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ABSTRACT

We have developed an algorithm for the rigid-body registration of a 3D CT to a set of C-arm images by matching
them to computed cone-beam projections of the CT (DRRs). We precomputed rescaled versions (pyramid) of the
CT volume and of the C-arm images. We perform the registration of the CT to the C-arm images starting from
their coarsest resolution until we reach some finer resolution that offers a good compromise between time and
accuracy. To achieve precision, we use a cubic-spline data model to compute the data pyramids, the DRRs, and
the gradient and the Hessian of the cost function. We validate our algorithm on a 3D CT and on C-arm images
of a cadaver spine using fiducial markers. When registering the CT to two C-arm images, our algorithm operates
safely if the angle between the two image planes is larger than 10◦. It achieves an accuracy of approximately
2.0±1.0 mm.
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1. INTRODUCTION

We propose an algorithm to register a volume of unknown pose to a set of reference projections with known
poses. Our algorithm is similar to several published ones.1–7 It relies on computing projections of the volume
and on matching them to the reference projections. It iteratively optimizes a mean-squares cost function and
uses a Marquardt-Levenberg algorithm for acceleration. We refer to the computed projections as Digitally
Reconstructed Radiographs (DRRs). We obtain them by integrating the volume along simulated X-rays. The
potential applications of our algorithm are in computer-assisted orthopedic surgery,8 where it is useful to
integrate a high-resolution preoperative 3D CT data into the intraoperative procedure by using intraoperative
C-arm images of the patient. We have refined our previous registration algorithm9 in two ways. Firstly, to
compute DRRs, our algorithm can now handle the cone-beam geometry in addition to the parallel-beam geometry.
Secondly, we compare several multiresolution approaches and we implement one that gives the best trade-off
between the registration accuracy and the registration time.

To compute the gradient of the cost function exactly, we interpolate the volume using a cubic-spline data
model.10 We take advantage of our shearing method9 to perform a fast computation of a DRR. This method is
related to shear-warp factorization,7 but, contrary to,7 does not require an intermediate DRR to be computed.

In this paper, we validate our algorithm on a 3D CT and on C-arm images of a cadaver spine. We evaluate
our estimation of the pose of the CT in the reference coordinate system against a ground-truth pose that is
known a priori by way of fiducial markers implanted in the specimen before that image data were acquired.

2. REGISTRATION ALGORITHM

2.1. Multiresolution

Given a CT volume and a set of C-arm images, we precompute their cubic-spline L2 pyramids. A cubic degree
offers a compromise between interpolation quality and computation time. We estimate the pose of the CT in the
reference coordinate system by refining an initial CT pose. We register the volume to the images starting from
their coarsest resolution. We use the final estimate obtained at some pyramid level to resume the registration
at the next finer one. We repeat the registration procedure at even finer resolutions until we reach a resolution
that provides a good compromise between registration accuracy and registration time.
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2.2. Cone-beam projection

Given a pose µ of the volume f , the pose of the projecting plane, and the coordinate r of the illumination source
in the reference coordinate system, we compute the cone-beam DRR pµ by casting simulated X-rays through
the volume, from the grid points in the plane towards the source.

Let ui be the unit vector on the ray from the source to the point with the index i = (i1, i2, 0, 1) in the image
plane. Let Bµ be a rigid-body transformation from the system of volume indexes to the reference coordinate
system, and let B−1

µ be its inverse transformation. We propose to write the DRR as follows:

pµ(i) =
∫ li

ei

f(B−1
µ (r+ t ui)) dt. (1)

Direct implementation of Equation (1) would require a 3D interpolation of the volume f . We perform a
fast computation of a DRR by replacing the 3D interpolation by a 2D interpolation. This method, that we call
shearing,9 takes advantage of a change of the integration variable t in Equation (1), and of an approximation
of the integral by a discrete sum. We adapt the size of the sampling step along t so that only samples of the
volume with one integer and two real coordinates take part in the sum.

3. DATA

A cadaver spine specimen∗ was frozen so that it can be treated as a rigid body. Five fiducial markers were
implanted on it. One was placed in the L5, two in the L4, and two in the L3 vertebra. The specimen was
CT-scanned with 72 slices of size 512 x 512 pixels each (Fig. 1). The intra-slice pixel size was 0.36 x 0.36 mm,
and the inter-slice thickness was 2.5 mm. The tilt angle was zero.

Figure 1. Transversal (left), sagital (center), and frontal (right) intersections of the CT with visible fiducial markers.

Figure 2. Two C-arm images with a visible dynamic reference base.

