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ABSTRACT

This paper presents a video watermarking technology for broadcast monitoring. The technology has been developed
at the Philips Research Laboratories in Eindhoven in the context of the European ESPRIT project VIVA (Visual
Identity Veri�cation Auditor). The aim of the VIVA project is to investigate and demonstrate a professional broadcast
surveillance system. The key technology in the VIVA project is a new video watermarking technique by the name
of JAWS (Just Another Watermarking System). The JAWS system has been developed such that the embedded
watermarks (i) are invisible, (ii) are robust with respect to all common processing steps in the broadcast transmission
chain, (iii) have a very low probability of false alarms, (iv) have a large payload at high rate, and (v) allow for a low
complexity and a real-time detection. In this paper we present the basic ingredients of the JAWS technology. We
also brie
y discuss the performance of JAWS with respect to the requirements of broadcast monitoring.
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1. INTRODUCTION

Globally the distribution of TV products is worth many billions of dollars. News items, such as those distributed
by companies such as Reuters, CNN and Associated Press, have a value of over 100,000 USD per hour, which make
them very vulnerable to Intellectual Property Rights (IPR) violation. The same is true for entertainment programs
and TV dramas. In the European ESPRIT project VIVA the use of digital watermarks is investigated to protect
IPR of the content owners. For that purpose the JAWS� watermark technology has been developed.

A watermark is embedded before transmission on behalf of the content owner. A monitoring site installed within
a transmission area will extract the watermark and its associated payload. This allows the determination of the
content owner and other data. This information is fed back to a central database for various applications such as
IPR surveillance (e.g. in the case of news clips), transmission veri�cation (e.g. in the case of commercials) and
statistical data collection and analysis.

The insertion of the watermark into the video is such that the precise identity of a particular video clip can be
established. JAWS is designed such that it is practically impossible to remove the watermark, either intentionally
or due to regular processing. The e�ect of JAWS watermarking on picture quality is imperceptible to the human
observer. On the monitoring side, an extractor will recognize the watermark and precisely identify the source clip
and also the time, location and channel of the broadcast. The watermark extraction process has a very small error
rate (false negatives as well as false positives), even in the case that the original watermarked content was submitted
to a combination of common signal processing operations, such as

� compression

� D/A and A/D conversion

� editing (subtitle or logo insertion)

� format conversion

� change of aspect ratio
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JAWS is also robust to signal degradations caused by transmission such as noise accumulation and bit errors.

In the following sections of this paper we will present JAWS in more detail. The outline of the paper is as follows.
In Section 2 we discuss the basic philosophy of the JAWS watermarking system. In Section 3 we will discuss the
basics and the motivation (with an emphasis on simplicity) of the JAWS embedding scheme and in Section 4 the
basics of detection theory. In Section 5 we focus on a very important robustness issue, viz. the requirement that
watermark detection be robust with respect to arbitrary shifts. By introducing translational symmetry in watermark
patterns, JAWS can be made shift invariant. In Section 6 we show that this shift invariance can be used to increase
the payload of the embedded watermarks. In Section 7 we show that this invariance can also be used to associate a
reliability measure with every watermark detection. In Section 8 we discuss the complexity of the detection algorithm
and in Section 9 we brie
y discuss the robustness of JAWS. Finally, we end with the conclusion in Section 10.

2. BASIC VIDEO WATERMARKING PHILOSOPHY

The basic premise at the start of the development of JAWS was to design a watermarking system, which was both
simple and satis�ed all the requirements with respects to perceptual quality and robustness.

Several issues had to be addressed. Firstly we had to decide upon the basic format in which the watermark was
to be detected. Currently video is mostly broadcasted in the analog domain (PAL, NTSC). In the near future there
will be a shift to broadcasting in the digital domain, mainly using the MPEG-2 compression standard. As the VIVA
broadcast monitoring system is to be operational in the near future, it seemed inevitable that the watermarking
scheme should at least be able to detect in the (analog or digital) base-band domain. A watermark detection scheme
directly operating on analog base-band signals would be ideal, but we are not aware of the existence of such a system.
We concluded therefore that JAWS detection should operate in the digital base-band domain. A consequence of this
decision is that, without special tricks, watermark detection on digital MPEG video needs at least a partial MPEG
decoder.

