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Abstract—A measure for registration of medical images that cur-
rently draws much attention is mutual information. The measure
originates from information theory, but has been shown to be suc-
cessful for image registration as well. Information theory, however,
offers many more measures that may be suitable for image regis-
tration. These all measure the divergence of the joint distribution
of the images’ grey values from the joint distribution that would
have been found had the images been completely independent. This
paper compares the performance of mutual information as a reg-
istration measure with that of other f-information measures.

The measures are applied to rigid registration of positron emis-
sion tomography(PET)/magnetic resonance (MR) and MR/com-
puted tomography (CT) images, for 35 and 41 image pairs, respec-
tively. An accurate gold standard transformation is available for
the images, based on implanted markers. The registration perfor-
mance, robustness and accuracy of the measures are studied.

Some of the measures are shown to perform poorly on all as-
pects. The majority of measures produces results similar to those
of mutual information. An important finding, however, is that sev-
eral measures, although slightly more difficult to optimize, can po-
tentially yield significantly more accurate results than mutual in-
formation.

Index Terms— f-information, multimodal image registration,
mutual information.

I. INTRODUCTION

N the mid 1990s, mutual information made its entrance into

the field of medical image registration [1], [2]. Since then it
has been adopted by a large number of researchers for a large
number of applications [3]-[12]. Because registration based on
mutual information is successful for a variety of image modal-
ities, can be fully automated and yields good results, interest
in the measure grew rapidly. Research into the measure cur-
rently takes up a substantial part of medical image registration
research. Apart from mutual information, information theory
comprises many more information measures, which could be
considered for image registration. An example is [,-informa-
tion (explained in Section II), which defines a class of mea-
sures of order . Mutual information is actually a member of
this class; it is the I, measure of order 1. The question logically
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arises whether I is the optimal registration measure of the class
of I, measures and what the influence of the order «v is on the
registration results.

Information theory measures for image registration other than
joint entropy and mutual information have received little atten-
tion. Some of the results in this paper have been presented in
[13]. Zhu [14] has studied the performance of cross entropy for
multimodal registration. Wachowiak et al. [15] compare infor-
mation measures based on Rényi and Havrda-Charvét entropies
and [, -information. Exclusive f-informations are registration
measures introduced by Rougon et al. [16]. Finally, both He et
al. [17] and Bardera et al. [18] employ Jensen divergence for
image registration.

The mutual information of two images A and B can be de-
fined as

(a,b)

I(A,B) = Zp(a,b) log m.
a,b

ey
Although usually defined for two images, as we have done here,
mutual information is actually computed on probability distri-
butions, viz. the marginal distributions [p(a), p(b)] and joint dis-
tribution [p(a, b)] of grey value pairs (a,b) of corresponding
image grey values. Mutual information measures the depen-
dence of the images by determining the distance of their joint
distribution p(a, b) to the joint distribution in case of complete
independence, p(a)p(b). Maximal dependence is assumed to
occur when the images are aligned. Registration is, therefore,
achieved by finding the geometrical transformation that yields
the highest mutual information value.

Measures of the distance between a joint probability distri-
bution and the product of the marginal distributions are infor-
mation measures. Information measures constitute a subclass
of the divergence measures, which are measures of the distance
between two arbitrary distributions. A specific class of infor-
mation (divergence) measures, of which mutual information is
a member, is formed by the f-information ( f-divergence) mea-
sures. In this paper we compare mutual information with several
other f-information measures by applying them to the registra-
tion of clinical magnetic resonance (MR), positron emission to-
mography (PET), and computed tomography (CT) images.

II. f-DIVERGENCE AND f-INFORMATION OF PROBABILITY
DISTRIBUTIONS

The extent to which two probability distributions differ can
be expressed by a so-called measure of divergence. Such a mea-
sure will reach a minimum value when the two probability dis-
tributions are identical and the value increases with increasing
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disparity between the two distributions. A specific class of di-
vergence measures is the set of f-divergence measures [19]. For
two discrete probability distributions P = {p;|i = 1,...,n}
and Q = {q|i = 1,...,n}, the f-divergence is defined as

P10 =30 (fg—) |

The demands on the function f are that 1) f : [0,00) —
(=00, ], 2) f is continuous and convex on [0, 00), 3) finite on
(0, 00), and 4) strictly convex at some point 2 € (0, 00).

