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ABSTRACT
Dual-energy (DE) X-ray computed tomography (CT) has shown promise for material characterization and for providing
quantitatively accurate CT values in a variety of applications. However, DE-CT has not been used routinely in medicine to
date, primarily due to dose considerations. Most methods for DE-CT have used the filtered backprojection method for im-
age reconstruction, leading to suboptimal noise/dose properties. This paper describes a statistical (maximum-likelihood)
method for dual-energy X-ray CT that accommodates a wide variety of potential system configurations and measurement
noise models. Regularized methods (such as penalized-likelihood or Bayesian estimation) are straightforward exten-
sions. One version of the algorithm monotonically decreases the negative log-likelihood cost function each iteration. An
ordered-subsets variation of the algorithm provides a fast and practical version.
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1. INTRODUCTION
Tomographic images of the spatial distribution of attenuation coefficients in the human body are valuable for medical
diagnosis. Most hospitals have CT scanners for producing such images. Attenuation images are also useful in a variety
of scientific studies, and in industry for nondestructive evaluation and for security purposes like baggage inspection. CT
scanners are also being integrated into SPECT and PET scanners to provide accurate attenuation correction for emission
image reconstruction and for precise anatomical localization of the functional features seen in the emission images.

The attenuation coefficients of all materials depend on the energy of the incident photons. In clinical X-ray CT imag-
ing, the source of the X-ray photons, bremsstrahlung radiation, has an inherently broad energy spectrum. Each photon
energy is attenuated differently by the object (body). When such transmission measurements are processed by con-
ventional image reconstruction methods, this energy-dependent effect causes beam-hardening artifacts and compromises
quantitative accuracy. To avoid these difficulties, one could employ a radioisotope source with a monoenergetic spectrum,
but the practical intensity is usually much lower leading to lower SNR. Higher intensities are obtained from monoener-
getic synchrotron sources, which are expensive currently [1]. Many gamma-emitting radioisotopes also emit photons at
several photon energies, and the methods described in this paper are also useful for systems that use gamma sources with
multiple energies, such as some SPECT transmission scans [2].

We have previously developed a statistical method for reconstructing images from a single measured X-ray CT sino-
gram [3]. To our knowledge, that method was the first statistical approach to include a complete polyenergetic source
spectrum model in a penalized-likelihood framework with a monotonically converging iterative algorithm. De Man et
al. also proposed a solution to that problem based on a somewhat different object model and an algorithm that may not
be monotonically converging [4]. When only a single sinogram (for a given polyenergetic source spectrum) is available,
usually one must make some fairly strong assumptions about the object’s attenuation properties to perform reconstruc-
tion. For example, one may segment the object into soft tissue and bone voxels [3, 5–8] or mixtures thereof [9]. Using
multiple measurements with “energy diversity,” i.e., a set of two or more energy spectra, one can avoid this segmentation,
eliminating one potential source of errors.

The energy dependence of attenuation coefficients is an inconvenience in conventional X-ray CT. Viewed from a
broader perspective however, this dependence can be considered an asset in that it allows for the possibility of material
characterization from transmission tomographic measurements. Early work by Alvarez and Macovski [10–13] showed
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how to approximate the energy dependence of attenuation coefficients in terms of a Compton scattering component and a
photoelectric absorption component (or, roughly equivalently, electron density and atomic number [14]) and how to sepa-
rate these two components in the projection domain prior to tomographic reconstruction. The separate component images
could then be combined to synthesize a displayed CT image at any energy of interest [15]. Later enhancements included
noise suppression [16], considerations in basis material choices [17–22], energy optimization [23], beam-hardening as-
sessment and correction [24,25], algorithm acceleration [26,27], scatter correction [28], and evaluation of precision [29].

Numerous potential applications of dual-energy imaging have been explored, including rock characterization for petro-
chemical industrial applications [30, 31], soil sample analysis in agriculture [32], bone mineral density measurements
[33–39], bone marrow composition [40], adipose tissue volume determinations [41], liver iron concentrations [42, 43],
explosives detection [44], detection of contrast agents in spinal canal [45], nondestructive evaluation [46], body composi-
tion [47], carotid artery plaques [1], and radioactive waste drums [48]. Accurate correction of Compton scatter in X-ray
CT may also benefit from dual-energy information.

More recently, there has been considerable interest in using X-ray CT images to correct for attenuation in SPECT
[49, 50] and PET image reconstruction [51]. In these contexts, one must scale the attenuation values in the X-ray CT
images from the X-ray photon energies to the energies of the gamma photons used in SPECT and PET imaging. Kinahan
et al. have noted that accurate scaling from X-ray to PET energies may require dual-energy X-ray CT scans [51]. This is
particularly challenging in the “arms down” mode of PET scanning. If the primary purpose of the dual-energy X-ray CT
scan is PET attenuation correction (rather than diagnosis), then one would like to use low X-ray doses, resulting in the
need for statistical image reconstruction methods to minimize image noise.

The conventional disadvantage of dual-energy methods is the increased scan time if two (or more) separate scans are
acquired for each slice. This doubling in scan time can be avoided by methods such as alternating the source energy
spectra between each projection angle [52] or between each slice [53] or conceivably in other arrangements. Special
split detectors have also been proposed [54]. The method described in this paper is based on models that are sufficiently
general to accommodate any such forms of energy diversity.

Prior to the 1990’s, all work on dual-energy X-ray CT used the FBP reconstruction method. In the early 1990’s
there were a few iterative methods published for dual-energy CT reconstruction. Michael et al. presented an iterative
method to achieve beam-hardening correction and decomposition into basis materials [55]. Markham and Fryar applied
the ART algorithm [56]. Kotzki et al. applied a conjugate gradient algorithm [38]. These iterative approaches treat the
problem as “finding the solution to a system of equations.” These algebraic approaches can improve the accuracy relative
to FBP methods, but they do not directly address the radiation dose issue. In contrast, in statistical image reconstruction
approaches, the problem is posed as finding the images that best fit the measurements according to the (possibly nonlinear)
physical model and a statistical model. Proper statistical modeling can lead to lower noise images, thereby enabling
reductions in X-ray dose to the patient.

