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ABSTRACT

We consider using spline interpolation to improve the standard filtered back-projection (FBP) tomographic
reconstruction algorithm. In particular, we propose to link the design of the filtering operator with the interpo-
lation model that is applied to the sinogram. The key idea is to combine the ramp filtering and the spline fitting
process into a single filtering operation. We consider three different approaches. In the first, we simply adapt
the standard FBP for spline interpolation. In the second approach, we replace the interpolation by an oblique
projection onto the same spline space; this increases the peak signal-noise ratio by up to 2.5 dB. In the third
approach, we perform an explicit discretization by observing that the ramp filter is equivalent to a fractional
derivative operator that can be evaluated analytically for splines. This allows for an exact implementation of
the ramp filter and improves the image quality by an additional 0.2 dB. This comparison is unique as the first
method has been published only for degree n=0, whereas the two other methods are novel. We stress that
the modification of the filter improve the reconstruction quality especially at low (faster) interpolation degrees
(n = 1); the difference between the methods becomes marginal for cubic or higher degrees (n ≥ 3).

Keywords: tomographic reconstruction, filtered back-projection, ramp filter, fractional splines, oblique pro-
jection, spline interpolation

1. INTRODUCTION

Mathematically, the measurement process in X-ray tomography is conveniently described by the Radon trans-
form1. An attractive feature of this transform is that it has an exact inversion formula. The digital implementa-
tion of this analytical formula leads to the standard filtered back-projection (FBP) algorithm, which goes back
to the early 70s2. Despite the considerable research efforts devoted to alternative reconstruction techniques (in
particular, algebraic or statistical ones), the FBP is still the method of choice used in commercial CT scanners.
It owes its success to the fact that it is direct, fast and reasonably simple to implement. Even though the
standard implementation uses a rather rudimentary discretization—at least by modern standards, it has not
been much improved over the years, except for the aspect of filter design3. The filtering part of the algorithm
is essential to avoid excessive smoothing and to suppress aliasing; in practice, the design is mostly guided by
practical considerations, such as noise reduction.

An important aspect of FBP is the interpolation step that takes place during the back-projection part of
the algorithm. Most practical implementations use linear interpolation to minimize computations, but there
is also evidence that the performance can be improved be using higher order models. In this paper, we are
especially interested in the interpolation aspect of the problem and we want to determine the extent to which
high quality methods can make a difference. As a novelty, we are proposing to modify the filtering step of the
algorithm so that it is best matched to the interpolation that is applied to the sinogram. We have chosen here
to concentrate on B-splines since these functions were found to offer the best cost-performance tradeoff for the
interpolation of medical images4,5. The quality of the polynomial spline model is determined by its degree;
for n = 1, it is equivalent to linear interpolation and it gets closer and closer to the band-limited model (sinc
interpolation) as n increases. Another advantage of splines is that the effect of ramp filtering can be determined
analytically; a property that will be exploited in the third method that is considered in this paper. We will
essentially compare three methods—all based on spline interpolation; practically, they will differ only by the
type of filter being used. Interestingly, we will see that we can outperform the standard approach by selecting
a filter that is different from the traditional Ram-Lak (or ramp) filter.



2. STANDARD FBP

We recall the standard filtered back-projection (FBP), which is based on the inverse of the Radon transform1.

The Radon transform Rθf of an image f(�x), �x ∈ R2, is the set of line integrals along the direction �θ at the
distance t from the origin

Rθ{f(�x)} = Rθf(t) =
∫

�x∈R2
f(�x)δ(t− �x� · �θ)d�x, (1)

where δ(t) is the Dirac impulse and �θ = (cos θ, sin θ)� specifies the direction of integration.

The basis for the inverse Radon transform is the well-known identity

f(�x) = R∗(q ∗Rθ{f(�x)}), (2)

where q denotes the 1D ramp filter whose Fourier transform is q̂(ω) = | ω
2π |; R∗, the adjoint of R, is the

back-projection operator:

(R∗p)(�x) =
∫ π

0

p(�x� · �θ, θ)dθ,

The widely used FBP algorithm corresponds to the direct discretization of the right-hand side of (2). However,
instead of the infinite ramp filter q, one usually uses an attenuated version ĥ(ω) = | ω

2π |Ω̂(ω), where Ω̂(ω) is a
suitable spectral window (e.g. Shepp-Logan filter).

