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ABSTRACT

Digital images generally suffer from two main sources of degradations. The first includes errors introduced in
imaging, such as blurring due to optical aberrations and sensor noise. The second includes errors introduced
during the processing. One particular example is the quantization noise arising from lossy compression. While
image restoration is concerned with the recovery of the object from these degradations, often we only deal with
one type of the error at a time. In this paper, we present a restoration algorithm that handles images with optical
aberrations and quantization in a transform domain. We show that it can be cast in a joint optimization setting,
and demonstrate how it can be solved efficiently through alternating minimization. We also prove analytically
that the algorithm is globally convergent to a unique solution when the restoration uses either H1-norm or
TV -norm regularization. Simulation result asserts that this joint minimization produces images with smaller
relative errors compared to a standard regularization model.

Keywords: Image restoration, optical aberrations, quantization, discrete cosine transform, joint optimization,
alternating minimization

1. INTRODUCTION

In recent years, multimedia communication has become more and more popular in a diverse array of applications.
This is in part spawned by the rapid advancement in electronic sensor technology. With either charge coupled
devices (CCD) or complementary metal-oxide semiconductor (CMOS) imagers, the number of pixels that can be
found in digital still and video cameras have increased substantially. Larger images require a wider bandwidth
for transmissions. In most cases, they need to be subjected to a lossy compressor for effective communication
and storage.

Lossy compression is usually achieved by quantization of the image in a transformed domain. In JPEG,
the image undergoes block-based discrete cosine transform (DCT) before the DCT coefficients are quantized
according to a pre-defined quantization matrix.1 In JPEG 2000, the transform basis is changed to wavelets,
and quantization is performed on the wavelet coefficients at the different subbands.2 Similar techniques are
used for many other image and video compression standards.3 Mathematically, the quantization step can be
considered as an addition of quantization noise, whereby the visual appearances of the images remain largely
unaffected while the coding of the resulting transformed coefficients becomes much more effective. More often in
reality, though, the visual quality of the images is necessarily degraded, and we seek image restoration schemes
to remove the degradation as far as possible.

Quantization noise is not the only source of degradation, however. In many imaging settings, there are
blurring of the images introduced during the image capture. The most common types are defocusing and motion
blur, both of which can be modeled as space-invariant degradations and have been studied extensively in the
image restoration literature.4–6 As the sensor pixel size decreases, some other optical distortions become more
apparent. For example, for the first-order Seidel aberrations, we have spherical aberration, coma, astigmatism,
curvature of field, as well as barrel and pincushion distortion.7 Although all except spherical aberration is space-
variant, some can be made space-invariant by appropriate geometric coordinate transformations under certain

Further author information: (Send correspondence to Edmund Lam.)
Edmund Lam: E-mail: elam@eee.hku.hk
Michael Ng: E-mail: mng@maths.hku.hk

Computational Imaging II, edited by Charles A. Bouman,
Eric L. Miller, Proc. of SPIE-IS&T Electronic Imaging,
SPIE Vol. 5299 © 2004 SPIE and IS&T · 0277-786X/04/$15

93



g(x, y)f(x, y)

n(x, y)

h(x, y)

Figure 1. Block diagram for the imaging system.

conditions.8 Therefore, we restrict ourselves to the restoration of linear space-invariant blurs in this paper for
their simplicity in modeling, while bearing in mind the possibilities of extending the algorithm to handle a wider
class of degradations.

While both linear space-invariant blur and transformed-domain quantization are acknowledged sources of
degradations, most image restoration algorithms deal with them in separate processes. In fact, most image
restoration algorithms assume that the quantization noise is small and can be ignored. This assumption may
be valid for images with low compression, but when we have severe compression, quantization noise cannot be
ignored. In this paper, we propose an image restoration algorithm that directly restores the blurred and quantized
image. Note that this is slightly different from restoration schemes designed in the compressed domain, where we
seek to embed the restoration along the compression codec to minimize the computational burden.9, 10 These
algorithms are suitable for on-camera restorations, where computation capability is limited and compression
codec is readily available as part of the imaging pipeline. In contrast, our proposed scheme here is suitable for
operation after the images are downloaded to a computer host, where we can afford more computation such as
with the use of iterative techniques.

The paper is organized as follows: In section 2, we present a mathematical analysis of the combined effects
of linear space-invariant degradation and transform domain quantization. Then, in section 3, the detail of the
algorithm is presented, paying attention to its setting, the alternating minimization algorithm, and the special
case with symmetric blur. Simulation results will then be presented in section 4, with some concluding remarks
to follow.