The following definition completes the definition of f-diver-
gence for the two cases for which (2) is not defined:

) bi\ 07
q’L.f E - pi hHlmToo f(zx) ,

An example of an f-divergence is the I,-divergence [19],
which is formed by substituting the following function I, (z):

(@)

ifp;=¢ =0

ifp; >0,¢; =0" ©)

¢ —ar+a—1

La(w) = ala—1) ’

a#0, a#l

for f in the definition of f-divergence (2). The resulting diver-
gence measure reads

w2 (;

%

(a3
p;
a—1
7

I.(P|Q) = —ap; + ag; — qi>

23

:ﬁ <Z <q?_1> _1>

2

for « # 0, @ # 1 and using the completeness of the distribu-
tions, i.e., Y .pi = >, ¢ = L.

Taking the limit for « — 1, one finds that I (P||Q) =
>, pilog(pi/g:), which is known as the Kullback—Leibler dis-
tance [20] or relative entropy [21] (see the Appendix).

A special case of f-divergence are the f-information mea-
sures. These are defined similarly to f-divergence measures, but
apply only to specific probability distributions; namely, the joint
probability P of two variables and their marginal probabilities’
product Q = P; X Ps. f-Information is a measure of depen-
dence: it measures the distance between a given joint probability
p;; and the joint probability when the variables are independent
(pipj)-

Using the same example as before, the /,,-information is de-
fined as

(a3
Pij

-1
(pipj)>~!

Ia(PHPl XPQ):

1
ala—1) Zz]:
fora # 0, a # 1.

For o — 1, Il (PHPI X PQ) = Zi,j Dij IOg(pij/Pipj)» which
is identical to the definition of mutual information given in (1).

III. MEASURES OF f-INFORMATION

Because the list of functions f that can be used to form f-in-
formation measures is a long one, we will limit ourselves to
measures that are frequently encountered in the literature. The
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following is an overview of those measures, accompanied by an
explanation of our choice of measures for this comparison study.
We assume all probability distributions are complete, i.e.,

2ipi =1

A. V-Information

One of the simplest measures of dependence is obtained using
the function V' = |z — 1|, which results in the V-information
[19]

V(P|Pyx Py) =Y |pij — pip;l- €5
4,7

The absolute distance of two variables is a frequently used
measure of similarity. In statistics, the Kolmogorov—Smirnov
measure tests the similarity of an observed and a hypothesized
distribution using absolute differences. When applied directly
to the grey values of images, instead of their probability distri-
butions, the sum of absolute differences is a well-known regis-
tration measure for monomodal images (for example, see [22],
[23]).

B. 1.-Information
A measure already mentioned is the I, -information [19]
1 i
- - _tw
ala—1) Z (

I(,(P“Pl X PQ) = (5)

fora # 0, a # 1.
The class of I,-information includes mutual information,
which equals I,, for the limit o« — 1.

C. M,-Information
Matusita [19] defined the function
—1)=,

My(z) = |2 0<ac<l.

When applying this function in the definition of an f-infor-
mation measure, the resulting M, -information measures are

Ma(P||Pyx P2) = |3 = (pips)°|

i3

1
o

(6

for0 < a < 1.
These constitute a generalized version of V-information;
M, -information is identical to V -information for o« = 1.

D. x“-Information

The class of x*-information measures is given by Liese [24].
The function f to construct the information measures is

X (z) = {

For 0 < a < 1, this function equals the M, function. The
and M, information measures are, therefore, also identical for
0 < a < 1. For a > 1, the x“-information reads

L—a°|*, for0<a<l
[1—z|*, fora>1

X (P||Py X Py) = Z lpii = pipil” .

7
(pipj)~t @

(%]
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The x*-divergence ), .((pi — ¢i)*/qi) is known as the
Pearson statistic, which is used in statistical hypothesis testing.

Some examples of the functions f, which can be used to form
f-divergence or f-information measures, are given in Fig. 1.
These examples illustrate the influence of the parameter « on the
behavior of the function f. All functions f(z) have a minimum
atx = 1.