Secondly, we had to decide in which representation to detect the watermark. Browsing through the literature,
one �nds basically three kinds of approaches. In the simplest approach no transformation is performed, and the
watermark is directly detected in the base-band video using some correlation-like method.1{3 At the other end of
the spectrum watermarks are embedded and detected in some type of frequency domain. Embedding and detection
is therefore preceded by a frequency domain transform. Well-known transforms are a Fourier Transform (FT),4 a
Discrete Cosine Transform (DCT)5 and a wavelet transform (WT).6 Again by using some correlation-like method,
the watermark is then detected in the transform domain. Although these latter approaches tend to yield very reliable
watermark detection, we decided not to pursue this direction due to the complexity of the global transform, very
likely prohibiting real-time detection. The third approach addresses this complexity issue by performing frequency
transforms on a block-by-block basis.7,8 The problem with such an approach is its vulnerability to spatial image
shifts, a very common and cheap processing step. Spatial shifts cause a miss-alignment of block-boundaries and
therefore a failure to detect the watermark. Based upon this analysis we decided to rely on the �rst approach, i.e.
simple spatial correlation. Representing a pixel (luminance) value at position i (both spatial and temporal) by the
symbol yi and the correlation pattern by wi, watermark detection can be described by the formula Eq. (1),

d =
1

N

X
i

yiwi; (1)

where N is the number of pixels involved in the correlation. The system is designed such that a large value of d
indicates the presence of the watermarkW = fwig, and a small value indicates the absence of the watermark. In this
manner it is possible to embed a one-bit payload. Note that watermark detection is not performed on chrominance
values, as the system is required to be robust to gray-scale conversions. For the remainder of this we will therefore
ignore any chrominance data, and assume that all content is gray-scale only.

Thirdly, we had to decide upon the utilization of the temporal axis. For reasons of complexity we decided upon
the use of a purely spatial watermark pattern W and to embed W repeatedly in every frame of the video. This
choice amounts to treating video as a sequence of still images. Watermark detection can now succinctly be described
by Eq. (2),

d =
1

NT

X
i

 X
t

yt;i

!
wi; (2)



where t and i denote the temporal and spatial position of a pixel, respectively. The symbol N and T denote the
number of pixels in a single video image (note the di�erence with the previous interpretation of N) and the number
of video frames, respectively. By �rst accumulating in time, as indicated by the brackets in Eq. (2), the complexity
of watermark detection is reduced by decreasing the number of multiplications. The following section goes into some
more details of JAWS watermark embedding.

3. BASIC WATERMARK EMBEDDING

In the previous section we concluded that { for our watermarking purposes { video is best considered as a sequence
of stills, a video sequence is then marked by embedding the same watermark in a number of consecutive frames.
By changing the watermark pattern at a low rate, we can also realize payload along the temporal axis, but for the
current discussion this is of no relevance. We therefore focus on watermark embedding in a single video frame

Given our preferred watermark detection scheme, viz. correlation with a watermark pattern W = fwig, the
optimal embedding scheme consists of adding a scaled version of W to an original image X = fxig. That is, a
watermarked image Y = fyig is obtained by Eq. (3),

yi = xi + swi; (3)

where s is a global scaling parameter. In other words, a watermark in JAWS is simply additive noise. The samples
of the watermark pattern W are independently drawn from a normal distribution N (0; 1) with mean and standard
deviation equal to 0 and 1, respectively. In particular, the sample values ofW are 
oating point values. Many existing
schemes in the literature use integer valued watermark patterns.1,9 There are however a number of advantages to
using 
oating point values.

1. Under the condition that the average energy of the watermark per pixel is equal to 1, a normal (
oating point)
probability distribution has the largest entropy.10 From a standpoint of security, a normal distribution is
therefore optimal, i.e. most di�cult to guess.

2. A 
oating point watermark pattern yields a better linear relationship between the global scaling parameter s
and image distortion. For integer valued watermarks this relationship is much more step-like. At this point
we need to remark that the embedding formula Eq. (3) needs to be modi�ed slightly to include rounding and
clipping to re
ect the fact that luminance can only be integer valued (typically between 16 and 235)

yi = RoundClip(xi + swi); (4)

As the sample values of the watermark pattern are independently drawn, it follows that the watermark pattern W
is spectrally white. It is a priori not clear that \white" is the optimal choice for the spectral color of watermark
patterns. On the one hand { as (natural) images tend to be highly correlated { one might argue for using a correlated
watermark pattern. Such a pattern can for example be obtained by low-pass �ltering a spectrally white pattern.
Experimentally we have found that low-pass watermarks are indeed more robust than white watermarks, but also
that it is di�cult to avoid visual artifacts. On the other hand { as the Human Visual System (HVS) is less sensitive to
high frequency patterns than it is to low frequency patterns { one could also argue for using a high-pass watermark.
A drawback of such an approach is that such a watermark detection is less robust. Weighing the pros and cons of
the low-pass and high-pass approaches, we decided to compromise upon a spectrally white watermark pattern.

