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ABSTRACT 
 

This paper presents a novel algorithm for handling occlusion in visual traffic surveillance (VTS) by geometrically 
splitting the model that has been fitted onto the composite binary vehicle mask of two occluded vehicles.  The proposed 
algorithm consists of a critical points detection step, a critical points clustering step and a model partition step using the 
vanishing point of the road.  The critical points detection step detects the major critical points on the contour of the 
binary vehicle mask.  The critical points clustering step selects the best critical points among the detected critical points 
as the reference points for the model partition.  The model partition step partitions the model by exploiting the 
information of the vanishing point of the road and the selected critical points.  The proposed algorithm was tested on a 
number of real traffic image sequences, and has demonstrated that it can successfully partition the model that has been 
fitted onto two occluded vehicles.  To evaluate the accuracy, the dimensions of each individual vehicle are estimated 
based on the partitioned model.  The estimation accuracies in vehicle width, length and height are 95.5%, 93.4% and 
97.7% respectively.   
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1. INTRODUCTION 
 
Visual traffic surveillance (VTS) has been actively investigated in the past ten years due to its high potential of 
becoming one of the dominant components of the Intelligent Transportation System (ITS) [7].  As the name implies, 
visual traffic surveillance has a powerful feature that it allows the system to visualize vehicles on the road, thus 
enabling traffic scene analysis, such as traffic conditions assessment, speed estimation as well as queue length 
measurement in which traditional surveillance systems could not do [2].  However, unlike traditional surveillance 
systems, such as inductive loops and laser sensors, the performance of a VTS system deteriorates when there is vehicle 
occlusion in the traffic image sequence.  As a result, algorithms for occlusion handling have to be employed in order to 
make the surveillance system usable, since vehicle occlusion occurs frequently in traffic image sequence.   

Algorithms for occlusion handling for indoor object tracking has been reported in the past [1][3][5].  However, 
there is a lack of focused research in outdoor visual traffic surveillance.  Although, there are several groups of 
researchers who have attempted to tackle the problem as a subset of their larger goal [2][6][7], none of them have really 
addressed this problem decidedly.  This has motivated us to focus our investigation on this problem alone.   

In this paper, we propose a novel algorithm for handling occlusion by splitting the model that has been fitted 
onto the composite binary vehicle mask of two occluded vehicles.  The assumption is that when two vehicles are 
occluded as seen in an image sequence, by means of segmentation techniques, the composite mask (inclusive of two 
vehicles) can be extracted.  If a model is fitted to this composite mask, the result is an erroneous model which can be 
highly misleading.  Our objective is to sub-divide or split the model geometrically so that the sub-divided models 
describe the individual vehicles, where dimensions of individual vehicles can be extracted accurately.  The rest of this 
paper is organized as follow.  A brief problem analysis is given in the next section.  Following that, the proposed 
methodology is introduced in section 3.  Experimental results and discussion is given in section 4, and the conclusion can 
be found in section 5.   
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2.  PROBLEM ANALYSIS 
 

In model-based vehicle tracking, vehicle masks are usually extracted from the image before the model is fitted onto the 
vehicle in order to simplify the process of fitting.  The method known as “background subtraction” is commonly 
employed for the extraction of vehicle masks.  After the subtraction, refinement techniques such as closing or convex 
hull transformation may be applied to the vehicle mask to remove spurious noise as well as holes and concavity in the 
mask.  At this stage, a deformable model may be fitted onto the binary mask based on the geometric shape of the mask 
(Figure 1).  Dimensions of the vehicle are then extracted based on the size of the fitted model [8].   

In the case when two vehicles are occluding each other, their binary masks overlap with each other (Figure 2), 
and as a result, one large model will be fitted onto the composite binary masks instead of two separate ones.  This 
obviously will cause the algorithm to extract the wrong dimension parameters from such a model.  Moreover, the 
recovery of the vehicle trajectory can also badly affected, since there might be matching ambiguities of vehicles 
between frames [7].  In order to solve this problem, the composite model must be partitioned into two separate ones so 
that each model fits onto one vehicle only.  The key question is how this can be done and algorithmically accurate.   

 
 
 
 
  
 
 

 
 

 
Figure 1: The model fitted onto the binary vehicle mask Figure 2: The model fitted onto the overlapped binary  

vehicle mask of two occluded vehicles 
 

An efficient way to partition the model is to exploit the geometrical properties of the model.  This could mean 
the identification of critical points on the boundary of the composite vehicle mask and the determination of the line of 
partition.  From Figure 3, we can observe that every vector which is in the positive Y direction (ie., line V2V1, line V4V5, 
line V7V6, where Vi denote the vertices) in the 3D space, when projected back to the 2D image plane, will converge to a 
vanishing point p.  By exploiting this point in the 2D space, with the aid of the set of critical points on the binary 
vehicle mask (which is defined as the points on the contour of the composite vehicle mask where there are major 
directional changes), we should be able to partition the composite model into smaller models.  A detail explanation of 
the method of critical points extraction as well as the partitioning approach will be given in the next section.   
 