3. FRACTIONAL B-SPLINES AND THEIR DERIVATIVES

The basic building blocks for spline interpolation are the B-spline basis functions. Here, we describe an extension
for fractional degree α; not necessarily integer6. The symmetric B-spline of degree α is defined in the Fourier
domain by

β̂α
∗ (ω) =

∣∣1− ejω
∣∣α+1

|jω|α+1
. (3)

This definition is essentially the same as the one for the classical B-splines of integer degree n7. The difference
is that α = n is allowed to be fractional; i.e., non integer. Here, we are especially interested in the fractional
derivative properties of these B-splines.

The n-th derivative of the function f(x) can be defined in the Fourier domain as Dnf(x) ↔ (jω)nf̂(ω),
where f̂(ω) =

∫ +∞
−∞ f(x)e−jωxdx denotes the Fourier transform of f(x). By extension, we define a symmetric

version of fractional derivativesDγ
∗f(x) ↔ |ω|γ f̂(ω), where γ is any fractional number. Note that this derivative

only corresponds to the usual one when γ is even.

The relevance for our purpose of the D∗ operator is that it is a scaled version of the ramp filter q̂(ω) = | ω
2π |.

The key property is that we have a simple analytical formula for the fractional derivative of a fractional B-spline

Dγ
∗β∗(x) = ∆

γ
∗β

α−γ
∗ (x), (4)

where ∆γ
∗ is the fractional finite difference operator

∆γ
∗ ↔ |1− e−jω|γ .

The argument for the proof is as follows

Dγ
∗β∗(x)↔ |jω|γ

∣∣∣∣1− ejω

jω

∣∣∣∣
α+1

=
∣∣1− e−jω

∣∣γ ∣∣∣∣1− ejω

jω

∣∣∣∣
α+1−γ

.



Spline interpolation amounts to fitting a sequence f(k) with a spline of the form

f(x) =
∑
k∈Z

c(k)βα
∗ (x− k).

The c(k)’s are determined by inverse filtering9:

c(k) =
(
(bα∗ )

−1 ∗ f) (k), (5)

where
(bα∗ )

−1(k)↔ 1∑
k β

α∗ (k)e−jωk
=

1∑
l∈Z |sinc( ω

2π + l)|α+1
.

4. SPLINE FBP

Next, we show how to modify the standard FBP so that the filtered sinogram can be fitted using splines. We
will first describe the general principle of the method and then derive the filters that combine the spline fitting
process (e.g. interpolation) and the ramp filter in one step. We will consider three different approaches.

4.1. Spline-based FBP: general principle

Here, we assume that the projection data pθ(x) is known in a continuous fashion for x ∈ R, but for a discrete
set of N equidistant angles θi = i · π/N .

The first step is to filter the sinogram p̂θ(ω) in the Fourier domain with the ideal ramp filter (see Section 2):

ĝθ(ω) = p̂θ(ω) · q̂(ω).

The second step is to fit the sinogram with a model that is represented as a linear combination of shifted
basis functions ϕ(t− k) (e.g. B-splines):

g̃θ(t) =
∑
k∈Z

cθ(k) · ϕ(t− k). (6)

Typically, we have that cθ(k) = 〈ϕ̃(t − k), gθ(t)〉, where ϕ̃ is a suitable analysis function that is biorthogonal
to ϕ = βn as described elsewhere7. In our implementation, the cθ(k)’s will be computed from the pθ(k)’s by
filtering in the Fourier domain using FFTs:

cθ(k) = (h ∗ pθ)(k)↔ H(ejω) · Pθ(ejω).

What will make the difference between the three methods below is the choice of the filter h↔ H(ejω).

The last step is to calculate the back-projection R∗{g̃θ(t)} at the pixel location (x, y)

f̃(x, y) =
∫ π

0

g̃θ((x, y) · �θ)dθ ∼= π

N

N∑
i=1

g̃θi
(x cos θi + y sin θi),

where the right-hand side is the Riemann-sum approximation of the back-projection integral. This approxima-
tion is justifiable as long as the number N of projections is sufficiently large (typ., twice the size of the image).
The arguments of the sum are computed using the 1D spline interpolation model (6).