The following measures do not fall in the class of f-diver-
gence measures, because they do not satisfy the definition of
f-divergence as given at the beginning of the previous section.
They are, however, divergence measures (they measure the dis-
tance between two distributions) and they are directly related to
1,-divergence.

The Hellinger integral of order o (given in [19] for contin-
uous distributions, hence, the term “integral”) is defined by

Ho(P|Q) = 1+ a(a — DI.(P|Q) ®)
fora # 0, a # 1.

Hellinger proposed H1,2)(P||Q) = 3 ,;(pig;)Y/? to mea-
sure the distance between probability distributions. Although
defined as a divergence measure, it can be transformed to an
information measure by replacing P and () with a joint proba-
bility distribution and the product of the marginal distributions,
respectively. It is, however, directly related to the I, -divergence
and we have not included it in this comparison study.

E. Rényi Distance
Based on the Hellinger integral is the Rényi distance [19]

Ra1(PllQ) = log Ha (P[|Q) ©)

1
ala—1)
fora #0, a # 1.

Rényi himself, on the other hand, also defined a measure of
information of order « [25]. It is given by

log Z

fora > 0, a # 1, with ¢; = p(x;) the probability of z; hap-
pening and p; = p(x;|Y") the conditional probability of x; hap-
pening given an event Y. At first sight, it may appear to be a
measure of divergence, but the use of conditional probabilities
renders it a measure of information. The conditional probability
in the above definition is for a single event Y. When it depends

Ra(P|Q) = (10)

Examples of different functions f for f-divergence and f-information measures (note the different extent of the axes for My ).

on a range of events y;, pi' becomes ). p(y;)p(z:ly;)*. Ex-

tending (10) to a range of events gives

PU 5511/

RoaPIQ) = o 32 3 P )"
xmyj

g P

Z py])) !

which is a measure of information.! It reaches its minimum
value when p(z;,y;) and p(z;)p(y;) are identical, in which
case the summation reduces to Zl i p(z;,y;). Because we
assume complete distributions, the sum is 1 and the minimum
value of the measure is, therefore, equal to zero. The limit
of Rényi’s measure for a approaching 1 equals I;(P||Q)
and, therefore, mutual information. The measure is equal to
(1/(a — 1)) log Hy(P|| Py x P»), which means it differs from
the Rényi distance (9) only by a factor 1/«. In this paper, we
have chosen to include the measure defined by Rényi himself,
R, 2, henceforth referred to as I,.

The following relations between the different measures hold,
amongst others:

M, (P|lQ) = _Il(PHQ) =2[1- Hy(Pl|Q)]
X*(PQ) —212(P||Q)

M, (P||Q) =V (P||Q)

x*(PllQ) =Ma(P||Q) 0<a<l

IV. EXPERIMENTS AND RESULTS

The comparison of the different information measures is
based on rigid registration of clinical PET, CT, and MR (T1,
T2, and PD weighted) images. We have used the data from
the Retrospective Registration Evaluation Project (RREP), a
comparison study of numerous registration methods. The data
consists of CT and/or PET images of nine patients, together
with MR T1, T2, and PD weighted images. The patients
wore stereotactic frames and had markers implanted for the
purpose of neurosurgery. All MR images were corrected for
geometric and intensity distortion resulting from static field
inhomogeneity (by combining the original image and an image
acquired with reversed readout gradients [26]) and for scale
distortion [27] (using the frame as a reference object of known

ITn (10), the multiplication with the probability of the event, p( Y'), is absent,
because the event is given, hence, p(Y) = 1.
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size). Evidence of the stereotactic frames and markers was
carefully removed from the images in such a manner to avoid
any bias, to rule out any influence of these objects on the regis-
tration performance. Including both noncorrected and corrected
MR images, the dataset contains 41 MR-CT images pairs and
35 MR-PET pairs. All image volumes consist of transversal
slices. A CT image generally contains 512 x 512 x 30 voxels of
dimensions 0.65 x 0.65 x 4 mm, an MR image 256 x 256 X 26
voxels of dimensions 1.25 X 1.25 X 4 mm and a PET image
128 x 128 x 15 voxels of dimensions 2.59 X 2.59 x 8 mm. All
CT-MR and PET-MR image pairs had been registered using
the markers, yielding a gold standard with which we compare
the registrations based on information measures. The estimated
accuracy of the gold standard is 0.39 mm for CT to MR and
1.65 mm for PET to MR. For more details we refer the reader
to the paper on this study [28].

