
Hybrid Image Coding for Real-Time Computer
Screen Video Transmission

Tony Lina∗ , Pengwei Haoba, Chao Xua, and Ju-Fu Fenga

a National Laboratory on Machine Perception,

Peking University, Beijing 100871, China,
{lintong,xuchao,fjf}@cis.pku.edu.cn

b Department of Computer Science, Queen Mary,

University of London, London, E1 4NS, UK,
phao@dcs.qmul.ac.uk

ABSTRACT

In this paper, we present a novel hybrid image coding scheme for real-time applications of computer screen video
transmission. Based on the Mixed Raster Content (MRC) multilayer imaging model, the background picture is
compressed with lossy JPEG, and the foreground layer consisting of text and graphics is compressed with a block-based
lossless coding algorithm, which integrates shape-based coding, palette-based coding, palette reuse, and LZW algorithm.
The key technique is to extract text and graphics from background pictures accurately and with low complexity. Shape
primitives, such as lines, rectangles, and isolated pixels with prominent colors, are found to be significant clues for
textual and graphical contents. The shape-based coding in our lossless algorithm provides intelligence to extract the
computer-generated text and graphics elegantly and easily. Experimental results demonstrate the efficiency and low
complexity of our proposed hybrid image coding scheme.

Keywords: hybrid image coding, shape-based coding, palette-based coding, Mixed Raster Content, content adaptivity

1. INTRODUCTION

As the number of computers and other digital devices being connected keeps growing, there has been a critical need for
real-time computer screen video transmission technologies. Remote control software, such as AT&T VNC [1], allows a
person at a remote computer (the client, maybe a Linux machine) to view and interact with another computer (the server,
maybe a Windows PC) across a network, as if sitting in front of the other computer. A smart display device, such as
Microsoft Mira [2], acts as a portable screen with 802.11b wireless connection to a nearby desktop PC, enabling people
to surf the web or browse pictures that are stored on the desktop PC. Another application is wireless projectors, providing
the flexibility to site anywhere in the room without cable connections to the laptop. The challenge is that the huge
amount of real-time computer screen video data should be transmitted over the cable or wireless networks. One 800×600
frame of true color screen image has a size of 1.44 MB, and 85 frames per second produces more than 100 MB data. One
way to reduce the data volume is to get updated screen regions by accessing the GUI interfaces and to have the truly
updated regions transmitted. History frame buffers are necessary to switching between several running windows, but cost

∗ This work was supported by NKBRSF China under Grant G1998030606 and the funding for the recipients of the National Excellent Doctoral

Dissertation, China, under Grant 200038. Correspondence: Email: lintong@cis.pku.edu.cn. Telephone: (86-10)6275-5569. Fax: (86-10)6275-5569.

large memory. Due to remaining image data still being huge, an efficient image compression algorithm with low
complexity and high quality representation is desired.

Computer-generated screen images are compound images, which are mixed with textual, graphical, or pictorial

contents. Compound image compression is intensively studied for scanned documents, and the Mixed Raster Content
(MRC) imaging model [3], [4] is frequently used to decompose a scanned compound image into two color-image layers
(foreground and background) and a binary mask layer. Some published algorithms are DjVu [5], DigiPaper [6], block
thresholding segmentation [7], and stripe analysis [8]. These algorithms invariably involve complicated layer-based
segmentation which is computationally expensive. The alternative is block-based segmentation proposed in [9], [10], and
[11], but yields poor quality for the blocks that cross the boundary of pictures and text. The compression of computer-
generated compound images was investigated in JPEG variable quantization method [12], modified JPEG-LS [13], and
lossless coder using intraplane and interplane coding [14]. However, totally lossy or lossless compression can not provide
the content-adaptivity to compound images thus reproduces text/graphics blurred or otherwise achieves little coding
gains. Although the VNC [1] provided a simple rectangle-based lossless coding algorithm for computer screen images on
the assumption that most GUI images compose of filled rectangles, it is very inefficient to compress natural pictures.

