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Visual communications with side information via distributed
printing channels: extended multimedia and security

perspectives

S.Voloshynovskiy, O. Koval, F. Deguillaume, and T. Pun

University of Geneva - CUI, 24 rue General Dufour, CH 1211, Geneva 4, Switzerland

ABSTRACT

In this paper we address visual communications via printing channels from an information-theoretic point of view as
communications with side information. The solution to this problem addresses important aspects of multimedia data
processing, security and management, since printed documents are still the most common form of visual information
representation. Two practical approaches to side information communications for printed documents are analyzed in
the paper. The first approach represents a layered joint source-channel coding for printed documents. This approach
is based on a self-embedding concept where information is first encoded assuming a Wyner-Ziv set-up and then
embedded into the original data using a Gel’fand-Pinsker construction and taking into account properties of printing
channels. The second approach is based on Wyner-Ziv and Berger-Flynn-Gray set-ups and assumes two separated
communications channels where an appropriate distributed coding should be elaborated. The first printing channel
is considered to be a direct visual channel for images (“analog” channel with degradations). The second “digital
channel” with constrained capacity is considered to be an appropriate auxiliary channel. We demonstrate both
theoretically and practically how one can benefit from this sort of “distributed paper communications”.

Keywords: data-hiding, printed documents, communications with side-information, bar-codes, distributed cod-
ing, joint source-channel coding, Gel’fand-Pinsker problem, Wyner-Ziv coding, Berger-Flynn-Gray coding, image
enhancement, authentication, integrity control.

1. INTRODUCTION

Printed documents are still the most common, habitual and widely used form of visual information representation.
Therefore, as with digital media, the important emerging issues for printed documents are copyright protection,
authentication, integrity control, tracking and finally quality enhancement. The printed document can be considered
as a part of visual communications where data are converted into some specific form suitable for reliable communi-
cations via printing channels, with some given constraints on perceptual quality. Digital halftoning is often used for
the transformation of digital documents into printed form. Although, being very simple and having been used since
1855, this transformation unavoidably leads to the degradation of the original document quality. This is not the case
for digital documents and has important consequences for document security and management.

Digital data-hiding has been considered as a possible approach to address the above problems for digital doc-
uments. However, in most cases the traditional means of digital data-hiding are not always suitable for printed
documents and new approaches are required. Moreover, the printing industry has already recognized a limit in
the enhancement of printed/scanned image quality related to inverse-halftoning. Further enhancement would im-
ply the development of more expensive and complex printing/scanning devices, which is not appropriate for many
low-cost and real-time applications. At the same time the security of printed documents (not necessarily printed on
paper) including passports, visas, ID cards, driving licenses, diplomas, credit cards, banknotes or checks is usually
accomplished by proprietary know-how technologies and digital data-hiding is far to be widely accepted in this field.

In this paper we consider some practical approaches and analyze several scenarios aiming at further extending
the usage of data-hiding technologies for printed documents. This problem is tackled from an information-theoretic
point of view as communications with side information. Therefore, the goal of the paper is threefold:

• introduce an information-theoretic formalism into visual communications via distributed printing channels;
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• consider possible communications scenarios with side information for multimedia (watermark-assisted) and
security applications;

• establish corresponding bounds on system performance assuming side information available at the encoder or
at the decoder depending on the particular scenario.

The main practical focus of this paper will be the important problem of quality enhancement of printed documents.
Without loss of generality the considered framework can be extended to copyright protection, authentication and
tamper proofing applications. Moreover, the proposed framework allows to consider reversible data-hiding from the
point of view of multiple access channels and to establish the corresponding rates for the reliable communications of
each source, i.e., image and watermark.

To extend the range of possible applications beyond the traditional security documents that represent the ma-
jor concern of data-hiding and watermarking community as well as security printing industry, we also consider the
proposed system on the example of publicly distributed documents such as journals, newspapers, books and adver-
tisement materials. For example, Figure 1 represents the basic system set-up where the image of concern (Lena)
should be extracted from the printed document with the purpose of authentication, tracking or quality enhancement.
If this image is simply scanned by a public user that does not have any access to specific information, the best quality
of the resulting scanned image will be defined by the applied processing prior to printing (possibly lossy compression,
resampling or blurring), by the quality of the printing and finally by the quality of the scanning (inverse halftoning).
It is obvious that in some cases the degradation of quality can be quite considerable so that the scanned image can
not be further exploited for the targeted applications.

Moreover, in some practical scenarios, the printed document can not be reproduced in color, if cheap printing
is used or when the physics of the reproduction process does not allow to achieve it. One example consists in laser
engraving of photos on plastic cards used in security printing. In this case, the color information can be communicated
via data-hiding or some auxiliary channel exploiting the redundancy between color planes.

Image of interest

2-D Bar code

Figure 1. Visual communications via printing channels: example of journal with side information communications.



Another situation arises when the image contains some embedded data or when these data are communicated via
some auxiliary channel that can assist the quality enhancement of the printed document. Assume here for simplicity
that this auxiliary channel is a 2-D high capacity bar code shown at the bottom of the page (Figure 1) ∗. The bar
code can be designed as a specific pattern or logo to avoid an annoying random-like appearance on the page. The
bar code can be also attached on the last page of the journal or on some supplying layout. Access to the embedded
data or to the content of the bar code is authorized and can be managed according to the selected distribution
protocol. In the simplest case, it can be granted for an extra price. We call the person who has obtained the above
access rights a private user or an authorized user. The private user can somehow benefit from the appropriately
communicated extra information in enhancing the quality of the scanned document. Therefore, the overall goal is to
design an optimal system that will provide the maximum possible quality of the reconstructed image with minimum
needed rate of the extra information to be additionally communicated to the decoder.