Statistical approaches have been extensively investigated, particularly in the last ten years, for monoenergetic trans-
mission measurements; see [57] for a recent review. The method described in this paper is a novel extension of statistical
image reconstruction approaches from the monoenergetic case to the case of measurements with energy diversity. We de-
scribe a statistical (maximum likelihood or penalized likelihood) method for reconstructing an “attenuation map” µ(�x, E)
from polyenergetic X-ray (or gamma-ray) tomographic measurements.

Recently, Clinthorne and Sukovic have investigated iterative algorithms for dual-energy and triple-energy CT recon-
struction based on a weighted least-squares approach, including object-domain constraints [58–62]. That work assumed
monoenergetic measurements, whereas the proposed method uses a measurement model that accommodates a broad en-
ergy spectrum. Gleason et al. [63] also hint at the need for ML solutions to the multi-energy problem.

Like most dual-energy reconstruction methods, the proposed method requires some knowledge about the X-ray beam
spectrum [64]. This spectrum can be measured directly [65] or estimated from calibration phantoms [66, 67]. In the
final analysis, rather than requiring the entire spectrum, the algorithm requires only two nonlinear functions that may be
feasible to measure empirically for a given scanner. We conjecture that the method will not exhibit inordinate sensitivity
to imperfections in the source spectrum model. We plan to perform sensitivity analyses using tools such as those in [68].

Section 2 presents the physical model. Section 3 presents the statistical model. The derivation of the algorithm and
reconstruction results will be submitted elsewhere, well before these proceedings finally arrive. In the first author’s view,
these proceedings are unreasonably inaccessible. Visit the first author’s homepage for preprints and reprints. Section 4
discusses future directions.
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2. PHYSICS AND OBJECT MODELS
Let µ(�x, E) denote the object’s linear attenuation coefficient as a function of spatial position �x and photon energy E . The
ideal tomographic imaging system would provide a complete description of µ for �x in the entire field of view and for a
wide range of energies E . In practice, the goal is to reconstruct an estimate of µ from a finite collection of “line-integral”
measurements. (For simplicity we assume the object is static, and ignore any temporal variations, although it may be
possible to generalize the results to the dynamic case [69].)

2.1. General measurement physical model
We assume the following general physical model for the measurements. We collect transmission tomographic measure-
ments with Ns ≥ 1 different incident spectra, e.g., by changing the X-ray source voltage and/or the source filtration.
For each incident spectra, we record tomographic “line integrals” at N d radius-angle pairs, i.e., we form a sinogram
(not necessarily completely sampled). Let Ymi denote the measurement for the ith ray for the mth incident spectrum,
m = 1, . . . , Ns, i = 1, . . . , Nd. For notational simplicity we present the case where the same number of rays are recorded
for each incident spectrum. The method generalizes easily to the case where the number or configuration of rays is dif-
ferent for different incident spectra, which may be useful in practice. We refer to {Ymi}

Nd
i=1 as the measurements for the

“mth incident spectrum.”

We assume that the measurements are random variables with the following ensemble means:

Eµ[Ymi] = ȳmi[µ] ,

∫
Imi(E) exp

(
−

∫
Lmi

µ(�x, E) d�

)
dE + rmi, (1)

where
∫
Lmi
· d� denotes the “line integral” function for the ith position and mth energy ∗, and Imi(E) denotes the product

of the source energy spectrum and the detector gain (for the mth incident spectrum), and rmi denotes “known” additive
background contibutions such as room background, dark current, and/or scatter (see discussion). We treat each I mi(E)
and rmi as known and nonnegative. Determining Imi(E) in practice may require careful calibration procedures [66]. One
usually determines rmi by some preprocessing steps prior to iterative reconstruction. For example, the rmi’s may be
equated to known constants related to the “shifted Poisson” approach based on detector noise models [70–73].

This paper describes methods for reconstructing µ from tomographic measurements with energy diversity under log-
likelihood models based on the general physical model (1). All previously published approaches have been based on
simplifications of (1) or of the associated log-likelihoods, except [80]. We first describe those “conventional” simplifica-
tions, and then proceed to describe the new approach.

2.2. Basis material decomposition (object model)
We have only a finite set of measurements whereas µ is a continuous function of energy and spatial location. Parametric
statistical estimation requires some form of discretization of µ. For the polyenergetic case, one must parameterize both the
spatial and energy dependencies. To our knowledge, all prior work has considered parameterizations that are separable
in the spatial and energy (or material density) dimensions. Separable approaches seem simple and natural. For example,
Alvarez and Macovski [10] assume that

µ(�x, E) =
Ne∑
l=1

fl(E)αl(�x), (2)

where each fl(E) depends only on energy but not on spatial position, α l(�x) is the corresponding coefficient that varies
spatially, and Ne is usually 2. Alternatively, Clinthorne et al. [58, 60, 62] assume that

µ(�x, E) =
Ne∑
l=1

βl(E)ρl(�x), (3)

where βl(E) denotes the energy-dependent mass-attenuation coefficient of the lth material type (e.g., soft tissue, bone
mineral, contrast agent, etc.), and ρ l(�x) is the density of that material at spatial location �x. This latter parameterization
∗Typically Lmi will be independent of m, except in systems such as [52] where alternate projection views have different energy

spectra.
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facilitates enforcing physical constraints such as nonnegativity [58]. Both of the above parameterizations are separable in
space / energy. This separability property is needed for the type of algorithm derived in [10] and [58, 60, 62]. The more
general algorithm derived in this paper does not require separability. We describe a more general parameterization in (9)
below after reviewing conventional approaches.