4.2. Ramp filter with B-spline prefilter

In the first method, we compute the B-spline coefficients cθi
(k) such that the function g̃θ(t) interpolates the

integer samples of the filtered sinogram. This involves the application of the digital interpolation filter (5),
which can be merged with the ramp-filtering step of the algorithm.

Here, the basic assumption is that the sinogram is band-limited; in this case, the ramp-filtered sinogram
is band-limited as well, and represented by its samples. Thus, to get the B-spline coefficients of the filtered
sinogram, these samples needs to be filtered with the prefilter Ω̂1(ω):

Ω̂1(ω) = 1/Bn(ejω) = 1/
∑
l∈Z

(
sinc(

ω

2π
+ l)

)n+1

. (7)

We combine the prefilter Ω̂1(ω) with the ramp filter, and get the B-spline interpolating ramp filter

H1(ejω) = | ω
2π

|Ω̂1(ω).

4.3. Ramp filter with oblique projection

Again, we assume that the sinogram is band-limited, which implies that the filtered sinogram is band-limited as
well. Instead of B-spline interpolation, we use an oblique projection to get a continuous spline approximation
of the sinogram. Because the computation needs to be performed in Fourier space, the projection is chosen to
be perpendicular to the subspace of band-limited functions.

This projection can be derived as a direct application of Theorem 2 in the work of Unser and Aldroubi8.
Specifically, the oblique projection of the filtered sinogram gθ(t) is given by

Proj{gθ(t)} =
∑
k∈Z

c1 ∗ (a12)−1(k)︸ ︷︷ ︸
=cθ(k)

·βn(x− k),

where c1(k) = 〈gθ(t), sinc(t− k)〉 ↔ | ω
2π |Pθ(ejω), and where a12 (the cross-correlation between the analysis and

synthesis functions) is
a12(k) = 〈sinc(x), βn(x− k)〉

↔ A12(ejω) =
∑
k∈Z

rect(ω + 2πl) · β̂n(ω + 2πk).

The effect of the rect function is to suppress aliasing so that we have

A12(ejω) = β̂n(ω) for − π ≤ ω ≤ π.

Combining the ramp filter and the projection filter A−1
12 (e

jω) in the Fourier domain, we get the oblique B-spline
ramp-filter

H2(ejω) = | ω
2π

|/β̂n(ω) = | ω
2π

|/sincn+1(
ω

2π
).

We can already predict that this projection approach will be better than the more standard interpolation
described in Section 4.2. It is essentially equivalent to the least-squares solution: first, because it is guaranteed
to be asymptotically optimal; and second, because the angle between the spline and the Sinc spaces is small,
especially for higher degrees n.



Filters Frequency response H(ejω) for 0 ≤ ω ≤ 2π

Shepp−
Logan3 h0(k)↔ |ω/(2π)|sinc(ω)

Inter−
polation h1(k)↔ |ω/(2π)|

Bn(ejω) =
|ω/(2π)|∑

l∈Z sinc
n+1

( ω
2π +l)

Oblique h2(k)↔ |ω/(2π)|
sincn+1

( ω
2π )

Fractional h3(k)↔ |1−ejω|/(2π)
Bα∗ (ejω) = | sin(ω/2)|/π∑

l∈Z |sinc( ω
2π +l)|α+1

Table 1: Modified ramp filters for splines. These filters project onto the B-spline space of degree n or α − 1.

4.4. Ramp filter with fractional B-splines

In the two cases before (4.2 and 4.3), the band limitation assumption was necessary to justify the multiplication
with the theoretical ramp filter | ω

2π | in the FFT domain. We now consider a third approach which does not
require this hypothesis. The idea is to fit the sinogram with a fractional spline, and then determine the effect
of the ramp filter analytically.

First, the unfiltered sinogram pθ(t) is fitted using fractional B-splines of degree α:

pθ(t) =
∑
k∈Z

dθ(k)βα
∗ (t− k). (8)

This is achieved with the digital prefiltering technique described by (5).