For the real-time applications of computer screen video transmission, three features are essential to the expected
compound image compression algorithm: very low complexity, visually lossless quality, and high compression ratio.
Unfortunately none of the above mentioned algorithms meet these three requirements, which motivated the development
of a new hybrid image coding scheme presented in this paper. Briefly, the new method is to compress the text and
graphics as foreground losslessly and to compress the pictorial background in a lossy manner.

The rest of this paper is organized as follows. In Section 2, a block-based lossless coding algorithm is presented for
lossless compression of text and graphics. The foreground extraction procedure is described in Section 3. Experiments
and discussions are provided in Section 4 and 5, and the paper is concluded in Section 6.

2. LOSSLESS CODING OF TEXT AND GRAPHICS

In order to guarantee low complexity, a lossless coding algorithm by extending the VNC rectangle-based coding is
proposed for text and graphics compression. In our lossless algorithm, rectangle-based coding is improved to be more
efficient and shape-based, and several other techniques such as palette-based coding, run-length coding, palette reuse,
and LZW algorithm are employed to form a versatile framework. Though each coding method is quite primitive by itself,
a powerful lossless coding scheme is obtained by using all these methods adaptively and simultaneously.

Our lossless coding scheme is block-based. Each image is divided into 16×16-pixel blocks, with the same size as
JPEG macroblocks. In contrast to region-based and layer-based segmentation, block-based segmentation is the simplest
and the existing block-based coding techniques such as JPEG can be easily incorporated into. The annoying blocking
artifacts, which are a well-known disadvantage of the lossy JPEG, do not exist in lossless coding algorithms. When a
block contains both pictorial and textual contents, text can be extracted and encoded independently, which is described in
Section 3. Therefore, our block-based lossless coding scheme offers low complexity, good compatibility, and high
quality.

The shape-based coding extends the VNC rectangle-based coding by providing a set of shape primitives: isolated

pixels, horizontal lines, vertical lines, and rectangles. These shape primitives are efficient to represent textual and
graphical contents. A rectangle can be represented by (x, y, w, h) in 2 bytes, a diagonal line by (x, y, w) in 12 bits, a
horizontal line by (x, y, w) in 12 bits, a vertical line by (x, y, h) in 12 bits, and a pixel by (x, y) in 1 byte. The default line
width is 1 and x, y, w or h only needs 4 bits for our 16x16 blocks. Compared to VNC that all rectangles are encoded with
2 bytes, our shape-based coding creates a compact bitstream by classifying rectangles into isolated pixels, lines, and
rectangles. The percentages of different shape primitives in four 800×600 computer screen images are listed in Table I,

showing that most of shape primitives are isolated pixels and lines. Some English and Chinese characters are shown in
Fig. 1 and Fig. 2, from which we can see that shape primitives can be used to compactly represent textual contents.

The procedure to find shape primitives in a block is similar to that in VNC, but with several modifications. First we

count the colors in a block by using exact 24-bit color matches, in order to determine the appropriate coding method. If
the number of colors is larger than some predefined threshold, T1, then leave this block to lossy JPEG, because it takes
much effort to compress but with little gains obtained by using the lossless algorithm. The color count beyond T1 implies
that the block contains pictorial contents. In our experiments, we set T1 =32 in our system. One test image msn is shown
in Fig. 3, and the blocks having more than 32 colors are blacked out shown in Fig. 4. From Fig. 4 we can see that the
threshold 32 is appropriate to pick out all the pictures and some complicated icons. To avoid useless color matches, we
stop the color matching immediately after the color count is over the threshold T1. We also take the color with most
pixels as background color of the block, so only other foreground colors need to be encoded and lots of bits are saved.