2.3. Conventional dual-energy approach
Substituting (2) into (1) yields the following simplified model for the measurement means:

ȳmi =

∫
Imi(E) exp

(
−
∑
l

fl(E)

∫
Lmi

αl(�x) d�

)
dE + rmi, m = 1, . . . , Ns.

Ignoring measurement noise, in the usual case where Lmi = Li is independent of m, one can view this expression for
the ith ray as a system of Ns nonlinear equations in Ne unknowns, where the lth unknown is t li ,

∫
Li
αl(�x) d�, which is

the ith line integral through the lth basis material. If Ns ≥ Ne, then for each i, one can solve these nonlinear equations
by iterative methods or by polynomial approximation [10] yielding estimates t̂li of the tli’s. Then one can apply either
the conventional filtered back-projection (FBP) or a “conventional” iterative reconstruction algorithm separately to each

sinogram
{
t̂li
}Nd
i=1

to estimate the component images αl(�x). The FBP method usually yields unacceptably noisy estimates
of the component images, hampering its acceptance. (Convex combinations of the component images have at best the
same SNR as conventional X-ray CT images [15].) One could apply an iterative reconstruction method instead of FBP to
estimate αl(�x) from the t̂li’s. For example, one could use error propagation methods, e.g., [68], to estimate the covariances
of the t̂li’s and then estimate the αl’s using a weighted least-squares cost function based on those covariances, e.g., [74].
Such an approach would be suboptimal statistically since the nonlinear processing that leads to the t̂li’s obscures their
statistical distribution and seems to limit one to least-squares formulations. (Nevertheless, such approaches may be only
“slightly” suboptimal at moderate dose levels so warrant further consideration.) Instead, we pursue a “preprocessing free”
maximum-likelihood approach here.

2.4. Conventional monoenergetic approximation
Another way to simplify (1) is to assume that each incident spectrum is monoenergetic. That model is realistic for some
radioisotope sources, but is a considerable idealization of X-ray sources. Mathematically, the monoenergetic assumption
is expressed

Imi(E) = Imiδ(E − Em), (4)

where Em denotes the energy of the mth setting, m = 1, . . . , Ns. Under this assumption, the model (1) simplifies to

ȳmi = Imi exp

(
−

∫
Lmi

µ(�x, Em) d�

)
+ rmi. (5)

In this case one can estimate the line integrals �mi ,
∫
Lmi

µ(�x, Em) d� by a simple logarithm:

�̂mi , log

(
Imi

Ymi − rmi

)
≈

∫
Lmi

µ(�x, Em) d�. (6)

Again, one could apply the FBP method to reconstruct µ(�x, Em) from
{
�̂mi

}Nd
i=1

.

Clinthorne and Sukovic combined (6) with (3) to formulate a penalized weighted least-squares image reconstruction
method for dual-energy and triple-energy tomographic reconstruction [58–62]. Their simulations matched the monoen-
ergetic model (4), so the question of whether a monoenergetic approximation is adequate for iterative dual-energy tomo-
graphic image reconstruction is an open one. The algorithm proposed in this paper will facilitate comparisons between
the full polyenergetic treatment and the simpler monoenergetic approximation.

The case of a single monoenergetic measurement, i.e., N s = 1 in (4), is the most extensively studied tomographic
reconstruction problem, and numerous non-statistical and statistical methods have been proposed for this case.
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To estimate µ by iterative statistical methods, we must eventually parameterize it. In the single monoenergetic case,
we usually assume

µ(�x, E1) =

Np∑
j=1

bj(�x)µj

for some spatial basis functions bj(·), such as indicator functions over each pixel’s support. Substituting into (5) yields

ȳ1i[µ] = I1i exp


− Np∑

j=1

aijµj


+ r1i, (7)

where

aij ,

∫
Li

bj(�x) d�. (8)

The model (7) is used in “conventional” statistical methods for transmission image reconstruction, e.g., [57, 75–77].

2.5. Beam-hardening correction
Elbakri and Fessler combined (3) with the polyenergetic measurement model (1) in the single scan case (N s = 1) to
develop a statistical method for X-ray CT image reconstruction with compensation for beam-hardening, assuming that the
image can be segmented into soft-tissue and bone voxels [3]. This same assumption is used in conventional non-statistical
methods for beam-hardening correction [5, 7, 8]. De Man et al. proposed another statistical method for beam-hardening
correction, assuming that all materials in the patient have spectral properties that are linear combinations of two basis
materials [4]. An advantage of energy diversity approaches (N s > 1) is that they eliminate the need for segmentation and
other approximations that may hinder material characterization.

2.6. Proposed polyenergetic approach
As noted above, most prior work has considered object parameterizations that are separable in the spatial and energy
(or material density) dimensions, as in (2) and (3). In the interest of generality here, we derive our algorithm under the
following very flexible parameterization:

µ(�x, E) =
Kb∑
k=1

χk(�x, E)xk, (9)

where Kb is the number of basis functions and xk is the unknown coefficient of the kth basis function. By taking
Kb sufficiently large and using suitably localized χk’s, any function µ can be approximated to arbitrary accuracy by
(9). Both of the preceding parameterizations (2) and (3) are special cases of (9). For the usual two-material separable
parameterization, we haveKb = 2Np where Np is the number of voxels. A nonseparable basis may be useful for example
if a certain material component (such as a metal implant) is known a priori to be present only in certain image locations.
This may be useful even for the bone-mineral component if a priori segmentation can adequately identify the bone regions.

