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ABSTRACT

We describe the evaluation of a non-rigid image registration method for multi-modal data. The evaluation is
made difficult by the absence of gold standard test data, for which the true transformation from one image to
another is known. Different approaches have been used to deal with this deficiency, e.g., by using synthetically
warped data, by comparison of anatomic regions of interest identified either manually or automatically, and by
direct comparison of the registered data. Each of these approaches are limited and in this paper, we illustrate
some of the problems that arise based on their application to the evaluation of our multi-modal non-rigid
registration method.
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1. INTRODUCTION

The object of medical image registration is to bring anatomically homologous points in different images into
correspondence. In this way, the anatomy in one image is geometrically transformed into spatial alignment with
that in a second image. One consequence is that the two images are made visually similar. A large number of
registration methods exist,1 and several schemes for their validation have been proposed,2–4 including a highly
successful effort on the evaluation of rigid registration techniques.5 In contrast, the assessment of non-rigid
image registration methods has been problematic.

The difficulty arises because anatomic correspondence can only be established for a very limited set of image
pairs. In most situations, the imaged anatomies are different from one another (to a greater or lesser extent)
and thus a unique anatomic alignment does not exist. Consequently, most investigators have considered gross
parcellations of anatomy that are known to be shared across individuals, but the definition of these regions
presents its own difficulties, which we discuss further in the text.

A second line of validation strategies for non-rigid registration methods focus on the evaluation of image
correspondence. The implicit assumption is that improved image alignment reflects better anatomic registration,
which may not be true. Nevertheless, since a majority of non-rigid registration algorithms only optimize
the apparent similarity between the images of interest, direct comparisons of the registered data have been
pursued.6–9 Finally, evaluation of image as well as anatomic correspondence have been used with artificially
transformed data, for which the true alignment transformation is available and synthetically generated. In
this work, the role and limitations of each of these validation methods are discussed within the context of the
evaluation of a non-rigid registration technique for multi-modal data.

Corresponding author:
E-mail: peter.rogelj@fe.uni-lj.si
Address: Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1001 Ljubljana, Slovenia



2. A SYSTEM FOR NON-RIGID MULTI-MODAL REGISTRATION
The results shown in this article are obtained by a non-rigid registration approach based on a new class of multi-
modal similarity measures.10 These similarity measures are constructed from information over the images but
can be applied pointwise.

The basic scheme of our registration method is shown in Fig. 1. It consists of two stages: estimation of
external forces F that drive the registration of image B to A, and application of a spatial deformation model that
defines the relationship between these forces and the deformation of B, the latter described by a displacement
field U . Upon convergence of the method, the deformed version of B (now in register with A) is obtained by
applying the displacements U , as shown in Fig. 1 (b).

(a) (b)

Figure 1. Multi-modal non-rigid registration scheme for matching source image B to target image A (a). Deformation
of the source image B (b).

2.1. Estimation of External Forces
External forces F are estimated for each individual voxel of the source image. They consist of two terms: forward
force F F and reverse force F R, such that

F = F F − F R. (1)

Forward forces F F are forces that drive the registration in a way of moving each point of source image to best
match the reference. Reverse forces F R try to move source image such that certain point of reference image
matches the source image best. It is also possible to use either only forward or reverse forces, but using both
makes registration more consistent.8 In our case forces are calculated as follows:

F F (x) =
∂

∂d
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d=0

S (A (x + U (x) + d) , B (x)) , (2)

F R(x) =
∂
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S (A (x + U (x)) , B (x + d)) , (3)

where x = [x1, x2, x3]T denotes position of undeformed source image, and S(a, b) measures the similarity
between point a in the reference and point b in the source image.10 Generally, this point-based similarity
measure requires global knowledge, which is usually derived from global joint intensity distribution. In our
experiments three different measures are used. The first one is entropy based:

SH = log (p (i)) , (4)

where i = [iA, iB ]T is the intensity pair that consists of point intensities on both images, and p(i) is its joint
probability estimated from the whole images. The second similarity measure is based on segmentation10:

SS = p(CS |i), (5)

where p(CS |i) is probability that intensity pair i belongs to one of the intensity classes Ci ∈ CS , which correspond
to correct tissue matching. The last measure is derived from previous ones by using each intensity pair as a
different intensity class:

SUH = log (p (iA|iB) p (iB |iA)) , (6)

where p(iA|iB) and p(iB |iA) are conditional intensity probabilities.