2. EFFECTS OF QUANTIZATION AND BLUR

For linear space-invariant degradation, the observed image and the original object can be related simply by a
convolution relationship. Imaging is modeled with the well-known equation

g(x, y) = h(x, y) ∗ f(x, y) + n(x, y), (1)

where g(x, y) is the observed image, f(x, y) is the original object, and h(x, y) is the point spread function, which
is the inverse Fourier transform of the Optical Transfer Function (OTF). n(x, y) represents noise in the imaging
system, which is typically modeled as additive white Gaussian.11 A block diagram representing the imaging
system is shown in Fig. 1. For simplicity in description, we will use an equivalent matrix representation of
equation (1) by raster-scanning the images to obtain

g = Hf + n. (2)

Note that H is a block Toeplitz matrix and can be diagonalized by the two-dimensional discrete Fourier transform
(DFT) if we use circular convolution in equation (1).

After the image is captured in the imaging system, it undergoes quantization in the transformed domain. We
represent the image transform by a matrix operation CT . This can represent Fourier transform, Cosine transform,
or other linear transforms, where C is a unitary matrix. Quantization is computed by a multiplication with a
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Figure 2. Block diagrams for compression and decompression.

diagonal matrix � that scales the quantized coefficients, and an addition of quantization noise nq. Conceptually,
the quantized image can be multiplied by C to bring it back to the spatial domain,

gq = C�CT g + Cnq, (3)

where gq is the quantized image, although often in practice it remains in the transformed domain and the
quantized coefficients are losslessly encoded for transmission or storage.

In decoding, we compute

ĝ = CΩCT gq

= CΩ�CT g + CΩnq

= CΩ�CT Hf + CΩ
(
�CT n + nq

)
, (4)

where ĝ is the decompressed image and Ω is a diagonal matrix that scales the quantized coefficients. The block
diagrams for compression and decompression are shown in Fig. 2(a) and (b) respectively.

Ideally, ĝ should be close to Hf . Therefore, we can perform simultaneous dequantization and restoration by
minimizing the following expression

(
f̃ , Ω̃

)
= arg min

f ,Ω
‖ĝ − Hf‖

= arg min
f ,Ω

‖CΩCT gq − Hf‖

= arg min
f ,Ω

‖CΩ�CT Hf + CΩ
(
�CT n + nq

) − Hf‖

= arg min
f ,Ω

‖ (
CΩ�CT − I

)
Hf + CΩ

(
�CT n + nq

) ‖. (5)

Note that if nq is small, the above expression can be simplified to a linear least-square restoration where the
solution is readily obtained by Wiener filtering.12 However, for high compression ratio, nq is non-negligible and
it alters the noise spectrum in a complex manner if we attempt to use the Wiener filter. Instead, in the next
section, we propose an iterative technique using alternating minization to compute the restoration.

SPIE-IS&T/Vol. 5299     95



3. IMAGE RESTORATION ALGORITHM

3.1. Algorithm Setting
It is well-known that image restoration with equation (5) is an ill-posed problem and regularization is necessary
for a stable solution. Therefore, we actually tackle the modified problem

min
f ,Ω

J ≡ 1
2
‖Hf − CΩCT gq‖2

2 + αR(f). (6)

α is a positive parameter which measures the trade-off between a good fit and the regularity of the solution
f . In the model, the H1-norm regularization functional can be applied to R(f) in equation (6). However, the
H1-norm regularization functional tends to attenuate the high frequency information of f . We can also use the
total variation (TV) regularization functional.13 We remark that TV-norm allows the discontinuities in f , thus
making it superior to the H1 regularization in cases where f can have discontinuities, such as with edges.

3.2. Alternating Minimization
In this subsection, we consider the alternating minimization algorithm to solve the joint minimization model
in (6). With an initial guess f0 for f , we minimize equation (6) by first solving Ω0 = arg min

Ω
J(f , Ω) and then

f1 = arg min
f

J(f,Ω0). The algorithm is given as follows:

Alternating Minimization Algorithm:

Given f0: iterating k = 0, 1, 2, . . ., until convergence
Step (i) Solve Ωk = arg min

Ω
J(fk, Ω)

Step (ii) Solve fk+1 = arg min
f

J(f , Ωk)

In Step (i) of the alternating minimization algorithm, the diagonal matrix Ωk = arg min
Ω

J(fk, Ω) can be

determined by solving the corresponding Euler-Lagrange equation:

∇ΩJ = ΩCT gq − CT Hf = 0. (7)

Similarly, in Step (ii), the image fk+1 = arg min
f

J(f , Ωk) can be found by solving the equation:

∇fJ = HT Hf + αr(f) − HT CΩCT gq = 0. (8)

We remark that if R(f) is the H1-norm regularization functional, then

r(f) = −�f , (9)

where � denotes the Laplacian operator with the Neumann boundary condition. The discrete version of −�f is
the discrete 2-dimensional Laplacian matrix L with the Neumann boundary condition. Note that the matrix L
can be diagonalized by the discrete cosine transform matrix, see for instance Ref. 14. If R(f) is the total-variation
regularization functional, then

r(f) = −∇ ·
( ∇f
|∇f |

)
. (10)

Due to the term 1/|∇f |, r(f) is a degenerate nonlinear second order diffusion term. The degeneracy can be
removed by modifying the diffusion coefficient by considering

r(f) = −∇ ·
(

∇f
√|∇f |2 + β

)

(11)

for a small value of β.
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3.3. Analysis of Algorithm

We can use alternating minimization algorithm to find the minimizer. To show the convergence of the alternating
minimization algorithm, we first establish the following two lemmas.