In the scope of this paper we propose the further development of digital data-hiding technologies and high capacity
bar-codes for printed documents based on communications with side information. We consider two related problems
of side information available at the encoder (Gel’fand-Pinsker problem)1 for host interference cancellation and side
information available at the decoder (Wyner-Ziv problem)2 for distributed coding.

There exist two practical approaches to side information communications for printed documents. The first
approach represents a layered joint source-channel coding for printed documents. This approach is based on the
self-embedding concept where the information is first encoded assuming Wyner-Ziv set-up and then embedded into
the original data using Gel’fand-Pinsker construction and taking into account properties of printing channels.

The second approach is based on the Wyner-Ziv set-up and assumes two separated communications channels
where an appropriate distributed coding should be elaborated. The first printing channel is considered to be a direct
visual channel for images “analog” channel with degradations). The second ”digital channel” with a constrained
capacity is considered to be an appropriate bar code. We demonstrate both theoretically and practically how one
can benefit from this sort of distributed paper communications using cheap digital printers.

The paper is organized as following. Section 2 outlines the fundamentals of rate-distortion theory with side
information. Sections 3 presents a mathematical model of the printing process. Sections 4 and 5 consider possible
protocols for self-embedded and auxiliary channel index communications. Section 6 presents experimental results
and section 7 concludes the paper.

Notation. We use capital letters to denote scalar random variables X, bold capital letters to denote vector
random variables X, corresponding small letters x and x to denote the realizations of scalar and vector random
variables, respectively. The superscript N is used to designate length-N vectors x = xN = [x1, x2, ..., xN ]T with ith
element xi. We use X ∼ pX(x) or simply X ∼ p(x) to indicate that a random variable X is distributed according
to pX(x). The mathematical expectation of a random variable X ∼ pX(x) is denoted by EpX

[X] or simply by E[X]
and Var[X] denotes the variance of X. Calligraphic fonts X denote sets X ∈ X and |X | denotes a cardinality of set.
IN denotes the N ×N identity matrix.

2. VISUAL COMMUNICATIONS WITH SIDE INFORMATION

2.1. Asymmetric two-side information

Visual communications via printing channels can be considered from the point of view of communications with
an asymmetric side information available at the encoder and at the decoder. The asymmetry of side information
originates from the fact that the different types of prior information are available at the encoder before the printing
process, and actual side information available a posteriori at the decoder. Let S1 denotes the side information
available at the encoder and S2 the side information available at the decoder (Figure 2). One can consider S1 as a
“virtually predicted” image after halftoning/inverse halftoning and S2 as the physically printed and scanned image.
Assume that {Xk, S1,k, S2,k} are i.i.d. ∼ pX,S1,S2(x, s1, s2) independent drawings of jointly distributed random
variables X ∈ X , S1 ∈ S1 and S2 ∈ S2 where X ,S1,S2 are finite sets. A distortion measure is defined as d(x, x̂)
and the corresponding average distortion as D = 1

N

∑N
k=1 E[d(Xk, X̂k)]. The sequence {Xk} is encoded in blocks

of length N into a binary stream of rate R, which should be decoded back as a sequence {X̂k} in the reproduction
alphabet.

∗Note: more generally auxiliary channel can be designed using different information carriers used in the printed (plastic) documents
such as bar codes, invisible inks or crystals, magnetic strips, cheap electronic low-capacity chips.
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Figure 2. Two-sided asymmetric side information available at both encoder and decoder.

Cover and Chiang3 have shown that the rate R is achievable at the distortion level D, if there exists a sequence of
(2NR, N) codes i : XN ×SN

1 → {1, 2, · · · , 2NR}, X̂ : {1, 2, · · · , 2NR} × SN
2 → X̂N such that E[d(XN , X̂(i(XN , SN

1 ),
SN

2 ))]= D:

R(D) = min
p(u|x,s1)p(x̂|u,s2)

[I(U ;S1, X)− I(U ;S2)] , (1)

where the minimization is under the distortion constraint
∑

x,u,s1,s2,x̂ d(x, x̂)p(x, s1, s2)p(u|x, s1)p(x̂|u, s2)) ≤ D and
U is an auxiliary random variable. S2 → (X, S1) → U and (X, S1) → (U, S2) → X̂ form Markov chains.

2.2. Symmetric two-side information

To introduce the basic concept of visual communications via printing channels for the broad set of different application
scenarios considered in the following sections, we will simplify the previous set-up to a symmetric side information
S = S1 = S2 that can be available at both encoder and decoder or only at the decoder according to Figure 3.
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Figure 3. Symmetric side information S1 = S2 = S.

2.2.1. Symmetric side information at both encoder and decoder

The rate-distortion with symmetric side information at both encoder and decoder S = S1 = S2 was considered by
Berger4 and Flynn-Gray5 (Figure 3: dashed line corresponds to availability of SN at the encoder). A code (2NR, N)
consists of an encoding map i : XN × SN → {1, 2, · · · , 2NR} and a reconstruction map X̂ : {1, 2, · · · , 2NR} × SN →
X̂N . Therefore, both encoder i(.) and decoder X̂(.) depend on the state SN . The corresponding rate-distortion
function is defined as:

RX|S(D) = min
p(x̂|x,s)

I(X; X̂|S), (2)

where the minimization is over all p(x̂|x, s) such that
∑

x,x̂,s d(x, x̂)p(x, s)p(x̂|x, s) ≤ D. The above rate-distortion-
function also follows from (2) assuming S = S1 = S2.3

2.2.2. Side information at decoder

The rate-distortion problem with side information available at the decoder was considered by Wyner and Ziv.2 It
also follows from (1), if S1 = ∅, S2 = S and (S1, X) = X:

R(D)WZ
X|S = min

p(u|x)p(x̂|u,s)
[I(U ;X)− I(U ; S)] = min

p(u|x)p(x̂|u,s)
I(U ;X|S), (3)

where the minimization is performed over all p(u|x)p(x̂|u, s), i.e., p(x, s, u, x̂) = p(x, s)p(u|x)p(x̂|u, s) for fixed p(x, s),
and all decoder functions X̂(i(X), S) such that

∑
x,x̂,u,s p(x, s) p(u|x)p(x̂|u, s)d(x, x̂) ≤ D and |U| ≤ |X | + 1. The



second equality in (3) follows from the fact that S → X → U form a Markov chain (note: the second Markov chain
is formed as X → (U ; S) → X̂).