Based on the argumentation given in the previous section, we
have chosen to include the following information measures in
the study:

1 mutual information;
v

I, fora#0,a#1;
M, for0<a<l;

x* fora>1;

R, fora>0,a#1.

Ro.s I

k-3

Examples of the various registration measures as functions of rotation around an in-plane axis (in degrees), for registration of an MR-T1 and a CT image.

These measures were applied to rigid registration of the CT,
PET and MR images, which means that the measures were to
be optimized for six parameters (three rotations and three trans-
lations). The probability distributions of the grey values were
estimated from grey value histograms, using 256 bins. Linear
interpolation was applied to approximate grey values at non-
grid positions. Optimization of the measures was achieved using
Powell’s method, as described in [29]. The values of o we have
investigated were 0.2, 0.5, 0.8, 1.5, 2.0, and 3.0. From visualiza-
tion of registration functions, as in Figs. 2 and 3 for example, it
was clear that values larger than 3.0 were unreasonable. Values
close to 1.0 were also excluded, either because the measures
resemble mutual information for such values (/,, R,) or be-
cause they resemble another measure (M; and x! equal V).
The values 0.5 and 2 may seem an inappropriate choice, be-
cause some measures are linearly related for these « (I 5 and
My 5, I, and x?). However, for values of « close to 0.5 and 2,
the results will not differ much and for values further from 0.5
and 2, the results will be similar to those for other choices of «.
Even though some measures yield identical results for « = 0.5
or 2, these values are interesting to explore.

To test statistical significance of the difference in perfor-
mance of the measures, we have used the nonparametric
Wilcoxon matched pairs signed rank sum test. This method
is better adapted to possibly skewed data than a method that
expects the results to be normally distributed. The null hypoth-
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esis for all tests assumes there is no difference in performance
between mutual information and the measure under scrutiny.
For each combination of modalities (PET-MR or MR-CT), the
statistical testing was performed on the rectified and nonrecti-
fied images separately, because of the dependence between an
image and its rectified version.

As afirstillustration of the performance of the different infor-
mation measures, registration functions are given in Figs. 2 and
3. These show the measures as a function of one of the transfor-
mation parameters. The position of zero translation (Fig. 2) or
zero rotation (Fig. 3) corresponds to the gold standard solution.

In Fig. 2, the behavior of the measures for translation along
an in-plane axis (left-right axis) is displayed. All measures show
well-behaved functions with an optimum near the gold standard,
except for the generalized measures of order 3. The order «
causes the functions to be more peaked for values of « larger
than 1 and, particularly, as « approaches 0. The behavior de-
scribed is typical, both across patients and across modalities.

Fig. 3 illustrates the sensitivity of the measures to the size of
the overlapping volume of the images. The measures are plotted
as functions of rotation around an in-plane axis (left-right axis).
Because the images have few slices and a large slice thickness
in comparison to the in-plane voxel sizes, the number of sam-
ples in the overlapping volume decreases relatively fast for ro-
tation around an in-plane axis (compared to translation along an
in-plane axis). This can lead to erratic behavior of the functions,
as is exhibited, for example, by x> and My g. The sensitivity
to overlap appears to be influenced by «. For « around 1, the
function values sometimes increase for large rotations (x> for
instance). When « either increases or decreases, this phenom-
enon declines.

The functions in Figs. 2 and 3 are not sampled densely. They
show the global behavior of the measures. By viewing densely
sampled functions on a smaller scale, we found that the smooth-
ness of the registration functions varied with a. Fig. 4 contains
close-ups of the optima of the functions in Fig. 3, for mutual
information and I, -information. The other measures of order «
behaved similarly to I,,. The same behavior was found for other
patients and PET-MR data.

In the following sections, we first compare the registration
measures for the overall method, i.e., registering the images as
one would in clinical practice. We then study the accuracy of the
measures in more detail, by using the gold standard as an initial
estimate for optimization. Finally, we focus on the smoothness
of the registration functions for varying a.