Using the general parameterization (9), the inner integral in (1) becomes:

∫
Lmi

µ(�x, E) d� =

∫
Lmi

[
Kb∑
k=1

χk(�x, E)xk

]
d� =

Kb∑
k=1

amik(E)xk , [Am(E)x]i

where the coefficient vector is x , (x1, . . . , xKb), and whereAm(E) is a Nd ×Kb matrix with elements

[Am(E)]ik = amik(E) ,

∫
Lmi

χk(�x, E) d�,

for i = 1, . . . , Nd, k = 1, . . . ,Kb. Substituting into (1) yields the following discrete-object discrete-data mean model:

ȳmi(x) =

∫
Imi(E)e

−[Am(E)x]i dE + rmi. (10)

In the absence of noise, our goal would be to estimate x from the measurements {Ymi} using the model (10).
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3. STATISTICAL MODEL AND LIKELIHOOD
This section describes our assumptions about the measurement statistics and formulates the log-likelihood.

3.1. Statistical models
If one used photon-counting detectors with modest deadtimes, then it would be reasonable to assume that the measure-
ments are statistically independent Poisson random variables with means (1), i.e.,

Ymi ∼ Poisson{ȳmi[µ]} .

In this case, for a given measurement realization Ymi = ymi, the corresponding negative log-likelihood of x has the form

−L(x) ≡
Ns∑
m=1

Nd∑
i=1

ȳmi(x)− ymi log ȳmi(x),

where ≡ means “equal to within irrelevant constants independent of x.” This is the model used in most statistical image
reconstruction methods for transmission tomography to date [57] and it is natural for photon-counting detectors such as
those used in PET and SPECT transmission scans.

Although photon-counting X-ray detectors do exist [78], commercial X-ray CT systems use current integrating de-
tectors that yield energy-dependent signals and additional electronic noise variance beyond that due to Poisson counting
variability [79]. To first order, additive electronic noise can be approximated within the Poisson model using the r mi terms
in (1) by a simple modification of the “shifted Poisson” approach [70–73]. It is likely that the “exact” likelihood for such
detectors is analytically intractable, so approximations will undoubtably be used in practice. For example, Clinthorne
describes a sophisticated point-process model for X-ray detection and uses its first and second moments [80]. Rather than
postulating and attempting to validate any particular approximate statistical model in this paper, we derive the algorithms
under very general assumptions that will accommodate a wide variety of log-likelihood models and approximations that
might be proposed in the future.

We make the following four assumptions about the measurement statistics.

1. The measurements {Ymi} are statistically independent.

Due to effects like scintillator afterglow and electronics lag, statistical independence may not hold exactly in prac-
tice, but it is likely to be an accurate approximation for most X-ray CT systems. Accounting for whatever statistical
dependencies may be present in real systems would likely be quite challenging.

2. The marginal negative log-likelihood of Ymi has the formψmi(ȳmi(x)) for some scalar functionψmi. For example,
if the measurements have Poisson distributions, then

ψmi(y) = y − ymi log y. (11)

This is perhaps the simplest case, and the easiest one to keep in mind on the first readings, but we allow for much
more general ψmi’s in the derivation.

3. The final two assumptions are more technical and concern the existence of convenient surrogate functions for the
ψmi’s of interest. We believe that all physically plausible ψmi’s will satisfy these quite general assumptions. They
are certainly satisfied for Poisson and Gaussian statistical models, as shown in [75].

For each ψmi, we assume that there exists a corresponding scalar surrogate function hmi(·, ·) that is convex on
(0,∞) in its first argument. By surrogate function, we mean a function that satisfies

hmi(y, y) = ψmi(y), ∀y > 0 (12)

hmi(y, z) ≥ ψmi(z), ∀y, z > 0. (13)

These conditions are the key to deriving an iterative algorithm that monotonically decreases the cost function defined
below [75]. For each z > 0, we also assume that hmi(·, z) is differentiable in its first argument in an open interval
around z. This assumption, combined with (12) and (13), ensures the following tangent condition:

ḣmi(z, z) = ψ̇mi(z), ∀z > 0, (14)

where ḣmi(y, z) , ∂
∂y
h(y, z).
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4. Convexity alone may be sufficient for some types of iterative minimization algorithms. However, to enable use of
very simple descent methods we will follow the approach taken in most of our recent work by finding parabolic
surrogates [3, 75, 81]. The following assumption ensures that the necessary parabola exists, which it certainly does
in the Poisson case among others [75].

For any x ≥ 0, we assume that the following function

gmi(�,x, E) , hmi
(
bmi(x, E)e

−� + rmi(x, E), ȳmi(x)
)

(15)

has a quadratic surrogate for � ≥ 0, where we define the following functions for later use:

bmi(x, E) , ȳmi(x)/tmi(x, E) (16)

tmi(x, E) , exp(−[Am(E)x]i) + rmi/Imi (17)

Imi ,

∫
Imi(E) dE (18)

rmi(x, E) , bmi(x, E)rmi/Imi. (19)

In other words, we assume that there exists a curvature function cmi(x, E) such that the following parabola is a
surrogate for gmi:

qmi(�,x, E) , gmi([Am(E)x]i,x, E)

+ ġmi([Am(E)x]i,x, E)(�− [Am(E)x]i) +
1

2
cmi(x, E)(�− [Am(E)x]i)

2, (20)

where ġmi(�,x, E) , ∂
∂�gmi(�,x, E). In assuming that qmi is a surrogate for gmi, we mean that cmi is such that

qmi(�,x, E) ≥ gmi(�,x, E), ∀x ≥ 0, ∀� ≥ 0. (21)

The construction (20) provides the following two surrogate properties:

qmi(�,x, E)
∣∣∣
�=[Am(E)x]i

= gmi([Am(E)x]i,x, E)

q̇mi(�,x, E)
∣∣∣
�=[Am(E)x]i

= ġmi([Am(E)x]i,x, E).