Shape primitives are then recognized by scanning the block pixels. Similar to VNC coder, size-first coding strategy
is used to encode some bigger ones first if several rectangles of the same color are found. For example, four rectangles in
Fig. 5, AEFM, ADGL, ACHK, and ABIJ, are found for some color. Apparently, rectangle ADGL has the biggest size,
but it is hard to find. There are many ways to decompose one shape into multiple rectangles, and it is time-consuming to
find the optimal decomposition to create the shortest representation. In our system, only horizontal rectangles and vertical
rectangles are under consideration. Thus only the vertical rectangle ABIJ is encoded because it has larger size than the
horizontal rectangle AEFM, and AEFM doesn’t exist after ABIJ has been encoded. The numbers of shape primitives of
one color (isolated pixels, horizontal lines, vertical lines, and rectangles) are represented with run-length coding because
many continual zeros exist.

TABLE I
PERCENTAGES OF SHAPE PRIMITIVES (%)

Image Pixels Horizontal
Lines

Vertical
Lines Rectangles

msn 41 30 23 6
pku 40 27 27 5
sina 46 27 22 5
wall 59 19 20 2

Fig. 2. Text details from webpage image sina.

Fig. 1. Text details from webpage image msn.

Although shape-based coding captures the nature of texts/graphics and usually achieves very high compression ratios,

it is undesirable for blocks with complicated shapes, such as some delicate icons. In such cases, palette-based coding
seems to be a good alternative to shape-based coding. A pattern of two colors needs a 1-bit mask, and a pattern of 17 or
32 colors needs at least a 5-bit mask. There are many choices to determine which colors are with palette-based or shape-
based coding, and it is difficult to find the optimal decision according to the bitstream length. Therefore, we balance
between complexity and performance by providing three choices: all colors by shape-based coding, or all colors by
palette-based coding, or only the most complicatedly shaped color is by palette-based coding while others by shape-
based coding.

We adopt color palette reuse technique to save bytes to store the RGB color table which is a fairly big overhead, and

two consecutive blocks can share most of colors. For construction of an adaptive global dictionary of colors, it is difficult
to maintain the dictionary and it also takes much time to do color matches. In our system, color palette of the current
block is mapped into color palette of the last block, thus only the new colors are explicitly stored in bitstream for current
block.

Finally, the above bitstream can be fed into an adaptive arithmetic coder, or a LZW coder for further compression.

DjVu uses the ZP-coder which is a new type of adaptive binary arithmetic coder. We use zlib [15], a LZW coder, in our
system.

Fig. 4. Blocks having more than 32 colors are blacked out for msn.

Fig. 3. Webpage msn.

3. FOREGROUND EXTRACTION

The above block-based lossless algorithm can be easily extended to a naïve hybrid coding scheme by using lossy JPEG
to encode the blocks of more than T1 colors. It is equivalent to an inter-block segmentation and coding. The disadvantage
is that it makes text and graphics messy if some pictorial content exists in the same block. Examples are Fig. 9 (e) and 10
(e), as the original images are shown in Fig. 6 and Fig. 7, respectively.

A better way is to extract textual and graphical contents in each block, i.e. to employ intra-block segmentation. The

key problem is how to discern text and graphics from pictures. A number of attributes of text are summarized in [6], such
as high contrast, occurring repeatedly and in groups, in similar colors. Careful observation on the distinctive nature of
text/graphics from pictures tells that shape primitives, such as lines and rectangles drawn with homogeneous interior
colors, are significant clues for recognition of computer-generated text and graphics. Based on this observation, the task
of extracting foreground can be easily performed by our shape-based coding, which serves to be not only a coding
method but also a segmentation method.

There are two problems for the intra-block segmentation. One is the isolated pixels in text and graphics, such as the

dot in “i” or the left-bottom pixel in “A”, which can not be differentiated. If isolated pixels are coded with lossy
algorithm, visual legibility for these text and graphics is degraded. Another is false alarms in pictures, e.g. there is a big
possibility in blue sky region of Fig. 6 that several adjoining pixels have an exact same color. It is unwise to encode the
pictorial pixels with lossless algorithms.