2.2. Spatial Deformation Model
The design of spatial deformation model follows the idea that linear model can be separated into two parts:

UF = kEF , (7)

U(x) =
∫

UF (x − r)G(r)dr = (UF ⊗ G)(x) = ((kEU) ⊗ G)(x). (8)

The first part (7) is Hooke’s law, which says that the point moves proportionally to the applied force F for
displacement UF . The second part (8) is a spatial convolution filter and models interdependence of points.
The kernel for elastic media is described by Bro-Nielsen,11 but for simplicity we use Gaussian or exponential
filtering. Due to imperfect matches in previous iterations the forces F are applied again in the next iteration
and therefore displacements UF in each iteration are just the improvements of already obtained configuration.

By the principle of linearity final displacements can be calculated by summing up partial displacements,

U (t) = U (t−1) + U
(t)
F ⊗ G, (9)

where t denotes iteration number. This is the concept of incremental deformations12 used to accommodate
large nonlinear deformations, but because external forces F (x) are highly nonlinear function of displacements
U(x),13 the resulting deformation does not necessarily follow the selected (linear) spatial deformation model.
In our case this is compensated by introducing point dependence on the accumulated displacements:

U (t) = (U (t−1) + U
(t)
F ) ⊗ G (10)

In this way the displacements are filtered throughout the iteration process, such that old forces contribute less
than later ones. The undesirable side effect of this filtering is that as the external forces go to zero, the image
gradually returns back to its undeformed configuration. Thus, additional external forces are needed to sustain
the deformed condition. Thus, we simply combine the two spatial deformation models (Fig. 2):

U (t) = (U (t−1) + U
(t)
F ⊗ G1) ⊗ G2 (11)

The first filter (G1) enables large deformations and precise registration while the second one (G2) serves to
improve the linearity of the results. The coefficient ke controls registration speed and changes during the
registration for each point independently, to allow fast convergence as well as precise, though small registration
steps.

Figure 2: Spatial deformation model.

The registration uses multi-resolution approach, which starts at lowest image resolutions that remove image
differences with large spatial extent, and continues with higher resolutions that remove more and more detailed
image discrepancies.

3. EVALUATION

Ideally, our evaluation would judge the registration results by measuring the residual difference between corre-
sponding anatomies over the image domain. As mentioned at the outset, such a correspondence does not exist
in the majority of practical instances, and instead we focus only on a limited set of anatomical features for
which homologies can be established between the image pair (with a certain amount of confidence). For these
features, comparisons can be made based on their obtained and “true” mappings or displacements between the
images. Alternatively, the spatial mapping can be manufactured, enabling the evaluation to be conducted over
all image points in these synthetic data sets.



3.1. Recovering Synthetic Deformations

Figure 3 illustrates a general experimental design for the construction of synthetic test data, for which the
correspondence and hence transformation between the images is known. The evaluation procedure makes use of
two images, A and B, that are already in register, e.g., acquired at the same time but using different acquisition
modalities or protocols.

It is also common to use the same image for A and B, but the results may be biased in favor of the algorithm
because of correlated image noise or artifacts. Image B is deformed using some known transformation U0 to
obtain image B′, which is then registered to image A. Ideally, the obtained transformation UR should equal
U−1

0 . The quality of the registration can thus be measured by the RMS (root-mean-squared) residual difference
eRMS between the transformations U−1

0 (x) and UR(x), or, equivalently, their corresponding displacements, over
pixels x:

eRMS =

√
1

NΩ

∑
x∈Ω

(
U−1

0 (x) − UR(x)
)2

, x = [x1, x2, x3]T . (12)

Non-object voxels are excluded in the evaluation through the specification of the object domain Ω (in practice,
a binary mask defined over the image), where NΩ denotes the number of voxels in Ω.

Figure 3: Evaluation scheme for non-rigid registration, based on synthetically deformed images.