3.1.1. Existence of convex surrogates

The existence of a differentiable convex surrogate hmi satisfying (12) and (13) always holds when ψmi is twice differen-
tiable, which it will always be for physically plausible statistical models.

Let ψ(y) be any twice differentiable function and define

h(y, z) = ψ(z) + ψ̇(z)(y − z) +

∫ y
z

(y − τ)max
{
ψ̈(τ), ψ̈(a), 0

}
dτ. (22)

This surrogate h is convex and (twice) differentiable and satisfies (12) and (13). The construction (22) may not be the
optimal surrogate in terms of convergence rate, but it confirms that the third assumption above is unrestrictive.

The curvature of the surrogate h(y, z) ismax
{
ψ̈(z), ψ̈(a), 0

}
. The “0” term ensures convexity of h, and the first two

terms ensure that h majorizes ψ, per (13).

Of course if ψmi is itself convex, such as in the Poisson case, then we simply take hmi(y, ·) = ψmi(y).

3.1.2. Existence of parabola surrogates

To derive a specific algorithm for a particular negative log-likelihood ψmi, one will need to determine the cmi function in
(20) by careful analysis. In the case of Poisson measurements, where ψmi(y) = hmi(y, ·) = y − ymi log y, the optimal
cmi function was shown in [57, 75] to be

coptmi (x, E) , copt([Am(E)x]i, ymi, bmi(x, E), rmi(x, E)) , (23)
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where

copt(�, y, b, r) =



[
−2

z(�, y, b, r)

�2

]
+

, � > 0

[−g̈(�, y, b, r)]+ , � = 0,
(24)

where

z(�, y, b, r) , g(0, y, b, r)− g(�, y, b, r) + ġ(�, y, b, r)�

g(�, y, b, r) = (be−� + r) − y log(be−� + r) (25)

ġ(�, y, b, r) =
∂

∂�
g =

[
1−

y

be−� + r

]
(−1)be−� (26)

g̈(�, y, b, r) =
∂2

∂�2
g =

[
1−

yr

(be−� + r)2

]
be−�. (27)

By “optimal,” we mean the choice the leads to the fastest convergence [57, 75].
It was also shown in [75, Theorem 1] that the curvature choice (24) is optimal not only for Poisson measurements, but

also for a fairly broad family of negative log-likelihoods.
Alternatively, if gmi has bounded curvature, then one could use the upper bound on that curvature as the choice

for cmi. This approach was called “maximum curvature” in [75]. It is the simplest choice, but is suboptimal in terms
of convergence rate. To summarize, assuming existence of parabola surrogates should not unduly restrict the class of
statistical models.

3.2. Likelihood formulation
Under the above assumptions, including statistical independence of the transmission measurements, the negative log-
likelihood corresponding to the above physical model has the form

−L(x) ≡ Ψ(x) ,
Ns∑
m=1

Nd∑
i=1

ψmi(ȳmi(x)) (28)

for some scalar functions ψmi that depend on the selected statistical model. Our goal is to estimate the coefficient vector
x from the measurements {Ymi} by maximizing the log-likelihood or equivalently by finding a minimizer of the cost
functionΨ (or a regularized version thereof):

x̂ML , argmin
x
Ψ(x) .

Optimization is restricted to the valid parameter space (i.e., including nonnegativity constraints etc.). Ignoring any con-
straints, in principle one could find a minimizer by zeroing the following partial derivatives of the cost function:

∂

∂xk
Ψ(x) =

Ns∑
m=1

Nd∑
i=1

ψ̇mi(ȳmi(x))
∂

∂xk
ȳmi(x)

=

Ns∑
m=1

Nd∑
i=1

ψ̇mi(ȳmi(x)) · (−1)

∫
Imi(E)amik(E)e

−[Am(E)x]i dE , (29)

where ψ̇mi(y) ,
d
dy
ψmi(y). In general there is no closed form solution to the set of K b equations (29), so iterative

algorithms are required.
Although many algorithms have been proposed [57] for the monoenergetic problem (7), none of those previously

proposed algorithms is suitable for minimizing the cost function Ψ(x) in the polyenergetic case. The greatest difficulty
is the integral over energy in (10). Substituting a summation for this integral does not significantly simplify the problem.
Further difficulties arise due to the nonlinearity of Beer’s law in (1), and due to the nonquadratic form of typical choices
for ψmi (cf. (11)). Elsewhere we apply optimization transfer principles to derive an iterative algorithm that monotonically
decreases the cost function each iteration. It should converge to a local minimizer, and should converge to the global
minimizer if the cost function is unimodal. (The cost function is convex is in the monoenergetic case under the Poison
model if the r1i’s are zero.) Global convergence needs further examination. Many variations on this basic algorithm are
possible, cf. [75].
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4. DISCUSSION
This paper has described a statistical formulation for reconstructing dual-energy X-ray CT images. The method is applica-
ble to related tomographic imaging problems having energy diversity. The method can accommodate a very wide variety
of statistical models and is likely to be sufficiently general to cover all useful choices since the mathematical assumptions
on ψmi in Section 3.1 are quite flexible. Identifying suitable models remains an important problem.

For simplicity, we have used an approximate physical model that ignores the nonlinearity caused by the exponential
edge-gradient effect [82, 83]. Using optimization transfer methods similar to those used here, one could extend the
algorithm derivation to account for this effect. Other blurring effects like detector after-glow, finite X-ray focal spot size,
flying focal spot, detector response, could also be included.

The algorithm derivation itself is quite similar to that used for transmission tomography with overlapping beams [81].
Here the “overlap” is spectral rather than spatial.

Using a dual-energy approach eliminates the need for beam-hardening corrections, and the use of statistical methods
should also reduce metal artifacts [84].

ACKNOWLEDGMENTS
This work was supported in part by NIH grants CA60711 and CA65637.