Since the ramp filter corresponds to the fractional derivative operator D∗, we can use our theoretical formula
(4) to differentiate (8) analytically. This allows to apply the ramp filtering step directly onto the fitted sinogram
(8):

gθ(t) = D∗{pθ(t)}/(2π) =
∑
k∈Z

cθ(k)βα−1
∗ (t− k), (9)

which reduces the spline degree by one. We can obtain the spline coefficients cθ(k) of the filtered sinogram in
one step by applying a single digital filter which combines the fitting and finite differences operations:

cθ(k) = (h3 ∗ pθ)(k).

H3(ejω) =
|1− ejω|/(2π)
Bα∗ (ejω)

=
| sin(ω/2)|/π∑

l∈Z |sinc( ω
2π + l)|α+1

.

If the fractional spline degree α is even (α = 2, 4, . . .), then the B-spline in (9) will be of odd degree
α−1 = n = 1, 3, . . ., and the basis functions is compactly supported. This means that the same back-projection
method as before is applicable.

5. RESULTS

The Shepp-Logan phantom3 of size 128× 128 was used as our test image. Its Radon transform was computed
over K = 256 equidistant angles. Figures 1 and 2 display the reconstructed images (with details) and the errors
for the three methods for linear and cubic degrees, respectively. The FBP reconstruction error with the Shepp-
Logan filter and linear interpolation is 29.16 dB. With linear splines (n = 1), the FBP reconstruction errors are
30.98 dB (interpolation filter), 32.91 dB (oblique projection filter), and 33.10 dB (fractional derivative filter).



Filter type \ degree n = 1 n = 3
Shepp-Logan 29.16 32.49

B-spline interpolation 30.98 34.69
Oblique projection 32.91 34.80
Fractional derivative 33.10 34.90

Table 2. FBP reconstruction error (PSNR given in dB) for different spline interpolating ramp filters with various
interpolation degrees n. The image size is N = 128, the angular resolution is K = 256 and the sampling step on the
sinogram is 1.

Note that the first case here also corresponds to the standard approach: Ram-Lak filter with linear interpolation
since B1(ejω) = 1. With cubic splines (n = 3), the corresponding results are 32.49 dB (Shepp-Logan filter),
34.69 dB (interpolation filter), 34.80 dB (oblique projection filter), and 34.90 dB (fractional derivative filter).
See Table 2.

When looking at the error images, the edges are sharper for the interpolation filter and more diffuse for the
oblique projection. Remember that the less visible the error, the better the result. The fractional derivative
filter is slightly better than the two others. These results demonstrate that there is a clear improvement when
using ramp filters that adapt to the interpolation method. Further, it appears that the optimization of the filter
is especially useful when the interpolation model is low. This is especially interesting for applications where
computational speed is a key issue.

6. CONCLUSION

We compared three different versions of the filtered back-projection based on spline interpolation. The first
approach uses interpolation combining the ramp and direct B-spline filter in to a single FFT filtering operation.
The second implements an oblique projection of the sinogram into a spline space. It outperforms the first by up
to 2 dB, because it better takes into account the band-limited nature of the sinogram. The third filter is based
on an explicit discretization using fractional splines. The advantage is that the ramp-filtering of the sinogram
produces a spline of reduced degree, which leads to an implementation perfectly coherent with the underlying
model. This yields another gain in quality for the same computational cost.

In conclusion, for low interpolation degrees (n = 1) we recommend to use either the method based on the
oblique projection or fractional splines in order to achieve a quality improvement of up to 2.5 dB. Switching
to higher degree—cubic instead of linear—pays off by an additional 2-4 dB in all three cases, but the quality
differences between the methods are less significant.

A software demo (JAVA applet) of the methods developed in this paper is available at:
http://bigwww.epfl.ch/demo/jtomography/
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Figure 1. Results of Spline-filtered back-projection with linear interpolation model (degree n = 1) and the three different
ramp filters. To highlight differences, the absolute error images have been amplified by a factor of 3.
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Figure 2. Results of Spline-filtered back-projection with cubic interpolation model (degree n = 3) and three different
ramp filters. To highlight differences, the absolute error images have been amplified by a factor of 3.