We propose a dynamic color palette to solve the above two problems. Firstly we assume the pure black color and

pure white color are text colors, because most text are drawn in these two colors and the false alarms caused by these two
colors are rare in pictures. Then, a dynamic color palette is constructed to collect all the recently appeared colors in big
shape primitives. In our system, the size of the dynamic color palette is 32, and a first-in first-out strategy is used to
maintain the palette size. Those colors of shape primitives with more than six pixels are put into the dynamic palette,
because there is little possibility of six adjoining pixels having the exact same color in pictures. When we meet an
isolated pixel, or a shape primitive with size less than four pixels, if its color is not pure black and pure white, the isolated
pixel or the shape primitive is compared with the dynamic color palette. If an exact matching to a color in the dynamic
palette occurs, then the isolated pixel or the shape primitive is encoded with our lossless algorithm.

Fig. 5. Size-first strategy for shape-based coding.

A B C D E

F

G
H

IJ

K
L

M

Some modifications to the shape-based coding in Section 2 are needed here to adapt it to the new requirements. The
regions of text and graphics pixels must be clearly defined by a binary selector layer in each block. The selector layer can
be represented by a 1-bit mask, or a set of shapes, depending on which method produces the shortest bitstream.

On compression side, text and graphics in one block are extracted and encoded first, and fed into a LZW coder for

further compression. Then lossy JPEG is used for the remaining pixels. On decompression side, we first decode JPEG-
encoded pixels as background, and then decode text and graphics as foreground to pour through the binary selector layer
onto the background.

For the lossy JPEG coder, textual and graphical pixels are unused or “don’t care” pixels, because their colors can be

chosen arbitrarily. A delicate way is to fill these holes with similar colors to neighbor pictorial pixels so as to reduce
ringing artifacts and to improve the performance of lossy JPEG coder. In [8], average color of the previous block or the
given pixels is used to fill the holes, while in [7] a multi-pass algorithm is applied to exploit the average color of
neighbor pictorial pixels. For simplicity, we just fill these holes with average color of the remaining pictorial pixels in
our system.

The flowchart of our compound image compression is shown in Fig. 8. As seen, our scheme provides a variety of

coding methods, and new algorithms can be easily integrated into this open scheme. Some example details of

Fig. 7. Chinese webpage sina.

Fig. 6. An image of Windows wallpaper wall.

experimental results are shown in Fig. 9 (f) and 10 (f), from which almost perfect visual performance is demonstrated for
our hybrid compression scheme.

4. EXPERIMENTAL RESULTS

The proposed algorithms are implemented on a P-M 1.3G laptop PC, and eight 800×600 true color screen images are
tested, including two Chinese (chn1 and chn2) and two English document images (eng1 and eng2), three webpages (msn,
sina, pku), and one wallpaper image (wall). Images of msn, wall and sina are shown in Fig. 3, Fig. 6, and Fig. 7,
respectively.

Our lossless algorithm without LZW followed (OURS-) and with LZW followed (OURS) are compared with VNC

and LZW (zlib 1.1.4 with default level 6). JBIG2 and JPEG-LS are not tested, because JBIG2 is only for binary
documents and JPEG-LS was reported inferior to LZW in [14]. Compression ratios and computational complexities for
four document images are listed in Table II and Table III, indicating that our algorithm with LZW followed (OURS)
achieves the highest compression ratios and satisfactory encoding time. Specifically, our algorithm with LZW (OURS)
greatly outperforms the LZW by offering higher compression ratios and only requiring less than seventy milliseconds of
encoding time. Also our algorithm without LZW followed (OURS-) beats the VNC algorithm by doubling the
compression ratios in a comparable encoding time. In summary, our lossless algorithm encodes four document images
with compression ratios from 20 to 35 if without LZW, or from 30 to 60 if with LZW followed. The amazing high
compression ratios can be explained that our lossless algorithm essentially captures the nature of text. Table IV lists
details for output bytes and coding gains of different techniques employed in our compression scheme, indicating that our
shape-based coding, palette reuse technique and LZW make significant contributions while palette-based coding achieves
not much coding gains.