The random coding strategy in the Wyner-Ziv (W-Z) set-up is as follows: given the distribution pU |X(u|x) and
the encoding function i(.), generate 2NI(U ;X) i.i.d. sequences UN according to

∏N
k=1 pU (uk) and distribute them

randomly into 2N(I(U ;X)−I(U ;S)) bins. Given the source sequence x, the encoder looks for a unique ũ such that it is
jointly typical with x. The source is compressed to the index of the bin i that contains the ũ. Given side information
s and index i ∈ {1, 2, · · · , 2N(I(U ;X)−I(U ;S))} the decoder looks in bin i for a sequence u which is jointly typical with
s and generates the reproduction sequence x̂(u, s). In the general case, I(X̂; X|S) ≤ I(U ; X|S) and therefore it can
be a loss in performance of the Wyner-Ziv set-up in comparison to the rate-distortion function with side information
available at both encoder and decoder.

We will denote the classic rate-distortion function without any side information (S1 = ∅, S2 = ∅) as:

R(D) = min
p(x̂|x)

I(X̂;X), (4)

where the minimization is performed over all p(x̂|x) such that
∑

x,x̂ p(x)p(x̂|x)d(x, x̂) ≤ D.

2.2.3. Shannon lower bound (SLB): Gaussian source and MSE distortion

No side information: The classic rate-distortion function without any side information for a Gaussian N (0, σ2
X)

source with squared error distortion is represented by the SLB6:

R(D) =
1
2

log+
2

σ2
X

D
, (5)

where log+
2 x = max{0, x}. The corresponding rate-distortion function simultaneously describing N independent

Gaussian random variables (a parallel Gaussian source model) Xk ∼ N (0, σ2
Xk

), k = 1, 2, · · · , N with a rate R
bits/source vector is given by:

R(D) =
N∑

k=1

1
2

log2

σ2
Xk

Dk
, (6)

where

Dk =
{

λ, if λ < σ2
Xk

,
σ2

Xk
, if λ ≥ σ2

Xk
, (7)

where λ is chosen to satisfy
∑N

i=1 Dk = D.

Side information at encoder and decoder: Let X = XN = {X1, X2, · · · , XN} be zero mean and stationary
Gaussian memoryless source X ∼ N (0, σ2

XIN ). The side information is given by a noisy version of source S = X+Z′

where X and Z′ are independent and Z′ ∼ N (0, σ2
Z′IN ), and the vector joint PDF is pX,S(x, s) =

∏N
k=1 pXk,Sk

(xk, sk).
The joint PDF for each pair (Xk, Sk) can be represented as:

pXk,Sk
(xk, sk) = pSk

(sk)pXk|Sk
(xk|sk) =

1√
2πσ2

S

e
− s2k

2σ2
S

1√
2σ2

X|S
e
−

(
xk−ρ

σX
σS

sk

)2

2σ2
X|S , (8)

where σ2
X|S = σ2

X(1− ρ2) is conditional variance.

Define a sample-wise covariance matrix CXS between all N pairs of (Xk, Sk):

CXS =
[

Var[X] Cov[X,S]
Cov[S, X] Var[S]

]
=

[
σ2

X ρσXσS

ρσXσS σ2
S

]
, (9)

where |ρ| < 1 for all k and σ2
S = σ2

X + σ2
Z′ . Cov[X, S] = E[X(X + Z ′)] = σ2

X and ρ = Cov[X,S]√
Var[X]Var[S]

= σX

σS
.

If the encoder observes S, then the encoder and the decoder can each compute a minimum mean squared error
(MMSE) estimate of X as a conditional mean:

X̂′ = E[X|S]. (10)



In this case, it is sufficient to communicate only the difference:

Z = X̂′ −X, (11)

with the defined average distortion D. If we define ρ2 = σ2
X

σ2
S

, we can express the variance of the estimation as

σ2
X|S = (1 − ρ2)σ2

X = σ2
Xσ2

Z′
σ2

X+σ2
Z′

and Z ∼ N (0, σ2
X|SIN ). Therefore, the rate-distortion function will have the same

character as for the stationary Gaussian source:

R(D)X|S =
1
2

log+
2

σ2
X|S
D

. (12)

Consequently, the rate saving due to the available side information at the encoder and the decoder with respect to
the independent coding of X is:

R(D)−R(D)X|S =
1
2

log2

1
1− ρ2

. (13)

If ρ2 → 0, i.e., the variance of the noise Z ′ is increasing and X and S become less correlated, R(D)X|S → R(D) and
no gain can be expected from the joint decoding.

In the case of non-stationary Gaussian vector (parallel Gaussian source), we have similarly to (6):

R(D)X|S =
N∑

k=1

1
2

log2

σ2
Xk

σ2
Z

(σ2
Xk

+ σ2
Z)Dk

, (14)

where

Dk =





λ, if λ <
σ2

Xk
σ2

Z

σ2
Xk

+σ2
Z

,
σ2

Xk
σ2

Z

σ2
Xk

+σ2
Z

, if
σ2

Xk
σ2

Z

σ2
Xk

+σ2
Z

,
(15)

where λ is chosen to satisfy
∑N

i=1 Dk = D.