A. Registration

A first method to evaluate the performance of the different
registration measures is to register all image pairs assuming no
prior knowledge about the registration solution is known. All

translation and rotation parameters are initialized to zero. The
center of each image was taken as the origin of its coordinate
system. As a result, the centers of two images were aligned at
the beginning of the registration process.

When the optimization method had converged, we computed
a measure of registration error with respect to the marker-based
gold standard solution. This measure was defined as the max-
imum deviation between the transformation found and the gold
standard transformation, calculated on a sphere with its origin
located at the image center and having a radius of 10 cm.

The results for these registration experiments for all 35
PET and MR (T1-, T2-, and PD-weighted; both without and
with distortion correction) pairs and all 41 MR and CT image
pairs are summarized in Figs. 5 and 6, respectively. For each
registration measure, the 0.5 and 0.9 quantile errors over all
image pairs are given. We prefer the 0.9 quantile error to the
maximum value, because the maximum may represent a single
outlier. When the 0.9 quantile error is high, it means that at
least 10% of the distribution has a high error. Note that in
the figures the error bars for the larger errors have been cut
off for visualization purposes.

An important conclusion is that the registration errors of
many information measures are of the same order of magnitude
as the error of mutual information. Notable exceptions are the
information measures of order « = 3.0 for all experiments.
This is not surprising in view of the registration functions given
in Figs. 2 and 3. Furthermore, V-information shows rather
large 0.9 quantile errors for both combinations of modalities,
as do My g and several measures of order 0.2 and order 2.0 for
MR-CT registration.

The quantile errors, however, only give two measures on an
entire distribution. To better compare the complete distributions
of errors, we have applied the Wilcoxon rank sum test to the re-
sults. For PET-MR registration, V', I3, R3, and x3 were consid-
ered significantly different (p = 0.01) from the mutual infor-
mation measure I for both rectified and nonrectified data. For
the MR and CT data, the measures of « = 0.2 and 3.0 (1, R,,
and M, /x®), as well as My g and V-information yielded sig-
nificantly different results from mutual information based reg-
istration. When considering CT and nonrectified MR only, sig-
nificantly different results were also found for all measures of
order 0.5, 1.5, and 2.0.

Inspection of the registration errors revealed that these mea-
sures all performed significantly worse than mutual information.
The results of all other measures did not differ significantly from
the results of mutual information.

B. Accuracy

A drawback of the registration experiments in the previous
section is that the results depend on more than just the regis-
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tration measure. In particular, the optimization method plays an
important role in the outcome. Large errors may indicate that
the registration function does not have a global optimum at the
position of correct alignment, but it is more likely that they are
aresult of a less smooth function which is more difficult to opti-
mize. The registration experiments in the previous section were
carried out to evaluate the performance of the overall method,
whereas in this section we want to study the attainable accu-
racy of the registration measures, in other words, the position
of the function’s global optimum. To this end, we have repeated
all experiments using the gold standard solution as an initial es-
timate. This means that optimization should start close to the
global optimum (assuming the global optimum does not differ

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 11, 2!
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much from the gold standard) and the chances of finding it are
vastly increased.

Registration errors with respect to the gold standard were
computed as described before and the 0.5 and 0.9 quantile er-
rors can be found in Figs. 7 and 8.

Again, V-information is not a registration measure we would
recommend, at least not for multimodality registration. For the
measures of order «, different patterns emerge for PET-MR and
MR-CT registration. The best results are reached when « is ap-
proximately 1.5 or 2.0 for PET and MR images. For MR to
CT matching, on the other hand, the best results coincide with
a = 0.2. Our assumption is that the difference in optimal « is
caused by differences in the intensity distributions of the im-
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0.5 (dark grey) and 0.9 quantile errors (light grey) for MR to CT registration, starting close to the global optimum.