A Dynamic Reference Base (DRB) was attached on the specimen before shooting the C-arm images in a way
that it projects onto the images. The presence of the DRB in C-arm images challenges our registration algorithm
because the DRB is not present in the CT data. This situation would be typical in a clinical setting. C-arm

∗Courtesy of the M.E. Müller Institute for Biomechanics, Bern, Switzerland.



images were captured with seven different poses, and the fiducial markers were digitized in the DRB coordinate
system by using a pointer. C-arm images of size 768 x 576 pixels, with pixel size 0.36 x 0.36 mm, were acquired
(Fig. 2).

4. VALIDATION

4.1. Ground-truth registration

Given a list of the ground-truth DRB coordinates of the fiducial markers (vi, i = 1, ..., 5), and a list of their
ground-truth 3D CT indexes (ki, i = 1, ..., 5), we estimate the ground-truth transformation B that transforms
the system of CT indexes into the DRB coordinate system by minimizing χ2 = 1

5

∑5
i=1 ‖vi − B ki‖2.

If the specimen was rigid and if vi and ki were obtained with perfect precision, it would be possible to get
χ = 0 mm. However, we observe χ = 0.76 mm. This non-zero χ indicates that either the specimen was not rigid,
or that the markers were digitized with some error, or that the ground-truth CT indexes of the markers were
inexact. Independent analysis has shown that the digitization error is about 0.5 mm.

4.2. Misregistration

In order to define a measure of misregistration, we transform every 3D CT index k into a DRB coordinate by
using two transformations: the ground-truth transformation B and the transformation Bµ that we estimate by
performing image registration. We define the misregistration as the average of the norm of the difference between
the two DRB coordinates over all the CT indexes (card(f) = 512 x 512 x 72 indexes), that is,

M =
1

card(f)

∑
k∈f

‖(B − Bµ)k‖. (2)

4.3. Experiments

We want to determine the performance of our algorithm when registering the CT volume to a pair of C-arm
images. We mask the fiducial markers in each of the two imaging modalities so that they do not influence the
registration. Our algorithm proceeds by refining an initial condition. On purpose, we set this initial condition
µ0 such that B �= Bµ0

, which leads to a large initial misregistration M0. A successful registration will lead to
a final M << M0.

One of the elements that determine the working range of our algorithm is given in terms of the angle between
the two involved image planes. It operates safely if the angle between the two image planes is larger than 10◦.
From the set of 21 image pairs ( 7!

2!5!
= 21), we perform the experiments on 19 pairs that satisfy the working

conditions of our algorithm.

We use four-level CT and C-arm image pyramids. These pyramids are dyadic, but we do not change the
number of CT slices while performing the data reduction. We perform the registration at the two coarsest
pyramid levels only, since this strategy gives a good trade-off between accuracy and time. If we perform additional
processing at the two finest data resolutions, we do not gain more than 0.2 mm accuracy. This does not justify the
huge additional registration time. We did try to coarsen the data further, for example, by computing five-level
pyramids, or by reducing the number of CT slices. However, such pyramids did not improve the performance
of our registration algorithm since it had either failures at the coarser data resolutions or did not perform
remarkably better at the finer data resolutions.

4.4. Results

We show in Table 1 the mean and the standard deviation of the misregistration M over all 19 experiments
(Sec. 4.3) for an initial fiducial-marker misregistration of approximately 9.02 mm.

We were able to align the CT and C-arm images with a misregistration M =1.79± 0.69 mm. The non-zero
misregistration can be explained by the fact that the specimen was not perfectly rigid, that some errors were
made when digitizing the fiducial markers in the DRB coordinate system, and that some more errors were made
when determining the ground-truth CT indexes of the markers. At this time, it is very difficult to disentangle



these effects to determine with more precision which fraction of the misregistration our algorithm is responsible
for.

As far as the speed is concerned, we performed the experiments on a Power Mac G4, 733MHz, where the
computation of volume and image pyramids took approximately 20 sec and 6 sec, respectively. We achieved the
registration in 5 min (Table 1).

Table 1. Results of the registration at the two coarsest data resolutions.

Level CT Size C-Arm Image Size Misregistration [mm] Time [sec]
[pxls] [pxls] Mean Standard Deviation Mean Standard Deviation

3 64x64x72 96x72 2.10 0.69 54.1 7.3
2 128x128x72 192x144 1.79 0.69 152.3 79.3
1 256x256x72 384x288 ignored ignored ignored ignored
0 512x512x72 768x576 ignored ignored ignored ignored
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