Side information at decoder: Wyner and Ziv2,7 demonstrated that for the Gaussian case R(D)WZ
X|S = R(D)X|S .

However, the equality does not hold for the case of any PDF of source X. Therefore, generally R(D)WZ
X|S ≥ R(D)X|S .

This means that there is a rate loss with Wyner-Ziv coding. Also it is known that for discrete sources when D = 0,
the Wyner-Ziv problem reduces to the Slepian-Wolf problem8 with R(0)WZ

X|S = R(0)X|S = H(X|S) assuming that S

is communicated to the decoder at the rate H(S).

Approaching theoretical rate-distortion function with symmetric side-information (Wyner-Ziv
vs Berger-Flynn-Gray set-ups): For practical reasons, we will perform a comparative analysis of the non-
collaborative encoding set-up (Wyner-Ziv problem) with collaborative one (Berger-Flynn-Gray problem) for dis-
tributed coding in printing applications.

In the general case, the following “inequality sandwich” is valid:

R(D) ≥ R(D)WZ
X|S ≥ R(D)X|S . (16)

Therefore, the rate-distortion function R(D)WZ
X|S for the non-collaborative encoders is above the rate-distortion func-

tion R(D)X|S for the collaborative encoders. In our particular case of distributed coding with side information in
printing applications, the side information at the encoder is naturally given by the physical nature of the problem.
That is not the case in e.g. the distributed coding of correlated sources in remote sensing applications where no
collaboration is assumed between the encoders due to their space/time displacement. Therefore, the printing ap-
plication should definitively benefit from the availability of side information at the encoder. Moreover, there are
three main additional factors that impact the performance of Wyner-Ziv distributed coding, i.e., PDF of the source,
dimensionality/complexity of practical implementation and performance in low SNR-regime.

PDF of the source X: It is desirable to have the equality R(D)WZ
X|S = R(D)X|S for any source distribution.

However, this equality holds only for the Gaussian PDF. Zamir9 also shown that in the case of any source PDF and
MSE distortion measure, the difference between two rate-distortion functions can be bounded by 1/2 bit:

R(D)WZ
X|S −R(D)X|S ≤

1
2
, bit. (17)



However, it should be noted that this bound is not tight. Therefore, contrarily to the channel coding with side
information available at the encoder, where the channel capacity is shown to be invariant to the noise PDF10,11

(this argument should be used with care with respect to the scenario and corresponding operational regime), the
investigation of “dual” problem in distributed coding of correlated sources with side information at the encoder
remains an open challenging problem.

Dimensionality/complexity: In most practical situations we are interested in simple and tractable solutions
leading to efficient coding strategies. The already established approach due Zamir et al12 and Pradhan and Ram-
chandran13 is to consider the Wyner-Ziv problem based on lattices and cosets.

We introduce an N -dimensional lattice Λ as a discrete additive subgroup of real N -space RN .14 A volume V (Λ)
per lattice point (or the volume of the Voronoi region) V(Λ) is defined as:

V (Λ) =
∫

V(Λ)

dx, (18)

where V(Λ) = {x ∈ RN : ‖x‖2 = minc∈Λ ‖x− c‖2} is the Voronoi region and c is a lattice point.

The Shannon lower bound (SLB) for the source X ∈ RN and any N -dimensional quantizer and MSE distortion
measure is:

R(D) ≥ h(X)− N

2
log2

(
2πeD

N

)
. (19)

The SLB becomes tight in the limit as D goes to zero:

R(D) = h(X)− N

2
log2

(
2πeD

N

)
. (20)

To characterize a lattice, one often refers to the normalized second moment G(Λ) (or dimensionless second
moment) of a region V(Λ):

G(ΛN ) =
1

NV (Λ)1+2/N

∫

V(Λ)

‖x‖2 dx. (21)

The normalized second moment of any version of the integer lattice Z (including Z2 or even ZN , for any N) is
G(Z) = 1/12. It is also know that the normalized second moment of the N -sphere is G(ΛN ) = 1/2πe as N →∞.

Practical lattice quantizers working in the high-rate regime (density of the source X is assumed to be smooth
within a quantization bin) and MSE distortion always have rate loss (redundancy) and are above the SLB. For
example, the entropy of a scalar quantizer for the source X ∈ R1 in the high-rate regime (or small distortion regime):

H(Q1(X)) = h(X)− 1
2

log2(12D). (22)

The entropy of any N -dimensional lattice quantizer that encodes a ”smooth” source X ∈ RN is:

H(QN (X)) = h(X)− N

2
log2

(
D

NG(ΛN )

)
. (23)

Therefore, the asymptotic rate redundancy of an entropy coded lattice quantizer (23) above the SLB (20) is
1
2 log2

(
2πeG(ΛN )

)
. If one chooses a ”good” lattice such as G(ΛN ) → 1/2πe, it is possible to reduce this redundancy

to zero. However, in many practical situations of uniform quantizers (with Z lattice) this redundancy can be as
large as πe/6 (1.53 dB). Even using a hexagonal lattice A2 which has G(A2) = 5/(36

√
3), one still has redundancy

1
2 log2

(
10πe/(36

√
3)

)
(1.37 dB).

Therefore, the existence of “good” source codes occurs in asymptotically high-dimensional spaces. This leads
to high-dimensional systems that might not be always suitable for many practical applications. It should also be
noticed that most of state-of-the-art classical coders without side information are based on simple content-adaptive
scalar quantizers, i.e., even not an 2-D (vector) quantizers besides their obvious advantages. Therefore, one often
sacrifices performance for the sake of a simple and efficient implementation. This practical constraint can also act
as the bounding factor of rate loss in distributed coding.