TABLE 1
P-VALUES FOR THE NULL HYPOTHESIS THAT VARIOUS INFORMATION MEASURES ACHIEVE AN ACCURACY SIMILAR TO MUTUAL INFORMATION,
WHEN STARTING FROM THE GOLD STANDARD

Iy Ios Ios I I3 I30 |4 My Moy Mos
PET-NR 0.1808 0.0026 0.0009 0.3570 0.2891 0.9308 0.0033 0.1219 0.0057 0.0017
PET-R 0.0843 0.1094 0.1578 0.0258 0.3305 0.1578 0.0092 0.5936 0.1981 0.0015
CT-NR 0.0002 0.0010 0.0582 0.1808 0.0129 0.0057 0.0129 0.0037 0.0087 0.2443
CT-R 0.1084 0.1005 0.9108 0.7652 0.3135 0.0304 0.0051 0.0080 0.2627 0.0028
x'? x>0 x*? Ro2 Ry Ry Ris Ryp R3p
PET-NR 0.7677 0.4342 0.2046 0.1138 0.0208 0.0106 0.0250 0.8757 0.8213
PET-R 0.8261 0.1401 0.7299 0.3305 0.0962 0.1771 0.0413 0.0555 0.3627
CT-NR 0.0853 0.0157 0.0041 0.0046 0.0087 0.9032 0.0325 0.0208 0.0017
CT-R 0.1913 0.1672 0.0276 0.0187 0.1672 0.4115 0.5257 0.9108 0.1169

Values in bold denote cases where mutual information is outperformed and which could be considered significant.
The data sets have been divided into two categories: nonrectified (NR) and rectified (R) MR images.

ages. By varying «, the sensitivity of the information measures
to the small probabilities in the distributions is changed. Small
probabilities are associated with small structures in the images,
which can play an important role in the fine-tuning and, hence,
the accuracy of the registration. On the other hand, small prob-
abilities are also a result of noise in the images, which can neg-
atively influence the registration. The optimal « for two images
is, therefore, dependent on the probability distributions and it
can vary for different modalities. It is likely it is affected by
the number of histogram bins, noise levels and the part of the
anatomy imaged. Whether an optimal choice of « can be deter-
mined a priori needs to be investigated further.

Some of the information measures actually seem to outper-
form mutual information in this accuracy test. We have used sta-
tistical significance testing again (Wilcoxon paired signed rank
sum test) to further compare the results. The chances that the
results for mutual information and the other measures do not
differ (the null hypothesis) are given in Table I. For chances
that could be considered significant (p < 0.01; note that no cor-
rection for multiple comparisons is included), we determined
whether the measure performed better or worse than mutual in-
formation. The cases of better performance are shown in bold
face.

Significantly more accurate results were found for nonrecti-
fied MR and CT images when « has a value around 0.2 or 0.5

(o, My, and R,,). In a single case, these results were also sig-
nificant with rectified MR images.

C. Robustness

The robustness of a method with respect to the initial misreg-
istration depends primarily on the smoothness of the registration
function. A smooth function is easy to optimize and large initial
misregistrations can be corrected. The functions in Figs. 2 and
3 show varying degrees of smoothness for the different mea-
sures. These functions, however, only show one-dimensional
lines through a six-dimensional (6-D) space and can, thus, only
be seen as an indication of the functions’ smoothness. In order
to study the behavior of a higher dimensional registration func-
tion more rigorously we have employed the following method.
Around the global optimum of a function we place a 6-D hyper-
cube of a certain size. Starting in the 64 corner points of the hy-
percube, we perform hill-climbing optimizations, i.e., we con-
sider all points that are a given step size away from the current
position and move in the direction of the one with the highest
function value until the current position has a value higher than
all neighboring points. We then count the number of different
maxima that the 64 optimizations ended up in. A maximum is
considered different when at least one of the six transformation
parameters differs by more than the hill-climbing step size from
all the maxima found. The number of different maxima found
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Fig. 9. Average (horizontal line) and standard deviation (vertical line) of the number of different end positions reached from 64 different starting positions, for

seven MR-T1 and CT data sets.

can be viewed as a measure of the smoothness of the function,
with fewer maxima denoting a smoother function.

The described method has been applied to all seven nonrec-
tified MR-T1 images and the corresponding CT images. The
center of the hypercube was placed at the position of the gold
standard solution. In this manner, the parts of the search space
being compared were identical for each measure. The gold stan-
dard solution is not equal to the global optimum, but the global
optimum of each measure (which we assume to be the posi-
tion found with the experiments in Section IV-B) was always
located within the hypercube. The sides of the hypercube had
a length of 10 units. Consequently, the transformation parame-
ters at the corner points each had an offset of 5 millimeters or
degrees from the gold standard solution. The step size for the
hill-climbing optimization was chosen to be 0.2 units (millime-
ters or degrees). Fig. 9 shows the average and standard deviation
of the number of different maxima that was found for all f-in-
formation measures under scrutiny.