Lemma 3.1. The Hessian Hess(J) is positive definite under H1-norm regularization functional.

Proof. By direct computation, the Hessian Hess(J) is given by

Hess(J) =
(

HT H + αL −HT CG
−GT CT H GT G

)
, (12)

where G = diag(CT gq) and diag(x) denotes a diagonal matrix whose diagonal is given by the vector x. We can
show that it is positive definite.

Lemma 3.2. The Hessian Hess(J) is positive definite under TV -norm regularization functional.

Proof. The proof is similar.

With these two lemmas, we have the following main theorem.

Theorem 3.3. For any initial guess f0, the alternating minimization algorithm converges globally to a unique
solution under H1-norm or TV -norm regularization.

Proof. The alternating minimization algorithm can be stated as a block coordinate descent method on f and Ω.
Since Hess(J) is positive definite, J is strictly convex on f and Ω. By using Proposition 2.7.1 of Ref. 15, the
alternating minimization algorithm is globally convergent toward the unique global minimizer.

3.4. Symmetric Blur

For symmetric blurring operators, H can be diagonalized by the discrete cosine transform operator C, i.e.,
H = CΛCT ,14 where Λ is a diagonal matrix. Also when using the H1-norm regularization functional, L can be
diagonalized by C as well, i.e., L = CΦCT ,14 where Φ is a diagonal matrix. In this situation, the minimization
problem becomes

min
f,Ω

J =
1
2
‖ΛCT f − ΩCT gq‖2 + αfT Lf . (13)

In Step (i), we solve

∇ΩJ = ΩCT gq − ΛCT f = 0, (14)

the diagonal part of Ω is equal to CT gq � ΛCT f , where � denotes pointwise division. Similarly, in Step (ii),

∇fJ = (ΛT Λ + αΦ)CT f − ΛT ΩCT gq = 0, (15)

i.e., the restored image f is equal to C(ΛT ΩCT gq � ΛT Λ + α + Φ).

4. SIMULATIONS

In this section, we illustrate the effectiveness of using the new minimization model and the efficiency of the
alternating minimizing algorithm. The simulation results are shown in Figs. 3 and 4.

In each Figure, we begin with a sharp original image (“mri” image). Gaussian white noise n with

‖Hf‖2

‖n‖2
= 5 (16)

is added to the frequency domain of the blurred images. In the test, the stopping criterion of the alternating
minimization algorithm is ||f (k) − f (k−1)||2 < 10−3, where f (k) is the kth iterate of the algorithm.
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α without blur the blur [1/3, 1/3, 1/3] ⊗ [1/3, 1/3, 1/3]
0.0001 39 2
0.001 37 37
0.01 70 100
0.1 120 121

Table 1. Number of the iterations required for different regularization parameters.

Figures 3 and 4 show the restored images using the standard model

min
f

J̃ ≡ 1
2
‖Hf − gq‖2

2 + α̃R(f) (17)

and our proposed model in equation (6). Here the optimal regularization parameters α̃ and α are suitably chosen
so that they minimize the relative error of the reconstructed image to the original image:

||frestored − foriginal||
||foriginal||

where frestored is the restored image by the algorithm and foriginal is the original image. The same procedure
is applied to the two models. In Figures 3 and 4, the regularization parameters α̃ and α are 0.25 and 0.001
respectively. Moreover, their corresponding relative errors are reported in their captions. We find that the
relative errors of the restored images using joint minimization model is less than that of restored image using
the model in equation (17). We see that our proposed model gives slightly better restored image.

In Table 1, we show the number of iterations of the alternating minimizing algorithm required for different
values of α. In the tests, we use the blurred and noisy image as the initial guess for the joint minimization model.
We see from Table 1 that when α increases, the number of iterations required for convergence increases.

5. CONCLUSIONS

In this paper we present an algorithm that can restore images with optical aberrations and quantization in a
transform domain. Using an alternating minimization approach, we first assert its global convergence behavior
mathematically and then observe its ability to restore images with simulation. Together they suggest that this
approach is viable to give images with somewhat better quality than if we use a standard restoration technique
that targets the deblurring alone.
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