Low-SNR regime: It is known in the dual problem of channel coding with side information that lattice-based
schemes (including QIM and SCS,15 inflated lattices11) have considerable loss in performance due to boundary
lattice effect in low watermark-to-noise ratio (WNR) regime (contrarily to the bounded shaping loss at high WNR-
regime). Since the Wyner-Ziv problem exploits the same design rules for noisy side information, the boundary effect
of corresponding channel code part can manifest itself in a loss of performance. Therefore, when ρ2 → 0, one should
use a “powerful” channel code. However, at the same time (this will be shown later in Figure 11), a possible gain due
to the side information presence with respect to the classic coding vanishes, and one can only expect a significant
enhancement for reliable side information, i.e., when ρ2 → 1. Therefore, contrarily to the remote sensing applications
of distributed source coding, where the side information can be considerably distorted leading to small values of ρ2,
in printing applications one should benefit from the fact that the user has overall control on the printing process and
that the availability of side information at the encoder should lead to simple and efficient solutions.

2.2.4. Compressed channel index communication

In printed documents, the side information SN is directly available as the printed image (possibly after inverse
halftoning). However, the index i should be somehow communicated to the decoder in practical systems. There exist
two possible solutions:

• communicate index i via the printed image itself using ”self-embedding” (data-hiding);

• communicate index i via auxiliary channel that can include different information carriers used in the printed
(plastic) documents such as bar codes, invisible inks or crystals, magnetic strips, cheap electronic low-capacity
chips.

3. MATHEMATICAL MODEL OF PRINTING

To investigate the “quality” of side information, i.e., to establish how close S is correlated with X from one side and
to investigate the possibility of self-embedded communications from another side, one should consider a mathematical
model of a printing channel.

3.1. Halftoning and inverse halftoning: image processing perspectives

Digital halftoning is a process that converts a gray-scale image (X ∈ {0, 1, · · · , 255}) into a bi-level image (X ∈
{0, 255}) that can easily be reproduced by a simple printing device. There are two types of haltoning, i.e., ordered and
random (or so-called error diffusion) halftoning. The ordered halftoning is mostly used in laser printers while error
diffusion represents a broad class of ink jet printing devices. We will focus on the later for demonstration purposes.
The error diffusion takes the error from the quantized gray-scale pixel to bi-level pixel and diffuses the quantization
error over a causal neighborhood. The inverse halftoning of error diffusion should ensure that the spatially-localized
average pixels values of the halftone and original gray-scale image are similar. Kite et al16 proposed an accurate
linear model for error diffusion halftoning. This model accurately predicts the ”blue noise” (high-frequency noise)
and edge sharpening effects observed in various error-diffused halftones. The resulting halftone image s is obtained
as:

s = Hx + Qw = Hx + z′, (24)

where H represents a linear shift-invariant (LTI) halftone filter, Q is a LTI filter corresponding to the error diffusion
coloring, w is white noise and z′ = Qw is colored noise.

Therefore, the inverse halftoning according to (24) can be posed as a deconvolution or restoration problem (in
image processing) or channel equalization problem (in digital communications) where operator H represents the
equivalent blurring or channel and z′ corresponds to the image acquisition or channel noise.

The distributed coding system with communications via printing channels is shown in Figure 4. The physical
printing channel is represented as a sequential set of operations comprising halftoning, printing and scanning. Here,
we assume that printing itself, as the black point reproduction process with a specified resolution, and scanning do
not introduce any distortions. In more general case one would need to take into account some optical blurring and
aberrations as well as sensor non-linearity.
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Considering the halftoning problem according to the vector channel (24), one can assume without loss of generality
vector Gaussian signals X ∼ N (0,CX) and Z′ ∼ N (0,CZ′). In this case, the deconvolution problem can be
formulated as the MMSE estimation of x given by the the conditional mean X̂′ = E[X|S]:

x̂′ =
(
HT C−1

Z′ H + C−1
X

)−1
HT C−1

Z′ s = HW s, (25)

where HW =
(
HT C−1

Z′ H + C−1
X

)−1
HT C−1

Z′ represents a Wiener “restoration/equalization” filter.

The estimation error Z = X̂′ − X = E[X|S] − X is also Gaussian Z ∼ N (0,CZ) due to linear nature of the
MMSE estimate where the covariance matrix is defined as:

CZ = CX|S = E[(x̂′ − x)(x̂′ − x)T ] =
(
HT C−1

Z′ H + C−1
X

)−1
. (26)

The halftoning/inverse haftoning printing channel can be sequentially represented by an equivalent channel shown
in Figure 5.
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Figure 5. Equivalent halftoning/inverse halftoning channel.

3.2. Equivalent channel: information-theoretic perspectives
The goal of this section is to extend the results obtained for the channel equializion problem to the inverse halftoning
and to show that the inverse halftoning is information lossless. Cioffi et al17 proved for a similar problem of channel
equalization that the MMSE estimation is information lossless showing that:

I(X;S) = I(X; X̂′). (27)

This follows from the fact that the MMSE estimate is linear and the estimation error Z is independent of X̂′. In
particular, it was shown that17:

I(X;S) = h(S)− h(S|X) =
1
2

log2

det |CS |
det |CS|X |

=
1
2

log2

det |CS |
det |CZ′ | =

1
2

log2

det |HT CXH + CZ′ |
det |CZ′ | , (28)

I(S;X) = h(X)− h(X|S) =
1
2

log2

det |CX |
det |CX|S |

=
1
2

log2

det |CX |
det |CZ | =

1
2

log2

det |CX |
det | (HT C−1

Z′ H + C−1
X

)−1 |
, (29)

where det |.| denotes the determinant and CS|X = CZ′ and CX|S = CZ . Since I(X;S) = I(S;X), it follows that
1
2 log2

det |CS |
det |CZ′ | = 1

2 log2
det |CX |
det |CZ | .



