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ABSTRACT

In this paper we extend the shot transition detection component of the ViBE video database system to include
gradual scene changes. ViBE (Video Indexing and Browsing Environment), a browseable/searchable paradigm for
organizing video data containing a large number of sequences, is being developed at Purdue as a testbed to explore
ideas and concepts in video databases.

We also present results on the performance of our cut detection algorithm using a large test set. The performance
of two other techniques are compared against our method.
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1. INTRODUCTION

In recent years there has been a great interest in designing and building systems that organize and search video data
based on its content.1 Previously we have described an integrated video database system known as ViBE (video
indexing and browsing environment) for managing large amounts of video.2–5 In ViBE a variety of algorithms and
techniques for processing, representing, and managing video are tightly integrated into a single system which can
be scaled to large database sizes and extended to a wide variety of functionalities. The major components of the
ViBE system are illustrated in Figure 1. The system first segments video sequences into shots by using information
obtained from the DC-sequence of the MPEG compressed data stream. Each video shot is then represented by
a hierarchical tree structure of key frames, and the shots are automatically classified into predetermined pseudo-
semantic classes.6,2,4 Finally, the results are presented to the user in an active browsing environment using a
similarity pyramid data structure. This paper is an update on the shot transition detection used in the ViBE
system.7,4

Although the frame is the smallest physical unit of video, the shot is the smallest possible semantic video unit.
Hence the first task in processing video data is segmenting shots by detecting shot boundaries, thereby breaking
the video sequence into distinct “semantic chunks.” We shall use the following working definition: a shot is a group
of frames from a video sequence that has continuity in some general conceptual or visual sense. Often, a shot is
composed of frames which depict the same physical scene, signify a single camera operation, or contain a distinct
event or action. We shall use the terms “shot boundary detection” or “shot transition detection” interchangeably to
refer to the task of temporal segmentation of video. Once the shots are identified, they may be clustered to obtain
scenes which form the next semantic level for video.

Although a large number of techniques have been proposed to solve the shot boundary detection problem, finding
a detection algorithm which would work for common types of shot transitions for a wide variety of video genres
with high accuracy is still an open problem. One problem is that the performance of the shot transition algorithm
may change a great deal from video genre to genre, and it may be even quite different for programs in the same
genre. Therefore, the performance of the detection algorithm must be estimated using as many different sequences
from different programs and from different genres as possible. Unfortunately, in the literature the performance of a
proposed algorithm is usually measured using a small number of sequences and/or sequences obtained from a small
number of different programs in different genres.

Address all correspondence to E. J. Delp, ace@ecn.purdue.edu, http://www.ece.purdue.edu/∼ace or telephone: +1 765
494 1740.



Video 
Sequences

Shot Boundary
Detection

Shot Tree
Representation

Pseudo-semantic
Labeling

User
Active

Browsing
Enviroment

Figure 1. Major components of the ViBE system.

In ViBE3 we extract a large number of features from the video sequence and use a binary regression tree to
estimate the conditional probability of a shot transition for each frame. Previously we had reported some initial
results which showed that this approach was quite effective in detecting cuts in video sequences.4 In this paper we
extend the technique to detect and identify gradual shot tranitions. We also describe the performance of the cut
detection algorithm on a large number of video sequences chosen from six different genres containing diverse content.

2. SHOT BOUNDARY DETECTION AND IDENTIFICATION

Although shot transitions may take a wide varity of forms, for our purposes we have divided all transitions into four
classes: cuts, dissolves, fades, and all other transitions. We can define these transitions using the following video edit
model:

fi =

 gi i < bk
(1− αk)gi + αkhi bk ≤ i ≤ ek
hi i > ek

(1)

where fi, gi, and hi are frames in the video sequence, bk and ek are the beginning and ending frame numbers of
the transition, and αk is a linearly increasing function of k with αbk = 0 and αek = 1. For dissolves we have gi ∈
previous shot and hi ∈ next shot. Cuts are defined similarly with the additional constraint that ek = bk + 1. For a
fade-out we will have hi ∈ N where N is a shot with all black frames. For a fade-in, we have the reverse true, i.e.,
gi ∈ N .

2.1. Previous Work

A large number of techniques have been reported in literature for the temporal segmentation problem. The general
approach to detect shot transitions is to derive various low-level features from frames, derive a dissimilarity value
between frames using these, and flag a shot transition whenever this value shows some nontypical behavior. Among
the features that have been used are:

• Pixel-wise frame differences. Shahraray8 divides frames into blocks and finds the “best” matching blocks
between frames for comparison, similar to the block matching technique of MPEG. Yeo and Liu9 use the pixel
differences of the luminance component of DC frames in an MPEG sequence. Ardizzone and La Cascia10

process the pixel differences from two frames using a multi-layer perceptron to decide if they belong to the
same shot.