If watermark embedding is performed directly as described in Eq. (4), one easily �nds that artifacts appear in
image regions where there is little activity, e.g. in regions with little texture. A solution to this problem is the
incorporation of a local scaling factor � = f�ig,

yi = RoundClip(xi + s�iwi): (5)

The value of �i should be small in image regions where there is little activity (e.g. 
at regions in cartoons), and large
in regions where there is much activity (e.g. in textured regions or at edges). A satisfactory local scaling factor has
been experimentally found by �ltering the image with a Laplacian high-pass �lter L and taking absolute values, i.e.

� = jL
X j; (6)



where "
" denotes convolution, and where is L is de�ned by

L =

2
4�1 �1 �1
�1 8 �1
�1 �1 �1

3
5 =9: (7)

4. BASIC WATERMARK DETECTION

We recall from Section 2 that watermark detection is performed by spatial correlation. If watermark embedding is
performed as in Eq. 5, we can write

Y = X + s�W; (8)

where X is the original image, s is the global scaling parameter, � the local activity measure and W the watermark
pattern. Performing watermark detection by correlation, the resulting decision d consists of two terms,

d = dorg + dwmk =
1

N

X
i

xiwi +
1

N

X
i

�iw
2
i (9)

It is not di�cult to show that the expected value E[ dorg ] contributed by the original unmarked image is equal to 0y,
and that under very general conditions the standard deviation of dorg is given by

�dorg =
�Xp
N
; (10)

where is �X the standard deviation of the original image.11 The contribution of the watermark is given by

dwmk = s�1(�); (11)

where �1(�) denotes the �rst moment (or mean) of the local activity. It follows that for a given false positive rate
� and associated threshold T� = erfc(�), where erfc is the complementary error function, the value of s should be
larger than12

s � �XT�

�1(�)
p
N
: (12)

In practice s has to be chosen considerably larger in order for the watermark to survive common video processing.

A boost in detection performance can be obtained by applying matched �ltering before correlation.11 For the
purpose of this paper a matched �lter is a decorrelating and zero-phase FIR �lter say A. Application of A should
signi�cantly remove the correlation between neighbouring image pixels. A good example of a �lter A is given by,

A =

2
4 1 �2 1
�2 4 �2
1 �2 1

3
5 =4: (13)

If we put Z = A 
 Y and apply correlation detection to Z, then the contribution of the original image (i.e. of
A 
X) will be much reduced in value due to the reduction in standard deviation. It is easily checked that, under
some mild restrictions, the contribution of the watermark part (i.e. sA
 (�W )) remains unchanged. Replacing X
by Z in Eq. (12) we see that a smaller scale factor is required to meet a given false positive rate, or, that for a given
scale factor s, a more reliable detection is obtained.

Matched �ltering can also be understood in the frequency domain. It is well-known that the optimal way of
detecting a signal S in additive noise � is to �lter the noise with a (matched) �lter H such that H 
 � noise is
spectrally white.

yWe assume normalization to zero mean before correlation.



5. INCORPORATING SHIFT INVARIANCE

In the foregoing we have assumed that during detection the watermark and the image are perfectly aligned. In
practice we can not rely on this. During normal processing the position of the image may easily vary a little.
Moreover, in order to circumvent watermark detection, a malevolent hacker can easily and cheaply induce spatial
shifts, even on a frame by frame basis. It is therefore strictly required that the watermark system is resistant to
spatial shifts. The most simple approach to achieve this invariance is exhaustive search for the correct alignment of
the watermark. That is, for each allowed spatial shift k the decision variable dk,

dk =
1

N

X
i

yiwi�k (14)

has to be computed. For ease of presentation, we have neglected boundary problems in this formula. For the same
reason matched �ltering is omitted from Eq. 14.