3.3. Inverse halftoning: practical low-complexity algorithm

In this section we will extend the results obtained for i.i.d. Gaussian signals to real images. The key issue is the
availability of an accurate, simple and tractable stochastic image model leading to a close form solution. Although
stochastic inverse halftoning is a stand-alone important problem, we will use here the state-of-the-art inverse halfton-
ing method proposed by Neelamani et al18 for wavelet-based inverse halftoning via deconvolution (WInHD). This
approach is based on the original idea of Donoho19 called wavelet-vaguelette decomposition. The wavelet-vaguelette
decomposition splits the deconvolution problem into two parts. In the first part, the operator H in (24) is inverted
leading to the ”deblurred” estimate:

x̃ = H−1s = x + H−1Qz′, (30)

that produces the clean image x with noisy part H−1Qz′ assuming that the inverse operator H−1 exists (that it is
not the case in general for all image restoration problem).

The second part of wavelet-vaguelette decomposition tries to remove the noisy part H−1Qz′ using wavelet-based
denoising. Therefore, the relevant problem of stochastic image modeling is reduced to the proper modeling of wavelet
coefficients. A. Hjorungnes, J. Lervik and T. Ramstad20 have proposed a simple and tractable model that has found
a number of applications in state-of-the-art image coding (EQ-coder21), denoising (wavelet Wiener filter22) and
watermarking for evaluation of data-hiding capacity23 and content-adaptive data-hiding.24 According to the EQ
framework, image coefficients are considered coming from a realization of independent Gaussian distribution with
a “slowly” varying variance. This represents a class of local Gaussian models and justifies the application of local
operations. It should be mentioned that the relationship between the global image statistics and locally Gaussian
assumption was elegantly demonstrated based on mixture model where the variance also becomes a random parameter
drawn from the exponential distribution.20 This also justifies a doubly stochastic modeling of image coefficients and
provides a logical connection to the parallel Gaussian source model considered in section 2.2.3.

The denoiser of WInHD is also based on the same model that leads to the Wiener filter as the MMSE (MAP)
estimate for Gaussian case. To enhance the performance of the denoiser, the WInHD implements the Wiener filter
in an overcomplete transform domain (complex wavelets) to overcome the problems of the critically sampled wavelet
transform. Thus the final estimate is obtained as:

x̂′j,k =
σ2

j,k

σ2
j,k + σ2

j

x̃j,k, (31)

where j denotes the scale, σ2
j,k the local variance of image coefficients for scale j, σ2

j the variance of the residual
noisy term in the transform domain and all variables are considered in the transform domain.

It is not our primary goal to enhance the WInHD, we will use it in its original form. It should however be mentioned
that more powerful stochastic image models could be used, taking into account the stationarity of transform image
coefficients along the edges and transitions. Such models should bring additional enhancement of the inverse halftone
image quality and corresponding higher reliability of side information at the decoder.25

4. INDEX COMMUNICATION VIA SELF-EMBEDDING

4.1. Index communication via self-embedding: gray-scale image embedding

According to the set-up represented in Figure 3 the index of the codeword in the compressed channel should be
available to the decoder. It can be directly communicated via the image itself. This kind of communications has
many common features with the digital upgrade of analog transmissions proposed by Puri et al26 and the layered
joint source-channel coding considered by Barron et al27 and Merhav and Shamai.28

Digital data-hiding can be used for index communication via self-embedding. In this case, the host data X is
available at the encoder non-causally, i.e., the whole vector can be used for the design of the optimal codebook.
Therefore, this scheme can be considered as communications with side information available at the encoder. This
problem can be formulated as a reliable communication of message i, encoded into a codeword W , over the channel
with noise Z and interference X being known at the encoder but not at the decoder. The corresponding discrete
memoryless channel is described by {W, pS|W,X(s|w, x),S,X} where the side information has distribution pX(x)
(Figure 6). Given an auxiliary random variable U with conditional distribution pU |X(u|x) and a deterministic



encoding function h : UN × XN → WN such that S → (W,X) → U forms a Markov chain, Gel’fand and Pinsker1

have shown using a random binning argument that the capacity of this channel is1:

C = max
p(u,w|x)

[I(U ; S)− I(U ;X)] . (32)

It should be pointed that the host image X and the watermark W are independent in this set-up. Given side
information x and message i ∈ {1, 2, ..., 2N(I(U ;S)−I(U ;X))} the encoder looks in bin i for a sequence u which is jointly
typical with x and transmits w = h(u,x). The decoder receives s and looks for a unique ũ sequence that is jointly
typical with s. The index of the bin which contains the ũ is decoded as the message î.
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Figure 6. Gel’fand-Pinsker channel coding with side information at the encoder.

Costa considered the above problem in a Gaussian context and found that:

C =
1
2

log2

(
1 +

σ2
W

σ2
Z

)
, (33)

where the auxiliary random variable has a form of U = W + αX and α = σ2
W

σ2
W +σ2

Z
is chosen to provide independence

of W − α(W + Z) and W + Z. This means that the capacity with the interference signal available at the encoder
and AWGN channel is the same as the capacity of a simple AWGN channel without interference.

The source coding with side information can be performed based on the Wyner-Ziv problem considered in section
2. Puri et al26 proposed a practical implementation of the Wyner-Ziv problem using cosets.

Combining the source coding with the channel coding we obtain the joint layered system shown in Figure 7.
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Figure 7. Layered source-channel coding system with index communication via self-embedding in gray-scale image.

