Paper
6 June 2000 Validation of an optical flow algorithm to measure blood flow waveforms in arteries using dynamic digital x-ray images
Kawal Rhode, Tryphon Lambrou, David John Hawkes, George Hamilton, Alexander M. Seifalian
Author Affiliations +
Abstract
We have developed a weighted optical flow algorithm for the extraction of instantaneous blood velocity from dynamic digital x-ray images of blood vessels. We have carried out in- vitro validation of this technique. A pulsatile physiological blood flow circuit was constructed using sections of silicone tubing to simulate blood vessels with whole blood as the fluid. Instantaneous recording of flow from an electromagnetic flow meter (EMF) provided the gold standard measurement. Biplanar dynamic digital x-ray images of the blood vessel with injection of contrast medium were acquired at 25 fps using a PC frame capture card. Imaging of a Perspex calibration cube allowed 3D reconstruction of the vessel and determination of true dimensions. Blood flow waveforms were calculated off-line on a Sun workstation using the new algorithm. The correlation coefficient between instantaneous blood flow values obtained from the EMF and the x-ray method was r equals 0.871, n equals 1184, p less than 0.0001. The correlation coefficient for average blood flow was r equals 0.898, n equals 16, p less than 0.001. We have successfully demonstrated that our new algorithm can measure pulsatile blood flow in a vessel phantom. We aim to use this algorithm to measure blood flow clinically in patients undergoing vascular interventional procedures.
© (2000) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Kawal Rhode, Tryphon Lambrou, David John Hawkes, George Hamilton, and Alexander M. Seifalian "Validation of an optical flow algorithm to measure blood flow waveforms in arteries using dynamic digital x-ray images", Proc. SPIE 3979, Medical Imaging 2000: Image Processing, (6 June 2000); https://doi.org/10.1117/12.387652
Lens.org Logo
CITATIONS
Cited by 8 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Blood circulation

X-rays

X-ray imaging

Blood vessels

Optical flow

Iodine

Calibration

Back to Top