 
 
 
 
 
 
 
  

   (a)     (b) 
 
 
Figure 3:  3D cuboid in  (a) 3D world coordinates;    (b) 2D perspective view. 

 
3.  PROPOSED METHOD 

3.1  Critical Points Extraction 
Before partitioning the model, critical points on the contour outline of the composite binary vehicle mask have to be 
identified (Figure 4(a)).  To achieve this, a signature curve of the outline contour is first constructed (Figure 4(b)).  The 

x

v1

v2

v3

v4

v5

v6

v7

p

y

Composite
Mask

Composite
Model

438     Proc. of SPIE Vol. 5014



0 50 100 150 200 250 300 350 400 450
40

50

60

70

80

90

100

110

c1

c2

c3

c5

c6

c7

c8

c10

c9

c4

Filtered Signature Curve

E
uc

lid
ea

n 
M

ag
ni

tu
de

Chain Sample Number (i)

signature curve ρ(i) is obtained by computing the Euclidean distances between the centre of gravity (g) of the composite 
mask and every data sample on the contour (x(i)).  The resulted curve is defined as 

( ) ( ) 2
gx −= iiρ   i = 1, …, N.   (1) 

where N is the number of points on the contour, and centre of gravity is defined as the mean coordinate of all the 
samples on the contour, as follow: 

     ( )∑
=

=
N

i

i
N 1

1
xg        (2) 

The reason for choosing the above parameters for computing the signature curve is that they are isotropic.  From a real 
x(i), we can observe that the curve is inherently noisy.  The noise of the signature curve is the result of sudden changes 
on the contour due to vehicle parts such as wheels, side mirror and bumper ends.  As they are, these points are not the 
most essential points for determining the partition lines, and they therefore should be filtered out.  If the signature curve 
is not smoothed, then too many critical points will be detected, which will introduce ambiguities when choosing critical 
points for partition.  In our study, we have employed a lowpass filter with cutoff frequency ωc=0.1π radians.  This 
choice of filter parameters can eliminate most of the rapid changes on the signature curve, without filtering out the 
essential features on the contour.  The signature curve after lowpass filtering is shown in Figure 4(c).  This curve is then 
subjected to local extrema detection by locating the zero crossing points of the first derivative of the curve.  The 
resultant points are labeled as ci for i = 1,…,10, which correspond to the critical points as shown in Figure 4(a).  They 
represent a set of points in determining the partition line of the model.   

The number of resultant critical points on the contour after the filtering process is usually around ten for two 
occluded vehicles.   However, in some occasions, there might be more than ten critical points detected.  The reason is 
that the corners on the vehicles are not sharp enough, which leads to multiple points detected around the brunt corners.  
In order to solve this problem, the critical points around the brunt corners are clustered by evaluating their tangential 
slopes, and the one with tangential slope closest to zero will be chosen as the real critical point.  

   
 
 
 
 
 
 
 
 
        
          
 
 

 (a)         (b)                        (c) 
 

Figure 4: (a) Syntactic contour of binary vehicle mask         (b) Real signature curve 
(c) Signature curve subjected to low pass filtering and critical points identified 

 
3.2  Model partition 
With the critical points C = {cj} for j = 1,…,K and the vanishing point p in hand, the composite model can be 
partitioned by the steps introduced in this section.  As mentioned in the preceding section, K is usually around 10 to 
denote the critical points of two vehicles under occlusion.  Assume that model X is fitted onto the composite mask of 
two occluded vehicles, namely, vehicle A and B by performing the procedures that were mentioned in Section 2 (Figure 
5).  Moreover, assume that both vehicles are traveling in the same direction.  The vertices of model X can be labeled as 
vx = {vx1, vx2, vx3, vx4, vx5, vx6}.  By transforming the vertices of model X to the 3D world coordinates, the dimensions of 
the model can be extracted as follows:  

width = |Vx3 - Vx4|; length = |Vx4 - Vx5|; height = |Vx2 - Vx3|, 
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where Vx = {Vx1, Vx2, Vx3, Vx4, Vx5, Vx6} denotes the vertices of model X in the 3D world coordinates. Our task is to 
partition vx into two separate models, namely, va = {va1, va2, va3, va4, va5, va6} and vb = {vb1, vb2, vb3, vb4, vb5, vb6}, so that va 

and vb describe the dimensions of vehicles a and b respectively.  From Figure 5, we can observe that points va1, va2, vb4 
and vb5 correspond to vx1, vx2, vx4 and vx5 respectively and are already known from vx.  What we have to do is then to 
determine points va3, va4, va5, va6 for vehicle A, and points vb1, vb2, vb3, vb6 for vehicle B.   