This search over all possible spatial shifts is computationally prohibitive if we aim for real-time watermark
detection. The solution adopted in JAWS is to introduce translational symmetry in the watermark pattern W . The
particular choice made in JAWS requires that

wi+k = wi; (15)

for every vector k whose components are multiples of M , where M is referred to as the tile size. A practical choice
for the value of M is M = 128. In other words, the watermark pattern fwig is completely determined by an M �M
matrix wi, i 2 0; :::;M � 1� 0; :::; (M � 1) of (pseudo) random values. The full watermark pattern fwig is obtained
by tiling (possibly with truncation) the matrix fwig over the extent of the image.

With these assumptions the exhaustive search over all possible shifts is greatly simpli�ed. As the watermark is
repeated over vectors which are multiples of M , one can �rst fold the suspect image data Y to matrix a B = fbig of
size M �M ,

bi = fold(Y )i =
X

j=(j1M;j2M)

yi+j ; i 2 0; :::;M � 1� 0; :::; (M � 1); (16)

where j1 and j2 are the indices of the individual tiles. Due to the folding and neglecting boundary problems, we now
only need to search over cyclic shifts k, where k is in 0; :::;M � 1� 0; :::; (M � 1). More mathematically this can be
expressed as

dk =
1

M2

X
i

biwi�k ; (17)

where the subtraction in the index i� k of w is computed modulo M .

Inspecting Eq. (17) more closely, we easily see that in fact we have to compute a two-dimensional cyclic convo-
lution. Letting w�i denote the spatial inversion of w, i.e. w�i = w�i, Eq. (17) can be written as

D = B 
W �; (18)

where { by abuse of notation { \
" now denotes cyclic convolution. It is well known that a cyclic convolution is
most e�ciently computed in the frequency domain.13 The computation of the matrix D then proceeds as follows.

1. Pre-compute, using a Fast Fourier Transform (FFT), the Fourier transform Ŵ of the matrix W .

2. Compute the Fourier transform B̂ = FFT(B) of the fold bu�er B.

3. Perform a point-wise multiplication of B̂ and Ŵ
�
to obtain the matrix D̂. Note that in this context the

�-operator denotes complex conjugation.

4. Compute D by applying the inverse FFT (IFFT) to D̂.



More concisely,

D = IFFT(FFT(B) FFT(W )�): (19)

As argued in Section 4, detection performance can be improved by preceding correlation by matched �ltering. The
goal of matched �ltering is to decorrelate the suspect image Y to obtain an approximately spectrally white version of
Y . Matched �ltering is usually performed in the spatial domain (using some simple and cheap decorrelation �lter),
but can in our current set-up also be computed in the Fourier domain. Moreover, we need not be satis�ed with an
approximately white signal. By only retaining the phases of B̂ we obtain a purely white signal. Experimentally we
have found that the best detection is obtained by also ignoring the magnitude information in Ŵ , resulting in the
detection formula

D = IFFT(phaseOnly(FFT(B)) phaseOnly(FFT(W )�)); (20)

where phaseOnly(x) = x=jxj for x 6= 0 and phaseOnly(0) = 1. This method of detection is actually well-known in the
�eld of pattern recognition and is referred to as Symmetrical Phase Only Filtering14 (SPOMF). It is the preferred
correlation method in JAWS.

6. INCREASING THE PAYLOAD

In the previous section we have seen that SPOMF detection is an excellent method to detect the presence/absence
or sign of a watermark, whether the watermark is shifted or not. This allows us to embed a one-bit payload. For the
broadcast monitoring application at hand, this one-bit payload is by far not su�cient. The payload can be increased
along essentially two { non-exclusive { axes: the spatial and the temporal axis, respectively. More precisely, we can
increase the payload spatially by using more basic patterns, and temporally by varying the absence/presence or sign
of these patterns over time. Disregarding the temporal domain, a payload of n bits can be obtained by using n basic
patterns Wl of size M �M , l = 0; : : : ; n � 1. Each pattern will then correspond to one bit. This is the method as
originally proposed by Digimarc.3 (Note: for the sake of simplicity no underlining is used to denote M �M tiles!)