REFERENCES
1. F. A. Dilmanian et al., “Single- and dual-energy CT with monochromatic synchrotron X-rays,” Phys. Med. Biol. 42,

pp. 371–87, Feb. 1997.
2. A. Welch, G. T. Gullberg, P. E. Christian, L. Jia, and B. M. W. Tsui, “An investigation of dual energy transmission

measurements in simultaneous transmission emission imaging,” IEEE Tr. Nuc. Sci. 42, pp. 2331–8, Dec. 1995.
3. I. Elbakri and J. A. Fessler, “Ordered subsets transmission reconstruction with beam hardening correction for x-ray

CT,” in Proc. SPIE 4322, Medical Imaging 2001: Image Proc., 1, pp. 1–12, 2001.
4. B. De Man, J. Nuyts, P. Dupont, G. Marchal, and P. Suetens, “An iterative maximum-likelihood polychromatic

algorithm for CT,” IEEE Tr. Med. Im. 20, pp. 999–1008, Oct. 2001.
5. P. M. Joseph and R. D. Spital, “A method for correcting bone induced artifacts in computed tomography scanners,”

J. Comp. Assisted Tomo. 2, pp. 100–8, Jan. 1978.
6. O. Nalcioglu and R. Y. Lou, “Post-reconstruction method for beam hardening in computerised tomography,” Phys.

Med. Biol. 24(2), pp. 330–40, 1979.
7. P. M. Joseph and C. Ruth, “A method for simultaneous correction of spectrum hardening artifacts in CT images

containing both bone and iodine,” Med. Phys. 24, pp. 1629–34, Oct. 1997.
8. J. Hsieh, R. C. Molthen, C. A. Dawson, and R. H. Johnson, “An iterative approach to the beam hardening correction

in cone beam CT,” Med. Phys. 27, pp. 23–9, Jan. 2000.
9. C. H. Yan, R. T. Whalen, G. S. Beaupré, S. Y. Yen, and S. Napel, “Reconstruction algorithm for polychromatic CT

imaging: Application to beam hardening correction,” IEEE Tr. Med. Im. 19, pp. 1–11, Jan. 2000.
10. R. E. Alvarez and A. Macovski, “Energy-selective reconstructions in X-ray computed tomography,” Phys. Med. Biol.

21(5), pp. 733–44, 1976.
11. A. Macovski, R. E. Alvarez, J. Chan, J. P. Stonestrom, and L. M. Zatz, “Energy dependent reconstruction in X-ray

computerized tomography,” Computers in Biology and Medicine 6, pp. 325–36, Oct. 1976.
12. R. E. Alvarez and A. Macovski, “X-ray spectral decomposition imaging system,” 1977. U.S. Patent No. 4,029,963,

June 14, 1977.
13. W. H. Marshall, R. E. Alvarez, and A. Macovski, “Initial results with prereconstruction dual-energy computed

tomography (PREDECT),” Radiology 140, pp. 421–30, Aug. 1981.
14. M. R. Millner, W. D. McDavid, R. G. Waggener, M. J. Dennis, W. H. Payne, and V. J. Sauk, “Extraction of informa-

tion from CT scans at different energies,” Med. Phys. 6, pp. 70–1, Jan. 1979.
15. R. E. Alvarez and E. Seppi, “A comparison of noise and dose in conventional and energy selective computed tomog-

raphy,” IEEE Tr. Nuc. Sci. 26, pp. 2853–6, Apr. 1979.
16. W. A. Kalender, E. Klotz, and L. Kostaridou, “An algorithm for noise suppression in dual energy CT material density

images,” IEEE Tr. Med. Im. 7, pp. 218–24, Sept. 1988.

Proc. SPIE Vol. 468446

Downloaded from SPIE Digital Library on 25 Jul 2011 to 141.213.32.90. Terms of Use:  http://spiedl.org/terms



17. J. B. Weaver and A. L. Huddleston, “Attenuation coefficients of body tissues using principal-components analysis,”
Med. Phys. 12, pp. 40–5, Jan. 1985.

18. D. J. Hawkes, D. F. Jackson, and R. P. Parker, “Tissue analysis by dual-energy computed tomography,” British
Journal of Radiology 59, pp. 537–402, June 1986.

19. J. C. M. Steenbeek, “Influence of calibration materials in single- and dual-energy quantitative CT,” Radiology 183,
pp. 849–55, June 1992.

20. J. C. M. Steenbeek, C. van Kuijk, J. L. Grashuis, and R. B. van Panthaleon van Eck, “Selection of fat-equivalent
materials in postprocessing dual-energy quantitative CT,” Med. Phys. 19, pp. 1051–6, July 1992.

21. K. L. Goh, S. C. Liew, and B. H. Hasegawa, “Correction of energy-dependent systematic errors in dual-energy X-ray
CT using a basis material coefficients transformation method,” IEEE Tr. Nuc. Sci. 44, pp. 2419–24, Dec. 1997.

22. K. L. Goh, S. C. Liew, and B. H. Hasegawa, “Energy-dependent systematic errors in dual-energy X-ray CT,” IEEE
Tr. Nuc. Sci. 44, pp. 212–7, Apr. 1997.

23. A. J. Talbert, R. A. Brooks, and D. G. Morgenthaler, “Optimum energies for dual-energy computed tomography,”
Phys. Med. Biol. 25, pp. 261–9, Mar. 1980.

24. A. J. Coleman and M. Sinclair, “A beam-hardening correction using dual-energy computed tomography,” Phys. Med.
Biol. 30, pp. 1251–6, Nov. 1985.

25. M. M. Goodsitt, “Beam hardening errors in post-processing dual energy quantitative computed tomography,” Med.
Phys. 22, pp. 1039–47, July 1995.