The proposed joint source-channel coding can work in two different regimes assuming two main types of users, i.e.,
public users and private users. The public users can have direct access only to the printed image and the maximum
quality that can be obtained in this case is determined by the MMSE estimation:

x̂pub =
(
HT (HT CW H + CZ′)−1H + C−1

X

)−1
HT (HT CW H + CZ′)−1s, (34)



that produces the overall estimation error:

Dpub
MMSE = trace[Cpub

X|S ] (35)

with the estimation error covariance matrix equal to:

Cpub
X|S =

(
HT (HT CW H + CZ′)−1H + C−1

X

)−1
. (36)

In the private decoding case, the authorized users will additionally have access to the hidden (communicated)
information communicated with the rate R. This facilitates a possibility to perform the MMSE estimation and
Wyner-Ziv decoding that should result in superior image quality:

Dpriv = trace[Cpub
X|S ]2−2R. (37)

In the case of Costa communications with R = C and previous Gaussian set-up one obtains:

Dpriv = trace[Cpub
X|S ]

det |CZ′ |
det |HT CW H + CZ′ | . (38)

Therefore, it is obvious that one can expect the enhanced quality private communications with the factor of 2−2R over
public communications. However, it should be noted that the scheme we discuss here assumes complete independence
between the watermark and the host image. It is interesting to compare the performance of the above layered system
with uncoded analog transmissions considered by Gallager29 where the “watermark” can be designed to be collinear
to the host that is addressed in our ongoing research.

4.2. Index communication via self-embedding: gray-scale image embedding using joint
precoding and Gel’fand-Pinsker encoding

In the previous set-up the halftoning channel leads to intersymbol interference due to the filter H. Obviously, one
can benefit from the knowledge of the operator H at the encoder using precoding at the encoder. The precoding
was originally proposed by Tomlinson and Harashima30–32 for band-limited channels. The Tomlinson-Harashima
precoding (T-HP) has a lot in common with the G-P problem and can also be designed using modulo-M operation
or quantizer taking into account the known relationship w mod M = w − Q(w), where Q(w) is the corresponding
quantizer and w mod w represents a quantization error. One can also consider a multidimensional lattice version
of the modulo operation (mod Λ) with respect to the vector w: w mod Λ = w − Q(w). In the case of Z lattices,
there is also a 1.53 dB loss from capacity due to the shaping. More advanced schemes combining coding, precoding
and shaping are analyzed by Eyuboglu and Forney33 and Fischer et al.32 The block-diagram of joint precoding
and Gel’fand-Pinsker encoding is shown in Figure 8. This scheme is working similarly to the previous set-up with
the only difference that the knowledge of the host image is used at the Gel’fand-Pinsker encoding while the T-HP
is exploiting knowledge of the filter H. In the extended version, it is possible to formulate a joint problem of host
and intersymbol interference cancellation, i.e., instead of double sequential projection one can design a joint lattice
to avoid a double requantization, the analysis of which is going beyond the scope of this paper.

4.3. Index communication via self-embedding: bi-level image embedding

Another possibility exists to cancel intersymbol interference in the case when the user has the complete control over
the printing process. In this case, the index can be directly embedded into the halftone image (bi-level) image. The
block-diagram explaining this embedding is shown in Figure 9. In this case, watermark embedding is performed after
filter H and the watermark extraction is accomplished before inverse halftoning.

The problem of joint halftoning-data-hiding can be specifically formulated for error-diffusion halftoning. Notably,
this possibility was considered by Fu and Au34 where a sufficient payload was reported to be generated for halftone
image embedding.
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5. INDEX COMMUNICATION VIA AUXILIARY PHYSICAL CHANNEL

The approach based on the index communication via auxiliary physical channel can be designed either using the
Berger-Flynn-Gray set-up, i.e., symmetric two-sided information, or the Wyner-Ziv set-up, i.e., side information
available only at the decoder. The basic system block-diagram for both set-ups is shown in Figure 10 with the
difference consisting in the availability of side information SN at the encoder.

Contrarily to the system with index communication via self-embedding, the auxiliary physical channel index
communications have several advantages. First, since the index is communicated via the “external” auxiliary channel
and no data-hiding is required, the host (analog) image has no extra distortions due to the watermark embedding.
It is an important argument for preservation of printed image quality as well as for the availability of more reliable
side information S at the decoder. Secondly, the capacity of the auxiliary channel is only determined by the possible
printing area and printing/scanning resolution contrarily to the self-embedding system where capacity is constrained
by the ratio σ2

W

σ2
Z

, i.e., by the allowed distortions in the printed image. The difference between these capacities can be
significant for different practical applications and should be carefully analyzed for each particular case. Therefore,
we will consider the performance of the two-sided Berger-Flynn-Gray set-up as a lower bound for source coding with
side information.

The practical design of the auxiliary channel index communication system includes two main functional blocks,
namely source coding for the residual compression and channel coding (2-D bar code) for index communication.

Source coding: To establish the lower bound for the rate-distortion function we will consider here only the
Berger-Flynn-Gray set-up assuming that the Wyner-Ziv system will do the best to approach this bound using
multidimensional lattice/coset codes. According to the analysis presented in sections 2.2.3 and 3, we assume that
the side information which is given in the form of analog (halftone) image is also available at the encoder due
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to the complete knowledge of the printing process. Thus, the encoder should only communicate the difference
Z = E[X|S]−X to the decoder with the given bounded distortion D choosing corresponding index i(X,S). Therefore,
for the stationary Gaussian source and the MSE distortion measure the rate-distortion function of this scheme will
be defined by the equation (12).