• MPEG motion vector features. Kobla, Doerman, and Lin11 perform cut detection using a feature value
derived from the numbers of each type of macroblocks in the compressed frames. Meng, Juan, and Chang12

define various ratios of the number of macroblocks with forward, backward, and no motion compensation to
perform cut detection for P and B frames.

• Edge-based features. Zabih, Miller, and Mai13 detect cuts using entering and exiting edge pixel number
change fractions for frames. Shen, Li, and Sethi14 have applied this technique to MPEG sequences using
multi-level Hausdorff distance histograms.



• Color histogram-based features. Patel and Sethi15 use intensity histograms derived from DC frames of an
MPEG sequence. Ferman and Tekalp16 use the sum of histogram differences for the Y , U , and V components.

• Other features In their VideoTrail system Idris, Kobla and Doerman17 form a feature vector from DC
coefficients of each frame and use dimensionality reduction on this vector. Han and Tewfik18 use a similar
technique in uncompressed domain where groups of subsampled pixel values from the frames within a time
window is used as the feature vector.

Various strategies are employed in processing these features. In many cases a simple thresholding using a global
threshold is used as the significance test. There are also model-based approaches that detect transitions by modeling
shot characteristics.19,20

2.2. The Generalized Trace

Detecting and identifying shot transitions by processing a single frame dissimilarity feature has a number of problems:
First, it is difficult to determine a single feature that could be used to accurately detect shot boundaries in a wide
variety of situations. Second, for techniques where a global threshold is used, there is the problem of determining
the optimal value of the threshold to be used, since this may vary considerably from sequence to sequence.

In ViBE shot boundary detection is performed by first extracting a set of features from each frame in the video
sequence which are placed in a feature vector. We call this sequence of feature vectors the generalized trace (GT)
of the video sequence.7 The GT is then processed using a binary regression tree to determine the probability that
each frame belongs to a shot transition. Finally, these probabilities are post-processed to determine the locations of
shot transitions.

Our method has a number of advantages. First, the GT feature vector allows a multitude of different features to
be collectively used to detect shot transitions. This is important since different features may be useful in detecting
different types of shot transitions. Second, the output of the regression tree is normalized in the range [0-1] and
approximates the probability that the frame under question belongs to a shot transition, which allows consistent and
meaningful thresholding. Moreover, the method is highly extensible. New features can easily be incorporated into
the existing system.

Our method uses the “DC sequence” extracted from the compressed video sequence. The DC sequence is formed
from the DC coefficients of the DCT used in MPEG. While the DC coefficients are directly available for I frames, they
must be estimated for P and B frames. We have used the method described in21 for estimating the DC coefficients.

Among the features that were proposed in the literature, we have chosen features that are easy to derive from
the MPEG stream and that have good transition detection performance to be included in the GT feature vector.
The GT for frame i of the sequence is denoted by ~gi and its jth component by gi,j . For the experiments described
in this paper, the GT consists of the following features:

gi,1−3 - Histogram intersection22 of frames i and i+ 1 for the Y , U , and V color components.

gi,4−6 - Pixel-wise standard deviations of the Y , U , and V color components for frame i.

gi,7 - Number of intracoded macroblocks in frame i.

gi,8 - Number of forward predicted macroblocks in frame i.

gi,9 - Number of backward predicted macroblocks in frame i.

gi,10−12 - Flags which identify the frame type {I, P , or B} for frame i.

The frame type flags are needed because the information contained in the GT must be interpreted differently for
different types of frames in the MPEG sequence. For example, P frames contain no backward predicted macroblocks
so gi,9 will identically be zero. Similarly, the number of intracoded macroblocks per frame, gi,7, should be interpreted
differently for I, P , and B frames.



2.3. Binary Regression Tree

An intuitively appealing methodology in decision making is to proceed in multiple stages, making partial decisions
along the way, thereby breaking up a complex decision boundary into a union of several simpler boundaries. Trees are
one of the possible approaches to multistage decision making which are hierarchical in nature. The tree methodology
is known to be very effective in a wide variety of domains.23,24

The regression tree used in ViBE is a variation of the technique proposed in.25 The difference is that the training
and pruning step is used only once. The training process uses two sequences with known shot transition locations,
which we refer to as ground truth sequences. One ground truth sequence is used to build a large tree and the other
sequence is then used to prune the resulting tree. The growing stage starts with a single terminal node and at each
step the terminal node that yields the greatest reduction in the classification error is split. In this way, we produce a
tree that overfits the data.25 The tree is then pruned in a bottom-up fashion using the second ground truth sequence
where we remove nodes whose deletion decreases the classification error.