As described in Section 2, our non-rigid registration consists of two independent parts, estimation of ex-
ternal forces that are derived from evaluating the relevant similarity measure, and the application of a spatial
deformation model.

This modularity makes the synthetic deformation approach suitable for comparing similarity measures.
Namely, ranking of comparison results is invariant to actual deformation as well as spatial deformation model.
The same ranking is expected for real deformations.

By varying U0, the use of synthetic test data allows systematic exploration of the method’s performance
under different kinds and degrees of distortions between images. Nevertheless, the major drawback of synthetic
data is their lack of sufficient realism; in certain instances, synthetic data is not even an option because it is
impossible to construct a phantom modeling the clinical situation of interest. Moreover, any evaluation based
on synthetic data must be careful of the introduction of bias, in which the algorithm may systematically favor
the class of simulated deformations chosen for the study. This validation approach can thus provide only limited
information on methods for intersubject registration.

The results for the similarity measures SH , SS and SUH are shown in Table 1. The results were obtained
by cross modality MRI T1-PD registration, using Brainweb simulated brain images14 and real data. Three



different types of Brainweb images were used: normal images with 9% of noise and images with 40% intensity
shading, with 1× 1× 1 mm voxel size. For registration of real images we used MRI T1 as a reference with voxel
size 0.86× 0.86× 0.99 mm, while the source MRI PD image had 0.98× 0.98× 1.1 mm voxel size. The synthetic
deformation was generated as a sum of Gaussian functions, in our case six functions with standard deviation
ranging between 15 and 60 mm were used, which resulted in initial displacement error erms = 6.90 mm for
simulated Brainweb images, and erms = 14.15 mm for real images. Results show that registration error eRMS

Table 1: RMS registration error eRMS (mm) for different similarity measures.

similarity Brainweb Brainweb Brainweb real
measure normal 9% noise 40% shading images

SH 0.64 0.64 3.12 2.37
SS 0.42 0.34 1.50 1.61

SUH 0.39 0.38 0.89 2.08

is relatively small for all the similarity measures and all the images. This indicates that spatial deformation
model used suits to applied deformations, but it does not necessarily mean that registration is appropriate for
solving real problems, as synthetic deformation was not designed according to real tissue properties. However,
comparison of results shows that measures SS and SUH are better than SH measure. They both yield similar
results. Measure SS is supposed to be better for initial steps as it better distinguishes between intensity classes
that represent correct and incorrect matching. On the other hand it does not model partial volume voxels,
which makes it less appropriate for final registration steps than measure SUH . Results for real images are worse
than results of simulated images, because of worse image quality and higher intensity variation of surrounding
tissues.

3.2. Segmentation-based Evaluation

The gold standard for evaluating registration is the correspondence of anatomic features between images. For
that purpose images must first be segmented to identify the location of corresponding features in the images.
Different types of features may be extracted, e.g., point landmarks, segmented structures or regions of interest
(ROIs), and classified tissue types.

The drawback associated with the first two kinds of features is that they invariably require human judge-
ment, which will be subjective, difficult to reproduce and possibly erroneous.2 Nevertheless, expert defined
anatomic landmarks or regions of interest remain the gold standard for evaluation of registration accuracy.
The correspondence between segmented regions can be measured using the same methods as those used in the
evaluation of image segmentation methods.15

A commonly applied measure of regional overlap, SR, is the ratio of the intersection of corresponding regions
in both images (RA and RB) and their union:

SR =
RA ∩ RB

RA ∪ RB
, (13)

where SR = 1 indicates perfect agreement and SR = 0, complete disagreement. However, evaluation based on
segmented structures can only evaluate the boundary location of regions and cannot detect incorrect match-
ing within those regions. Furthermore, it is not possible to distinguish between registration errors and true
morphological variability.

In its most simple form, the correspondence between anatomies can be evaluated at the level of tissue type of
a voxel; that is, for brain images gray matter should be matched to gray matter, white matter to white matter,
etc. The associated regions of interest, in contrast to the structures considered above, can be extracted with
significantly less or more reproducible human involvement. The drawback here, as above, is that only limited
information can be inferred about the accuracy of the anatomic alignment within the regions.



