samples of all possible pathologies, unseen features such
as drusen and hemorrhages can be problematic during testing.

To improve the robustness of the model, we randomize the source domain data by CLAHE10 in addition to other
commonly used augmentation methods (e.g., rotation). For an input image x, we apply CLAHE Cϵ to all the color
channels with a random clip limit ϵ ∈ N (5, 1). In the resultant image x′, the contrast of vessels are strongly enhanced, as
well as the background noise. Then as in Fig. 1, we introduce a contrastive loss Lcont for the latent image to guarantee
that the model is not distracted by this exaggerated noise and provides stable visualization for input with various contrasts.
The loss function is defined as the sum of the L2 loss and the structural similarity (SSIM) loss.

Lcont = ∥Eθ(x)− Eθ(x
′)∥2 + SSIM(Eθ(x)− Eθ(x

′)) (2)

The SSIM loss is defined as SSIM(x, y) =
(2µxµy+c1)(2σxy+c2)

(µ2
x+µ2

y+c1)(σ2
x+σ2

y+c2)
, where µ and σ represent the mean and standard

deviation of the image, and c1 and c2 are constants.



Figure 3: Quantitative evaluation of the segmentation results on the two target domains. From left to right: Dice coefficient,
accuracy, sensitivity, specificity. Blue, segmentation network trained on the green channel. Orange, segmentation network
trained on the PCA image. Green, segmentation obtained by thresholding the deep angiogram.

2.3 Experiments
Baseline Methods. Since the color image is more sensitive to domain shift, it is common to convert the fundus image to
grayscale as pre-processing, typically by extracting the green channel or using principle component analysis (PCA). We
train a segmentation network that has the same architecture as Eθ with either the green channel or the PCA as input. We
compare these two networks to Otsu thresholding of deep angiograms.

Datasets. We use four publicly available fundus datasets as shown in Fig. 1(b). The DRIVE dataset15 consists of 20
labelled images of size 565 × 584. The HRF dataset16 contains 45 labelled images of size 3504 × 2336. The STARE
dataset17 includes 20 labelled images of size 700×605. The ARIA dataset18 includes 138 labelled images of size 768×576.
DRIVE and HRF are set as source domain, whereas STARE and ARIA are used for testing.

Implementation Details. All networks are trained and tested on an NVIDIA RTX 2080TI 11GB GPU. We use a batch
size of 4 and train for 300 epochs. We use the Adam optimizer with the initial learning rate of 5 × 10−4 for the proposed
VAE, 1× 10−3 for the baseline segmentation networks. The learning rate for both networks decay by 0.5 every 3 epochs.

3. RESULTS AND CONCLUSION
Fig. 2 shows a test example from each of the target domains. We observe that for different datasets, the manual annotations
includes varying amounts of detail: the label for the STARE dataset contains many more small vessels than ARIA. In the
ARIA example, the deep angiogram is able to enhance the thin vessels with very poor contrast. This is also evident by the
big vessels seen at the bottom left quadrant of the image where the illumination is low. Moreover, the angiogram filters out
the circular artifacts seen within the red box. In the STARE example, our model extracts most of the vasculature including
the faintly visible fine vessels. These tiny vessels have relatively lower intensity in the deep angiogram, which suggests
lower confidence. Compared to the manual label, the deep angiogram can also delineate the vessel diameter more precisely.

We quantitatively evaluate the vessel segmentation performance in Fig. 3. By simple thresholding on deep angiogram,
we obtain get better vessel maps than the segmentation networks that use the green channel and PCA image as inputs.

The proposed method can effectively extract a specific type of feature from a complex context. Specific to retinal
vessels, our model can generate stable deep angiograms that dramatically enhance small vessels with poor contrast for color
fundus images from unseen domains. Hence, deep angiogram is a low-cost method that can be performed using standard
fundus photography technologies, including portable handheld systems. The ability to resolve vascular features without the
need for exogenous contrast injections significantly reduces the clinical expertise/equipment/cost of retinal angiography.
Integration of these technologies with recent demonstrations of cellphone-based fundus photography methods and remote
diagnostic technologies can move retinal disease screening out of the clinic and dramatically expand the impact of color
fundus photography.
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