The tree-based approach has a number of advantages when compared to more traditional nonparametric methods
such as nearest neighbor or kernel estimator approaches. The regression tree has a simple form which can be com-
pactly stored, and it efficiently classifies data. It also does automatic feature selection and complexity reduction.25

Due to their dissimilar nature, we detect cuts and gradual shot transitions separately.

2.3.1. Detection of Cuts

To train the first stage regression tree, we use the known cut locations in the ground truth sequences and ignore
gradual transitions. After the tree has been trained using two groundtruth sequences, it is used to process the
GT from the sequence whose cuts are to be detected. A schematic diagram of the steps in cut detection is shown
in Figure 2. To detect if a cut has occurred between frames i and i + 1 we place a window of length 2W1 + 1
centered around frame i and all the GT vectors in this window are concatenated into one large feature vector. These
agglomerate vectors are then used by the regression tree which provides a piecewise linear approximation to the
conditional mean, i.e.,

yi ≈ E[αi|~gi−W1 · · ·~gi · · ·~gi+W1 ] (2)

where αi is the cut indicator function

αi =

{
1 if a cut occurs between frames i and i+ 1
0 if no cut occurs

and where yi is the output of the regression tree for frame i. The output yi can be interpreted to be the probability
of a cut occurring at frame i.26 It should be noted that in general the classifier uses more than just ~gi to determine if
a shot boundary has occurred. Our experiments have shown that the use of ~gi−1, ~gi and ~gi+1, that is, taking W1 = 1
provides a reasonable balance between complexity and performance.

Candidate cut locations are then determined by thresholding the output of the regression tree; if yi ≥ τ , then
we decide that there might be a cut between frames i and i + 1. The detected candidate cut locations are then
post-processed to remove cuts that are too close together. We have used the rule that if two candidate cut locations
are closer than 10 frames, the candidate cut with a smaller value of yi is deleted.

2.3.2. Detection of Gradual Transitions

For the detection of dissolves and fades a windowing approach similar to the one above is used. However, since
gradual transitions are distributed over a large number of frames, one would ideally want have a window size that is
close to the average length of the gradual transitions. This would require the use of a large value, e.g., 20-50 frames,
for the window length. The problem with this approach is that the agglomerate feature vectors defined in Equation 2
derived from such a large window would have high dimensionality. One could try to reduce dimensionality of these
vectors using techniques similar to ones used in.17,18

We have taken a different approach to solve this problem by adopting a two stage method for the detection of
gradual shot transitions. The method is illustrated in Figure 3. In this technique, we first use windowing on the
GT using a small value for window length, W1, to avoid dimensionality problems, the result of which is used by the
first regression tree. The output of this regression tree is then windowed with a window length of 2W2 + 1 using
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Figure 2. Schematic diagram for cut detection.
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Figure 3. Two stage approach to gradual transition detection.

Equation 3. We choose W2 such that W2 � W1 is satisfied. These agglomerate vectors are then used by a second
regression tree, with output wi, which approximates

wi ≈ E[βi|~yi−W2 · · · ~yi · · · ~yi+W2 ] (3)

where βi is the gradual transition indicator function

βi =

{
1 if frame i belongs to a gradual transition
0 otherwise

(4)

We then perform two postprocessing operations on the output wi. The first operation is similar to the one done for
cuts and removes gradual transitions that are closer than 30 frames. The second one deletes gradual transitions that
shorter than 3 frames.

3. RESULTS

3.1. The Experimental Data Set

At this time ViBE contains more than 90 MPEG-1 sequences, each 10 minutes long, which were recorded from
miscallenous television programs. The sequences have been digitized at a rate of 1.5 Mb/sec in CIF format (352 x
240).

We have selected 29 sequences from our database which we believe represent a number of different program
genres. Commercials, if they exist, were edited out. The locations of all the shot transitions in these sequences were
recorded by a human operator. These 29 sequences are classified into six program genres as follows:

• Soap operas (5 sequences). Two episodes from The Young And The Restless, one episode from The Bold
And The Beautiful, Guiding Light, and As The World Turns each. These consist mostly of dialogue with cut
transitions between them and have very little camera motion.



Sequence Class # frames # cuts # dissolves # fades # others avg. shot length

soap opera 67582 337 2 0 0 196 ± 17

talk show 107150 331 108 1 6 239 ± 97

sports 78051 173 45 0 29 299 ± 40

news 58219 297 7 0 6 182 ± 10

movies 54160 262 15 6 1 760 ± 270

cspan 90269 95 19 0 0 206 ± 81

TOTAL 455431 1495 196 7 42

Table 1. The number of different types of shot boundaries for different sequence classes used. The mean shot length
and standard deviation in frames is also given.