Channel coding: The task of the channel code in the above scheme is to communicate errorlessly (Pr(i 6=
î(SN )) → 0) the index i via some analog auxiliary channel. A natural auxiliary channel for printed documents
consists of 2-D bar codes,35 although as was mentioned in the introduction other types of information carriers with
sufficient capacity can be used for this purpose. In the case of 2-D bar codes, multilevel codes (MLC)36,37 can be
used for errorless index communication. The MLC are known to closely approach capacity for band-limited channels.
The main idea of multilevel coding consists in the protection of each address bit of the signal point by an individual
binary code C` at level `. One can use irregular low-density parity-check (LDPC) codes as the binary code C` for each
level ` followed by 8-PAM chosen for simplicity reasons and easy integration into printed 2-D bar code. One can also
apply precoding for bar-codes to avoid intersymbol interference caused by the halftoning filter H. Finally, multistage
decoding is applied based on multiple access channel decomposition of MLC using chain rule for mutual information
between channel output and each level. Due to the space restriction of this paper we will not consider all details
concerning the practical construction of 2-D bar-code, that might also include more involved schemes including bit
interleaved MLC.

6. RESULTS

First, to investigate the theoretical limits of source coding with side information available at both encoder and decoder,
we have modeled the rate-distortion function R(D)X|S for a Gaussian source and the MSE distortion measure for
different values of ρ2 (Figure 11). The highest gain with respect to the classic coding without side information can
be expected for highly correlated sources X and S (reliable side information) when ρ2 → 1. If ρ2 → 0, there is no
gain with respect to R(D). Therefore, the printing channel (and particularly a joint halftoning/inverse halftoning)
should provide an accurate estimate of the source X, i.e., to reduce the impact of the halftoning process. In real
applications, ρ2 is expected to be in the range of 0.2 ≤ ρ2 ≤ 0.6 and therefore for the stationary Gaussian source the
maximum gain can be as much as 0.26-0.66 bit per sample.

Secondly, we have performed the comparison of different coding strategies for a number of real images based on
Floyd halftoning and wavelet-based inverse haftoning via deconvolution.18 Here we only report results for the image
Lena of size of 512 × 512. The ”lower empirical bound” is estimated for the Berger-Flynn-Gray set-up described in
section 5. The prediction of the inverse halftone image s based on the MMSE estimate (X̂′ = E[X|S]) is performed
at the encoder and the residual Z = X̂′ −X is compressed at various rates and communicated to the decoder via
2-D bar code. At the decoder, the MMSE estimate S is computed from the printed image and combined with the
decoded residual Q(Z).

Three different lossy coders are used to compress the residual Q(Z), i.e., the DCT-based JPEG, wavelet-based
WaveConvert38 and wavelet-based EQ coder (4 level DWT based on 9/7 pair with local variance ML estimate in a
causal window of size 3× 3 without interscale dependencies)21 for rates 0.20, 0.25, 0.50 and 1.00 bpp. The results of



modeling for rate 0.20 bpp are shown in Figure 12. For comparison reasons, we also indicate in Table 1 the results
of direct compression by the above methods assuming that one can directly communicate the compressed image via
2-D bar code to the decoder without usage of side information for final image reconstruction. A possible gain due to
the decoding with the side information in the form of a halftone image is also shown in the table. The PSNR of the
inverse halftone image (with respect to the original image) was 31.95 dB after WInHD for all tests. The maximum
gain is obtained for the EQ coder, and is in the range of 0.26-2.50 dB for different rates with respect to the directly
compressed image. Obviously, the capacity of the auxiliary channel will be a factor that determines a particular
operational rate depending on the application constraints. The enhancement of “analog” (halftone) image quality
is also varying for different rates between 3-8 dB, which indicates a considerable potential of such an “upgrade” for
many practical applications where the image quality should be relatively high. Using advanced methods of inverse
halftoning and more accurate stochastic image models one can expect a further enhancement of image quality for
low-bit rates.
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Figure 11. Conditional rate-distortion function for different ρ and X ∼ N (0, 1).

7. CONCLUSIONS

We have considered the problem of visual communications with side information via distributed printing channels.
Besides “classical” applications of digital data-hiding technologies such as copyright protection and authentication, we
have considered the possibility of watermark- or side information-assisted image processing in printing applications.
In particular the problem of image quality enhancement was considered. We have also provided a mathematical
modeling of the printing channel in the scope of digital communications with side information. The related problems
of source coding based on Wyner-Ziv and Berger-Flynn-Gray set-ups and channel coding based on Gel’fand-Pinsker
problem have been considered. Corresponding practical scenarios have been analyzed and finally the theoretical
bounds on systems performance are given. The results of computer simulation show a range of possible applications
where the expected gain can considerably increase the possibilities and functionalities of modern multimedia and
security systems.
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Table 1. Comparison of resulting PSNR [dB] for several compression methods.
Compression method Rate [bpp]

0.20 0.25 0.50 1.00
DCT-based JPEG coder

Direct compression 28.89 30.41 34.64 37.83
Compression with SI 33.55 34.17 36.19 38.61

Gain over direct compression 4.66 3.76 1.55 0.78
Gain over direct halftoning WInHD 1.60 2.22 4.24 6.66

WaveConvert coder
Direct compression 32.47 33.48 36.59 39.66

Compression with SI 35.11 35.39 37.77 40.03
Gain over direct compression 2.64 1.91 1.18 0.37

Gain over direct halftoning WInHD 3.16 3.44 5.82 8.08
EQ-based coder

Direct compression 32.87 34.11 37.20 40.40
Compression with SI 35.42 35.90 38.24 40.76

Gain over direct compression 2.55 1.79 1.04 0.36
Gain over direct halftoning WInHD 3.47 3.95 6.29 8.81
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