It is evident that the viability of the current validation approach depends critically on the quality of the
ground-truth segmentation. Since human intervention is typically necessary to establish ground truth, the
resultant uncertainty in the segmentations limits the precision with which the evaluation can be performed.

We next illustrate the segmentation-based approach for evaluation of intersubject registration by our method
on MRI T1 brain images. Our dataset contains some two-dimensional segmented regions. We show position of
contours of these regions overlaid on registered image. Such visualization can be used for evaluation performed
by medical experts (see Fig. 4). The voxel size of images used in this experiment was 0.94 × 0.94 × 1 mm.

(a) (b)

(c) (d)

Figure 4. Intersubject registration of MRI images of the brain. (a) Target image, (b) overlaid with ROIs for several
subcortical structures. (c) Rigidly registered source image, overlaid with subcortical ROIs from the target image. (d)
Non-rigidly registered source image, overlaid with subcortical ROIs from the target image.

We also evaluated the intersubject registration by comparing the overlap of different tissue types. We
obtained 60% overlap of white matter and 54% of gray matter. We attribute such low overlap mostly to the



quality of segmentation and also to large anatomical differences. For comparison, the tissue overlap for the best
result achieved using synthetic deformations, eRMS = 0.34 (see Table 1), was 96% for gray matter and 0.97%
for white matter.

3.3. Direct Comparison of Registered Data

Owing to the lack of validation data with which to test a method’s accuracy in anatomic registration, an alterna-
tive approach is to examine the quality of image alignment obtained with the method. It should be recognized
from the outset that such evaluations are clearly far from optimal. They test a different objective—image
correspondence—than that—anatomic correspondence—which we are interested in. Consequently, algorithms
can yield correspondences that are anatomically incorrect but yet produce registered data that appear highly
similar. Nevertheless, when combined even with a very limited evaluation based on anatomic features, the
quality of image alignment can provide a useful assessment of the registration performance of an algorithm.

Evaluation of the quality of image alignment is generally conducted visually by experts but in a qualitative
fashion. Results can be shown as an overlay of one image on top of the other, either by using different methods
for displaying the entire image (e.g., image difference, “chessboard” image), or by only illustrating certain
features, such as edges or points.

Figure 5 demonstrates the approach on the application of our method to PET-CT registration of thoracic
images. In this case, the acquisitions were made at different phases of the respiratory cycle and, consequently,
there are large differences between the imaged anatomic configurations. In addition, the images have relatively
low resolution: the voxel size of the PET images as well as the CT image was 4 × 4 × 4 mm.

4. CONCLUSION

In this paper we have illustrated some of the problems pertaining to evaluation, and discuss their origins.
Because of unknown transformation that would ideally register real medical images, evaluation must be accom-
plished using other approaches, based on synthetic deformation, image segmentation or direct image comparison.
However, all these approaches can lead to certain evaluation error, as no method can reliably deal with all kinds
of misregistration.

Evaluation based on synthetic deformation is less appropriate for overall evaluation of registration, because
it favors deformations that are similar to the synthetic ones. It is still appropriate for comparison of methods
that are not related to the spatial deformation model as well as for testing overall registration capabilities.
Segmentation based evaluation cannot detect misregistration within segmented features and furthermore do
not distinguish between registration errors and true variability. However, by using a large number of correctly
segmented smaller features, such evaluation converges towards the ideal evaluation. Evaluation based only on
the images is the least reliable.

There is also a question of registering morphologically different structures. Should morphological differences
remain or not? Most evaluation methods cannot distinguish between registration errors and true variability,
so ”good” registration results can be obtained only by changing source image morphology. If morphological
differences are supposed to be preserved, registration can be correctly evaluated only when it is controlled by
medical experts.

The evaluation results shown in this paper must be understood only as a starting point towards extensive
evaluation of the method that we plan for the future.
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Figure 5. PET-CT registration of thoracic images. (a) Target CT image. (b) Source PET transmission image. (c)
Rigidly and (d) non-rigidly registered PET images, overlaid with contours derived from the CT image.
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