• Talk shows (7 sequences). One sequence from The Rosie O’Donnell Show, two sequences from Oprah Winfrey
Show, Late Night With David Letterman, and Regis and Kathie Lee each. These contain a lot of dissolves and
a lot of camera motion in the beginnings of the programs.

• Sports (5 sequences). One college football sequence, two sequences from the NCAA Tournament, and two
sequences with car races, one from NASCAR and one from the Texas 500 Car Race. This is the hardest genre
to process since it has a lot of special effects shot transitions, rapidly moving objects, and a high degree of
camera motion.

• News (4 sequences). Three sequences from WLFI, a local television station, and one CBS News.

• Movies (3 sequences). One sequence from Before He Wakes and two from Lawrence of Arabia.

• Sequences from CSPAN (5 sequences). Obtained from CSPAN-I and CSPAN-II. Consists of long shots with
very little camera or object motion.

Note that, with the exception of the sequences from Lawrence of Arabia we never use more than one sequence from
a given airing of a particular program, in order to achieve maximum content variation. Statistical information about
these classes is given in Table 1.

3.2. Cut Detection Experiments

To get an honest estimate of the performance of our cut detection system, we have used the following procedure
which is similar to a cross-validation procedure

for each genre G ∈ {soap, talk, sports, news,movies, cspan}
for i = 1 to 4

randomly choose two sequences, S1 and S2, both not in G
train the regression tree using S1 and S2

process all the sequences in G using this tree
average the cut detection performance of the tree over the sequences in G

average the four sets of values to get the performance for genre G

In the results presented here, we have used a window size of W1 = 1 which means that the regression tree uses 36
features. For all results of our method, we have used a threshold of τ = 0.35 as our detection criteria.

We have compared our method with two other methods. The first method uses a global threshold on the sum
of the histogram intersections of the Y , U , and V components, i.e, it uses gi,1 + gi,2 + gi,3 as the frame similarity
feature. This is the simplest possible method and is included here as a baseline, to serve as an indication of the



tree classifier sliding window simple thresholding

Sequence Class Detect Miss FA MC Detect Miss FA MC Detect Miss FA MC

soap opera 0.941 0.059 13.3 0 0.916 0.084 99 0 0.852 0.145 24 0

talk show 0.942 0.058 32.3 7.5 0.950 0.050 45 1 0.968 0.032 171 15

sports 0.939 0.051 82.5 34.8 0.785 0.215 59 1 0.925 0.075 251 73

news 0.958 0.042 38.0 0.75 0.886 0.114 61 0 0.926 0.074 212 1

movies 0.821 0.179 43.3 2 0.856 0.144 25 0 0.816 0.184 25 3

cspan 0.915 0.085 54.3 8.5 0.994 0.006 40 0 0.943 0.057 3 20

Table 2. Results for cut detection using the GT/tree classifier, the sliding window method, and simple thresholding.
Detect and Miss indicate the average detection rate and missed detection, respectively, for each class. FA and MC
are the total number of false alarms and misclassifies, respectively.

relative difficulty in detecting the cuts in various video genres. A global threshold value of 0.45 was found to give
best results and this value was used for all of our experiments. Again, we remove the cut with a lower feature value
if two cuts are closer than 10 frames.

We have also implemented a sliding window technique, similar to the one proposed by Yeo and Liu,9 using the
same feature used for the global thresholding method described above. In this technique, a symmetric window of
size 2m+ 1 is placed around the ith frame and a cut is declared from frame i to i+ 1 if

1. the value of the feature value for i is the maximum within the window, and

2. it is also n times the value of the second maximum in the window.

In our experiments we have used m = 7 and n = 2 because these values gave the best overall performance. Note
that this windowing places an inherent limitation on the resolution for cut detection, e.g. for this value of m no two
cuts can be closer than 21 frames or else one cut will be missed.

The results of these experiments are shown in Table 2. From this table we can make the following observations:
The GT/regression tree method gives a very consistent performance for video sequences with diverse content whereas
the sliding window method runs into problems with some types of sequences. This is most clear with the sports and
news genres, where the the detection rate of the sliding window detector is low.

Our experiments have shown that the genres of the sequences used to train the regression tree do not affect the
performance of the system. The only criterion important in choosing the sequences to be used in the training step is
the number of cuts the sequences contain. One should use sequences that contains as many cuts as possible, while
not having a lot of gradual scene transitions.

4. CONCLUSION

In this paper we have introduced a new method for shot transition detection in the compressed domain for MPEG
video sequences. We have extensively tested the performance of our algorithm on sequences containing diverse
program content, such as soap operas and sports programs for cut detection. We have also compared the performance
of our algorithm with two other algorithms, one using simple global thresholding, the other using a sliding window
approach. We have found that our algorithm gives very consistent performances independent of the type of program
being analyzed. The performance of the algorithm is also quite independent of the training sequences.
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