26. K.-S. Chuang and H. K. Huang, “A fast dual-energy computational method using isotransmission lines and table
lookup,” Med. Phys. 14, pp. 186–92, Mar. 1987.

27. H. N. Cardinal and A. Fenster, “An accurate method for direct dual-energy calibration and decomposition,” Med.
Phys. 17, pp. 327–41, May 1990.

28. J. R. Vetter and J. E. Holden, “Correction for scattered radiation and other background signals in dual-energy com-
puted tomography material thickness measurements,” Med. Phys. 15, pp. 726–31, Sept. 1988.

29. M. M. Goodsitt and R. H. Johnson, “Precision in quantitative CT: impact of X-ray dose and matrix size,” Med. Phys.
19, pp. 1025–36, July 1992.

30. S. L. Wellington and H. J. Vinegar, “X-ray computerized tomography,” J. Petroleum Technology 39(8), pp. 885–98,
1987.

31. C. C. Watson, “Optimal linear compression of x-ray transmission spectra,” 1989. Schlumberger-Doll Research Note.
32. P. E. Cruvinel and F. A. Balogun, “Minitomography scanner for agriculture based on dual-energy Compton scat-

tering,” in SIBGRAPI 2000. 13th Brazilian Symposium on Computer Graphics and Image Processing. 17-20 Oct.
2000; Gramado, pp. 193–9, 2000.

33. P. B. Dunscombe, D. E. Katz, and A. J. Stacey, “Some practical aspects of dual-energy CT scanning,” British Journal
of Radiology 57, pp. 82–7, Jan. 1984.

34. J. R. Vetter, W. H. Perman, W. A. Kalender, R. B. Mazess, and J. E. Holden, “Evaluation of a prototype dual-energy
computed tomographic apparatus. II. Determination of vertebral bone mineral content,” Med. Phys. 13, pp. 340–3,
May 1986.

35. A. E. Burgess, B. Colborne, and E. Zoffmann, “Vertebral trabecular bone: comparison of single and dual-energy CT
measurements with chemical analysis,” J. Comp. Assisted Tomo. 11, pp. 506–15, May 1987.

36. E. L. Nickoloff, F. Feldman, and J. V. Atherton, “Bone mineral assessment: new dual-energy CT approach,” Radiol-
ogy 168, pp. 223–8, July 1988.

37. M. A. Greenfield, “Current status of physical measurements of the skeleton,” Med. Phys. 19, pp. 1349–57, Nov.
1992.

38. P. O. Kotzki, D. Mariano-Goulart, and M. Rossi, “Prototype of dual energy X-ray tomodensimeter for lumbar spine
bone mineral density measurements; choice of the reconstruction algorithm and first experimental results,” Phys.
Med. Biol. 37, pp. 2253–65, Dec. 1992.

39. M. S. Westmore and M. Sato, “Effect of fat content on single- and dual-energy CT measurements of bone mineral:
determination using a new system of tissue-mimicking phantom materials,” in Proc. SPIE 3977, Phys. of Medical
Imaging, pp. 609–19, 2000.

Proc. SPIE Vol. 4684 47

Downloaded from SPIE Digital Library on 25 Jul 2011 to 141.213.32.90. Terms of Use:  http://spiedl.org/terms



40. M. M. Goodsitt, P. Hoover, M. S. Veldee, and S. L. Hsueh, “The composition of bone marrow for a dual-energy quan-
titative computed tomography technique. a cadaver and computer simulation study,” Invest. Radiol. 29(7), pp. 695–
704, 1994.

41. H. Kvist, L. Sjostrom, and U. Tylen, “Adipose tissue volume determinations in women by computed tomography:
technical considerations,” Int. J. Obesity 10, pp. 53–67, 1986.

42. S. Oelckers, “In situ measurement of iron overload in liver tissue by dual-energy methods,” Phys. Med. Biol. 41,
pp. 1149–65, July 1996.

43. R. G. Sephton, “The potential accuracy of dual-energy computed tomography for the determination of hepatic iron,”
British Journal of Radiology 59, pp. 351–3, Apr. 1986.

44. F. L. Roder and R. P. Kruger, “Explosives detection by dual-energy computed tomography (CT),” in Proc. SPIE 182,
Imaging Applications for Automated Industrial Inspection and Assembly, pp. 171–8, 1979.

45. M. Takai and M. Kaneko, “Discrimination between thorotrast and iodine contrast medium by means of dual-energy
CT scanning,” Phys. Med. Biol. 29, pp. 959–67, Aug. 1984.

46. P. Engler and W. D. Friedman, “Review of dual-energy computed tomography techniques,” Materials Evaluation
48, pp. 623–9, May 1990.

47. J. F. Sutcliffe, “A review of in vivo experimental methods to determine the composition of the human body,” Phys.
Med. Biol. 41, pp. 791–833, May 1996.

48. C. Robert-Coutant, V. Moulin, R. Sauze, P. Rizo, and J. M. Casagrande, “Estimation of the matrix attenuation in
heterogeneous radioactive waste drums using dual-energy computed tomography,” Nucl. Instr. Meth. Phys. Res. A.
422, pp. 949–56, Feb. 1999.

49. E. L. Gingold and B. H. Hasegawa, “Systematic bias in basis material decomposition applied to quantitative dual-
energy x-ray imaging,” Med. Phys. 19, pp. 25–33, Jan. 1992.

50. B. H. Hasegawa, T. F. Lang, J. K. Brown, E. L. Gingold, S. M. Reilly, S. C. Blankespoor, S. C. Liew, B. M. W. Tsui,
and C. Ramanathan, “Object-specific attenuation correction of SPECT with correlated dual-energy X-ray CT,” IEEE
Tr. Nuc. Sci. 40, pp. 1242–52, Aug. 1993.