By the steps mentioned in Section 3.1, we can observe 
from Figure 5 that c1, c2, c6, c7 correspond to model points vx1, 
vx2, vx4, vx5 respectively.  Therefore, we only need to exploit c3, 
c5, c8, c10 in this partitioning step.  They correspond to va3, vb3, 
vb6, va6 respectively. 

Based on these four points, we can construct part of va 
by traversing line vx3vx4 upwards and line vx5vx6 leftwards until 
they fit vehicle a (Figure 5).  Similarly, we can construct part 
of vb by traversing line vx2vx3 rightwards, and line vx6vx1 
downwards until they fit vehicle b.  The intersections of these 
lines with the fitted model vx define points va3, va6, vb3 and vb6. 

By defining a vanishing point p, we use the following 
steps to determine points va4, va5 for vehicle A, and points vb1,  
vb2 for vehicle B:               Figure 5:  A model fitted onto two occluded vehicles 
 
 
Vehicle A (Figure 6) 
1) Extend line vx2vx1 and line vx4vx5 until they intersect at point p (Figure 6(a)) 
2) Connect point p and point va6, and extend the line. 
3) Extend line va6va1 along plane pva6va1 until intersect with point va2.  New corner on the extended plane is now 

labeled va7  (Figure 6(b)). 
4) Project line va2va3 along the plane va2va3va7  until intersect with point va7.  The intersection between the new line and 

the horizontal line passing through va3 is now labeled as va4  (Figure 6(c)). 
5) Connect point p and va4.  An intersection point va5 is formed  (Figure 6(d)). 
 
  
 

 
 
 
 
 

 
       (a)       (b) 
 
 
 
 
 
 
 
 
      
 

    (c)       (d) 
 
 

Figure 6:  Steps to partition vehicle A 
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Vehicle B (Figure 7) 
1) Extend line vx2vx1 and line vx4vx5 until they intersect at point p (Figure 7(a)). 
2) Connect point p and vb6, and extend the line. 
3) Extend line vb5vb6 along plane pvb5vb6 until intersect with point vb4.  New corner on the extended plane is now 

labeled vb7  (Figure 7(b)).   
4) Project line vb3vb4 upwards until intersect with point vb7.  The intersection between the new line and the vertical line 

passing through vb3 is now labeled as vb2  (Figure 7(c)).   
5) Connect point p and vb2.  An intersection point vb1 is formed  (Figure 7(d)).   

 
By the above steps, the model can be partitioned into two separate but complete models va and vb.    
 

 
 
 
 
 
 
 
        (a)                 (b) 
                       
 
 
 
 
 
 
 
 
  
         (c)       (d) 
 
 

Figure 7:  Steps to partition vehicle B 
 
 

4. EXPERIMENTAL RESULTS AND DISCUSSION 
 

The newly proposed algorithm was tested on two sets of real traffic images that were taken on a busy highway where 
occlusions occur frequently.  Both sets of images were taken during daytime where the shadow effects are prominent.  
The shadow removal algorithm proposed by [Fun01] was employed to remove the cast shadow in the vehicles. 

The first set of image contains a double-decker bus that was partially occluded by an articulated-truck (Figure 
8(a)).  The signature curve of the contour is first computed by Eqt.(1) (Figure 8(c)).  The signature curve is then 
subjected to lowpass filtering, and the result of the filtering is depicted in Figure 8(d).  The critical points are then 
detected from the filtered signature curve (Figure 8(e)).  Figure 9(f) depicts all the detected critical points on the 
contour.  The detected critical points are then clustered (Figure 8(g)).  It is noted that the number of critical points is 
reduced as shown in Figure 8(h).  By exploiting these critical points as well as the vanishing point p of the road, the 
model was partitioned into two portions by using the algorithm as introduced in Section 3.2 (Figure 8(i)).   

The individual vehicle after partition is shown in Figure 8(j) and 8(k).  We observe that the double-decker bus 
was accurately segmented from the image.  However, the segmentation is slightly biased to the left for the articulated-
truck.  This deviation is due to the fact that the right edge of the partitioned model (ie. line vb5vb6), was slightly deviated 
from the vehicle.  This deviation is caused by the side mirror on the right hand side of the truck.  The deviation of line 
vb5vb6 has also caused line vb1vb2 to be slightly offset from the edge of the truck.   
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The second set of images contains two mini-vans in which one of them is occluding another.  The generation 
of the signature curve, low-pass filtering, critical points detected, clustering and model partition can be seen in Figure 
9(c)-(i) respectively.  From Figure 9(j) and (k), we observe that the segmentations of both vans are quite accurate this 
time.  Moreover, unlike the articulated-truck in the previous set, the side mirror of the right van does not cause too 
much problem of model offset.  This is because the side mirror of the mini-van is aligned nearer to the vehicle body 
than the one in the articulated-truck.  Therefore the effect on segmentation error is less prominent than the articulated-
truck.  The problem of side mirror is usually less pronounced in small vehicles than in large vehicles.    
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(g)                (h) 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
(i)                                (j) 