Apart from the linear relationships between certain measures,
as given at the end of Section III, some other relationships also
hold. In particular, Rs = log(x*> + 1) and R, = 1/(a —
1) log(1+a(a—1)1,). The hill-climbing method we used is not
affected by operations like taking the logarithm. The results of
the related measures are, therefore, identical for our robustness
study. Other optimization methods however, such as Powell’s,
are influenced by the differences in the measures. This is the
reason the results for related measures do differ in Section IV-A,
in Figs. 5 and 6. Because the total performance of a similarity
measure can only be viewed in the broader context of its imple-
mentation, the nonlinearly related measures are interesting to
compare. For the smoothness experiments in this section, how-
ever, no information is gained from the inclusion of both [, and
R,,. They are both displayed for no other reasons than complete-
ness and easy comparison to figures in other sections.

The results confirm the behavior found in the plots in Figs. 2
and 3: the functions are most smooth for o around 1. As «
approaches 0 and also for increasing o (a > 2), the average
number of maxima found increases rapidly.

V. CONCLUSION AND DISCUSSION

We have described the results of registering clinical PET, MR
(T1-, T2—, and PD-weighted; both without and with distortion

correction) and CT images using different measures from in-
formation theory. The popular and extensively researched mea-
sure of mutual information was compared with V-, I,-, and
x“-information, as well as measures of order o defined by Ma-
tusita and Rényi. All measures denote the divergence of the joint
distribution of the images’ grey values from the joint distribu-
tion for complete independence of the images. Maximization of
these measures—of the dependence of the grey values—is as-
sumed to register the images.

The smoothness of the registration function (the function to
be optimized in order to find the transformation that registers
the images) was influenced by the value of «. The functions of
the different measures were shown to loose smoothness as «
approached 0 and, quite substantially, when o was larger than 2
(a = 3.0).

The performance of the measures was evaluated both by reg-
istration of the images without using any prior knowledge about
correct alignment and by registration using a marker-based gold
standard to initialize optimization. The former experiments
measure the performance of the complete method (including the
optimization method); the latter experiments study the accuracy
that can possibly be achieved for each measure. Having applied
statistical significance testing to errors computed against the
gold standard, V-information was found to perform poorly for
PET-MR and MR-CT matching, both in overall performance
and in accuracy. The Matusita measure M, usually yielded
poor results for a value of « close to 1, in accordance with
the fact that M; equals V-information. Measures of order «
usually showed deteriorating results as « increased, for a > 2.

For the accuracy experiments, significantly better results were
found for several measures, compared to mutual information.
For registration of CT and nonrectified MR images, more ac-
curate results were obtained for I,,, R, and M, with « either
0.2 or 0.5. In one case, the results were also significant for the
experiments with the rectified MR images.

The use of information measures other than mutual informa-
tion showed promise in achieving better registration results. Al-
though some measures yield registration functions that are less
smooth and, therefore, more difficult to optimize, I, R, and
M, were shown to occasionally produce more accurate results
for the registration of MR and CT images. Because /,, and R,,
equal mutual information for the limit « — 1, it may prove
beneficial to start registration with « = 1 to take advantage of
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the smoothness of the function and to adapt the value of « in
subsequent iterations for better accuracy. The optimal value of
« differed per modality. It could not be determined from the re-
sults found.

APPENDIX
1,-INFORMATION AND KULLBACK-LEIBLER DISTANCE

To proof: lim,—1 1o (P]|Q) > plog(p/q) (Kull-
back—Leibler distance)

1
lim ——

o ala 1) (1)

(p*q'~*logp — p*q'~*logq)
(2a—1)

lim 1o, (P||Q)

lim
a—1

p
Zplogq

using I’Hopital’s rule in the second step: if both lim,—,1 f(z)
and lim,—qg(z) equal zero, lim,—1(f(x)/g(z))
lima 1 (f'(2)/9'(2))-
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