51. P. E. Kinahan, D. W. Townsend, T. Beyer, and D. Sashin, “Attenuation correction for a combined 3d PET/CT
scannter,” Med. Phys. 25, pp. 2046–53, Oct. 1998.

52. W. A. Kalender, W. H. perman, J. R. Vetter, and E. Klotz, “Evaluation of a prototype dual-energy computed tomo-
graphic apparatus. 1. Phantom studies,” Med. Phys. 13, pp. 334–9, May 1986.

53. M. J. Guy, I. A. Castellano-Smith, M. A. Flower, G. D. Flux, R. J. Ott, and D. Visvikis, “DETECT-dual energy trans-
mission estimation CT-for improved attenuation correction in SPECT and PET,” IEEE Tr. Nuc. Sci. 45, pp. 1261–7,
June 1998.

54. F. Kelcz, P. M. Joseph, and S. K. Hilal, “Noise considerations in dual energy CT scanning,” Med. Phys. 6, pp. 418–25,
Sept. 1979. Erratum: Medical Physics, 7(4):388, July 1980.

55. G. J. Michael, “Tissue analysis using dual energy CT,” Australasian Physical & Engineering Sciences in Medicine
15, pp. 25–37, Mar. 1992.

56. C. Markham and J. Fryar, “Element specific imaging in computerised tomography using a tube source of X-rays and
a low energy-resolution detector system,” Nucl. Instr. Meth. A324, pp. 383–8, Jan. 1993.

57. J. A. Fessler, “Statistical image reconstruction methods for transmission tomography,” in Handbook of Medical
Imaging, Volume 2. Medical Image Processing and Analysis, M. Sonka and J. M. Fitzpatrick, eds., pp. 1–70, SPIE,
Bellingham, 2000.

58. N. H. Clinthorne, “A constrained dual-energy reconstruction method for material-selective transmission tomogra-
phy,” Nucl. Instr. Meth. Phys. Res. A. 352, pp. 347–8, Dec. 1994.

59. P. Sukovic and N. H. Clinthorne, “Data weighted vs. non-data weighted dual energy reconstructions for X-ray
tomography,” in Proc. IEEE Nuc. Sci. Symp. Med. Im. Conf., 3, pp. 1481–3, 1998.

60. P. Sukovic and N. H. Clinthorne, “Basis material decomposition using triple-energy X-ray computed tomography,”
in IEEE Instrumentation and Measurement Technology Conference, Venice, 3, pp. 1615–8, 1999.

61. P. Sukovic and N. H. Clinthorne, “Design of an experimental system for dual energy X-ray CT,” in Proc. IEEE Nuc.
Sci. Symp. Med. Im. Conf., 2, pp. 1021–2, 1999.

62. P. Sukovic and N. H. Clinthorne, “Penalized weighted least-squares image reconstruction in single and dual energy
X-ray computed tomography,” IEEE Tr. Med. Im. 19, pp. 1075–81, Nov. 2000.

Proc. SPIE Vol. 468448

Downloaded from SPIE Digital Library on 25 Jul 2011 to 141.213.32.90. Terms of Use:  http://spiedl.org/terms



63. S. S. Gleason, H. Sari-Sarraf, M. J. Paulus, D. K. Johnson, S. J. Norton, and M. A. Abidi, “Reconstruction of
multi-energy X-ray computed tomography images of laboratory mice,” IEEE Tr. Nuc. Sci. 46, pp. 1081–6, Aug.
1999.

64. U. Hassler, L. Garnero, and P. Rizo, “X-ray dual-energy calibration based on estimated spectral properties of the
experimental system,” IEEE Tr. Nuc. Sci. 45, pp. 1699–1712, June 1998.

65. K. Aoki and M. Koyama, “A silicon diode in a thimble-type mount for measurement of diagnostic X-ray spectra,”
Phys. Med. Biol. 35, pp. 1505–18, Nov. 1990.

66. C. Ruth and P. M. Joseph, “Estimation of a photon energy spectrum for a computed tomography scanner,” Med.
Phys. 24, pp. 695–702, May 1997.

67. C. H. Yan, R. T. Whalen, G. S. Beaupré, S. Y. Yen, and S. Napel, “Modeling of polychromatic attenuation using
computed tomography reconstructed images,” Med. Phys. 26, pp. 631–42, Apr. 1999.

68. J. A. Fessler, “Mean and variance of implicitly defined biased estimators (such as penalized maximum likelihood):
Applications to tomography,” IEEE Tr. Im. Proc. 5, pp. 493–506, Mar. 1996.

69. N. P. Willis and Y. Bresler, “Optimal scan for time-varying tomography i: Theoretical analysis and fundamental
limitations,” IEEE Tr. Im. Proc. 4, pp. 642–53, May 1995.

70. M. Yavuz and J. A. Fessler, “Statistical image reconstruction methods for randoms-precorrected PET scans,” Med.
Im. Anal. 2(4), pp. 369–378, 1998.

71. M. Yavuz and J. A. Fessler, “Penalized-likelihood estimators and noise analysis for randoms-precorrected PET
transmission scans,” IEEE Tr. Med. Im. 18, pp. 665–74, Aug. 1999.

72. D. L. Snyder, A. M. Hammoud, and R. L. White, “Image recovery from data acquired with a charge-couple-device
camera,” J. Opt. Soc. Am. A 10, pp. 1014–23, May 1993.

73. D. L. Snyder, C. W. Helstrom, A. D. Lanterman, M. Faisal, and R. L. White, “Compensation for readout noise in
CCD images,” J. Opt. Soc. Am. A 12, pp. 272–83, Feb. 1995.

74. J. A. Fessler, “Penalized weighted least-squares image reconstruction for positron emission tomography,” IEEE Tr.
Med. Im. 13, pp. 290–300, June 1994.
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