There are two disadvantages to the above approach. Firstly, the energy of the total embedded watermark is linear
in the number of bits of the payload. This may be a cause for visible artifacts. Secondly, n SPOMF detections are
required to retrieve an n-bit payload. For complexity reasons this is not a favored solution. Experimentally three, or
maybe four, is found to be the maximum number of basic patterns. For the VIVA application at hand the resulting
payload-rate is too low. A way out to this dilemma was the insight that the inherent shift invariance of JAWS could
be used to increase to payload to n bits with less than n basic patterns!

Because of the shift invariance of JAWS, an embedded pattern W will be found whatever its position in the
image. The same is true if this pattern is embedded several, say m, times, but at di�erent positions. Performing
detection by SPOMF, all m copies of the watermark will be found. If the whole image is shifted before detection,
the absolute positions of the correlation values will change cyclically. However, the relative positions will remain
unchanged, at least if computed with modular arithmetic to the baseM . We can therefore embed information in the
relative position of the correlation peaks. This basic idea needs some re�nement to really make it work.

Let us consider the example of one pattern which is embedded twice and that the tile size M is equal to 128.
Moreover, let's assume that the pattern is embedded at the origin (0; 0) and at position (8; 8). Upon detection two
correlation peaks will be detected (see also Figure 1). However, we don't know which of the two peaks corresponds
to the pattern embedded at the origin. Therefore we can only determine the relative position of the two peaks up
to a sign, i.e. we cannot distinguish between (�8;�8) and (8; 8). A simple calculation shows that therefore we can
only distinguish between (M2)=2 + 1 = 8193 di�erent relative positions. This amounts to a little more than 13 bits
for one single SPOMF detection. In practice this payload can not be achieved because the position of the peaks is
susceptible to jitter. In particular, positional jitter occurs for video over poor analog links. Experimentally it was
found that a reliable detection of payload can be obtained if we require that relative positions are a multiple of the
so called grid size G. A practical value for the grid size is G = 8. This restriction allows correction for position jitter,
but at the same time reduces the e�ective payload of the watermark. In our example only 7 bits will remain.

Fortunately we can exploit another degree of freedom. We note that we are at liberty to embed a watermark
with either a positive or negative sign. This sign is correctly retrieved by SPOMF detection. Clearly the sign is
shift invariant, and can therefore also be used as part of the information carrier. Continuing our example, we now
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Figure 1. An example of SPOMF detection with one pattern of multiplicity two.

embed the pattern at the origin with a positive sign, and the shifted pattern with a negative sign. In this setup,
the SPOMF detector is able to distinguish between the peak corresponding to the pattern at the origin and the
peak corresponding to the shifted pattern. The sign ambiguity is therefore resolved and, using a grid size G = 8, we
can now embed 8 bits. The above reasoning can of course be generalized to embedding m patterns Wi, each with
a certain multiplicity vi. It is an interesting mathematical problem to �nd in this general setting the relationship
between the size of the payload, the total number m =

P
imivi of embedded patterns, the grid size G and the

number n of basic patterns. This, and methods for the actual association of bit patterns to sets of relative positions,
is the topic of another paper.15 At this point it su�ces to say that a su�cient number of bits can be embedded for
the broadcast application at hand.

7. FALSE POSITIVE ANALYSIS

We recall that the retrieval of watermark payload is in essence achieved by looking for large positive or negative
peaks in the correlation bu�er D. We are interested in the rate of false positives. There are actually two types of
false positives. A \true" false positive occurs when a watermark is detected when no watermark has been embedded.
An invalid positive occurs in case a watermark has been embedded but the wrong payload is retrieved. Both types
of false positives are highly undesirable because they may lead to \sending an unjusti�ed bill to the honest guys".
A good false positive analysis is therefore essential for the broadcast monitoring application.

An intermediate result in a JAWS detection event is a M �M bu�er D of correlation values. The payload of the
watermark is determined by the (relative) positions of a number of extremal values in that bu�er. The key insight
is now that the non-extremal values can be considered as watermark detections for non-watermarked images: by
correlating the watermark with the image at non-embedding positions, the image appears to the watermark as an



original, non-marked image. Experiments have con�rmed that these non-extremal values are normally distributed. In
fact one can prove that for SPOMF correlation, under very general conditions, the mean and the standard deviation
are 0 and 1=M , respectively. By setting the threshold for peak detection at 5=M we achieve a probability for invalid
peak detection of P = 5:7 � 10�7.