 
 

 
 

      Figure 8: The model partition of a bus and an articulated- 
       truck 
 
      (a) Original diagram (b) Binary vehicle mask 
      (c) Signature curve  (d) Filtered signature curve 
      (e) & (f) Detected critical points 
      (g) & (h) Clustered critical points 
      (i) Partitioned lines of the model 
      (j) Partitioned model of the bus 
        (k) Partitioned model of the truck 
 
 

         (k)                 
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      (i)                 (j) 
 
 
 
 
      Figure 9: The model partition of two occluded mini-vans 
      (a) Original diagram (b) Binary vehicle mask 
      (c) Signature curve  (d) Filtered signature curve 
      (e) & (f) Detected critical points 
      (g) & (h) Clustered critical points 
      (i) Partitioned lines of the model 
      (j) Partitioned model of the left van 
        (k) Partitioned model of the right van 
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To evaluate the accuracy of the proposed algorithm, the dimensions of the vehicles in the test images were 
extracted from the partitioned model.  The estimated values are then compared with the actual dimension of the vehicle 
published by the manufacturer.  The dimension of the double-decker bus is tabulated in Table 1.  The error in width and 
height is around 4.5%, while the error in length is slightly higher than the width and height (around 8%).  This is 
probably due to the fact that the edge of model A which describes the length of the double-decker bus (ie., line va4va5) 
does not fit the vehicle perfectly.   

Table 2 tabulates the estimated dimensions of the articulated-truck in Figure 8.  From the table, we can observe 
that the height of the vehicle is accurately estimated (error <1.5%).  The error of width is around 7%, while the length 
has a relatively higher error (around 10%).  The large error in the width and length is due to the side mirror on the right 
hand side of the vehicle which caused the offset of the model during model fitting.  As mentioned before, the side 
mirror of large vehicles usually causes significant error in dimension estimation.   

The error in the estimated dimensions of the two mini-vans is relatively smaller than that of the double-decker 
bus and the articulated-truck, as shown in Table 3 and 4.  The reason for the accurate estimation is that the binary mask 
of the two occluded mini-vans has clear and distinguishable features, so that the critical points for partition can be 
located accurately from the outline contour.  Moreover, the side mirrors of the mini-vans are relatively closer to the 
vehicle body than those of the articulated-trucks, which cause less offset of the model.   

 
 
 
 
 

Table 1 Extracted dimensions of the double-decked bus (Figure 8) 
 
 
 
 
 
 

Table 2 Extracted dimensions of the articulated truck (Figure 8) 
 
 
 
 
 
 

Table 3 Extracted dimensions of the left van (Figure 9) 
 
 
 
 
 
 

Table 4 Extracted dimensions of the right van (Figure 9) 
 

 In general, height estimation is the most accurate and robust, whilst width accuracy is determined by the side 
mirror, and the length has the largest variation and least accuracy.   
 
 

5.  CONCLUSION 
 
In conclusion, the occlusion-handling algorithm based on partitioning the model as presented in this paper is an 
effective way for handling vehicle occlusion.  The merit of the proposed method is that each occluded vehicles can be 
modeled and measured individually with good accuracy.  The proposed algorithm has been tested on real world traffic 
images, and the average estimation accuracy in vehicle width is 95.5%, whereas the accuracies in vehicle length and 

(mm) Width Length Height 
Actual 2500 11880 4760 
Estimated  2622 12871 4970 
Error 4.88% 8.34% 4.41% 

(mm) Width Length Height 
Actual 2400 12000 2550 
Estimated  2225 13208 2582 
Error 7.29% 10.07% 1.25% 

(mm) Width Length Height 
Actual 2025 6255 2585 
Estimated  1938 6575 2649 
Error 4.30% 5.12% 2.48% 

(mm) Width Length Height 
Actual 2025 6255 2585 
Estimated  2059 6424 2616 
Error 1.68% 2.70% 1.20% 
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height are 93.4% and 97.7% respectively.  The drawback of the algorithm is that the performance is hindered by the 
side-mirror of the vehicles, especially for large vehicles such as articulated-trucks, and solutions should be found in 
order to relief this effect.  Future development of this method will be focused on developing a model for describing the 
occlusion of multiple vehicles (both occluded horizontally and vertically) so that this model can applied to solve 
occlusions of multiple vehicles reliably. 
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