Continuing the example of the previous section (one pattern with multiplicity 2, a grid size G equal to 8 and an
allowed jitter J equal to 1) the false positive rate for unmarked images can be computed. A false positive occurs if
there are precisely two extremal values in the correlation bu�er, one positive and one negative, at positions which
di�er by a multiple of 8, give or take 1. It is not di�cult to derive that the false positive rate Q0 is (approximately)
given by

Q0 �
�
2J + 1

G

�2

M4P 2 � 1:2 � 10�5: (21)

As we are dealing with video we can accumulate several (say T1) of these micro-decisions. The probability that more
than T2, 0 < T2 � T1, of these micro-decisions yield the same result (i.e. not just a valid payload) is given by the
formula

Q(T1;T2) �
�
2J + 1

G

�2 X
T2�T3�T1

�
T1
T3

��
2J + 1

M

�2(T3�1)

M4T3P 2T3 : (22)

For example, by setting T1 = 5, T2 = 3, the probability of a false positive can be reduced to 2:9 � 10�20. For all
practical purposes this false probability rate is more than su�cient. But if necessary, it can be reduced even more
by choosing appropriate values for T1 and T2.

A similar reasoning can be applied to estimate the probability of invalid positives. In fact, it is not di�cult to
see that the probability computed in Eq. 22 is a good approximation.

Note that the previous reasoning assumes that micro-decisions are independent events. Experiments have con-
�rmed that for most video scenes this is true. For certain scenes, such as extremely long stills, this assumption might
not hold true.

8. COMPLEXITY ANALYSIS

Figure 2 gives an overview of the embedding procedure in JAWS. Given a payload K a pattern W is computed as
a sum of cyclicly shifted (and possibly inverted) basic patterns Wi. This pattern W is then tiled over the extent of
a video frame and locally scaled by means of the local activity measure. After globally scaling with the parameter
s, the result is added to the video frame. Finally a watermarked video frame is obtained by rounding and clipping.
The payload K needs to be kept constant for a su�cient number of video frames to allow reliable detection. By
changing the payload at a su�ciently low rate (as not to violate the constraint of the previous sentence), payload
can be embedded along the temporal axis.

The most complex operation for watermark embedding is the computation of the local activity measure. The
computational complexity per pixel is quite low, but the computations have to be performed at video rate. To show
feasibility, a real-time watermark embedder has been implemented on a TriMedia platform.16 This shows that with
\modest" means the complexity of embedding can be surmounted.

Figure 3 gives an overview of the detection procedure in JAWS. Detection starts with the accumulation of
su�ciently many video frames. The frames are folded, summed and stored in an M � M bu�er B. When a
su�cient amount of data has been accumulated, SPOMF correlation with the basic patterns Wi is applied. The
resulting correlation bu�ers are examined for extremal values, and, if present, a payload K is returned. A nice
feature of JAWS detection is that the computations at video rate are simple (mainly additions) and that the complex
computations (SPOMF) operate at a much lower rate. Moreover, the computational complexity of SPOMF can be
reduced at the cost of extra memory resources by pre-computing the phase-only representations of the basic patterns.

To show feasibility, a real-time watermark detector has been built on three di�erent platforms, viz. on a high-end
Silicon Graphics workstation, on a TriMedia processor board16 and on an FPGA based board.
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9. ROBUSTNESS TESTS

Many experiments have been performed to test the robustness of the JAWS system. It has been shown that JAWS
survives MPEG-2 compression down to at least 2 Mb/s, MJPEG compression, DA/AD conversion, PAL conversion,
noise addition, quantization, subtitling and logo insertion, cropping, frame erasure, speed-ups and transmission
errors. A more detailed description of these robustness tests is reported in.16

More extensive testing will be done by the end of 1999, when watermarked and subsequently processed video
content will be broadcast from a central site by satellite to local broadcasting stations, re-broadcast to the end-users
and received by local monitoring stations for watermark detection.

10. CONCLUSIONS

We have presented a new watermark technology that can be applied in broadcast monitoring. Given the requirements
of broadcast monitoring, we have tried to argue the necessity of a nuber of technical choices. The watermark solution
provided by JAWS is unique in the way that it exploits shift invariance to obtain a high payload and a reliability
measure with every detection. JAWS has been implemented on several platforms, showing the feasibility of real-time
embedding and detection. Tests within VIVA have shown that JAWS scores well on both visibility and robustness.

An important issue for future work is to improve the robustness of JAWS with respect to scaling and rotation.
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