Block data Color counting

Text/graphics mode

Find shape primitives Palette reuse

Shape-based coding

Palette-based coding

Fig. 8. Flowchart of the proposed hybrid image compression.

Intra-block

Selector layer

Picture mode

Color count > T1

Decision

Optimization

Inter-block

Lossy JPEG

Coded bitstream

LZW coder

Three webpages and the wallpaper image are tested by our hybrid coding algorithm, two lossless algorithms (VNC

and LZW), and three lossy algorithms (JPEG, JPEG-2000, and DjVu). JPEG-2000 is the state-of-the-art lossy image
compression standard, and in our experiments Jasper codec is used. DjVu is the benchmark scheme of compound image
compression, and we use Any2DjVu [16] web service to create DjVu files. We set the quality factor of JPEG and the
compression ratio of JPEG-2000 to meet our algorithm, but we cannot control the compression ratio of DjVu. Table V
and Table VI are details of compression ratios and computational complexities, respectively. We don’t know the coding
time of DjVu. Some details of image wall and sina coded with lossy algorithms are shown in Fig. 9 and Fig. 10.

TABLE IV
OUTPUT BYTES AND CODING GAINS OF DIFFERENT TECHNIQUES EMPLOYED

IN OUR HYBRID IMAGE COMPRESSION SCHEME

Image Shape Palette Palette Reuse Run-Length LZW
msn 30K (-34%) 1K (-52%) 12K (-43%) 22K (-24%) 43K (-38%)
pku 24K (-34%) 3K (-28%) 9K (-42%) 17K (-16%) 34K (-41%)
sina 41K (-35%) 8K (-24%) 15K (-41%) 26K (-22%) 56K (-37%)
wall 58K (-39%) 2K (-9%) 3K (-19%) 3K (-37%) 10K (-26%)
chn1 25K (-40%) 1K (-11%) 11K (-46%) 17K (-37%) 39K (-35%)
chn2 18K (-34%) 2K (-11%) 3K (-66%) 9K (-2%) 22K (-42%)
eng1 25K (-34%) 4K (-11%) 3K (-62%) 11K (-2%) 28K (-41%)
eng2 23K (-34%) 3K (-8%) 3K (-61%) 10K (-2%) 26K (-41%)

Coding gains of shape-based coding are computed in comparison with VNC rectangle-based coding.

TABLE III
COMPUTATIONAL COMPLEXITY FOR DOCUMENT IMAGES

BY FOUR LOSSLESS ALGORITHMS

Encoding Time (msec.) Decoding Time (msec.)
Image

chn1 chn2 eng1 eng2 chn1 chn2 eng1 eng2
VNC 30 31 31 31 13 10 12 11
LZW 196 194 197 195 23 22 22 22
OURS- 42 34 39 37 14 13 14 13
OURS 63 46 54 52 16 14 14 14

TABLE II
COMPRESSION RATIOS FOR DOCUMENT IMAGES

BY FOUR LOSSLESS ALGORITHMS

Image chn1 chn2 eng1 eng2
VNC 12.1 17.8 13.3 14.2
LZW 33.3 43.5 44.8 44.9
OURS- 21.8 35.6 28.8 30.7
OURS 34.2 59.3 47.9 50.4

In comparison, VNC lossless algorithm usually requires the shortest encoding time, but its encoding performance is
the worst; LZW requires more encoding time than our algorithm, but its compression ratios are inferior to our algorithm,
especially worse for natural pictures. JPEG produces poorest visual quality, if at the same compression ratio as ours.
JPEG-2000 is not suitable to compress textual contents, though its performance on natural pictures is very good. Usually
JPEG-2000 requires about one second encoding an 800×600 image. The visual quality of DjVu is acceptable, but some
ringing artifacts around text regions are noticeable. The compression ratios of DjVu are greatly inferior to our algorithm,
and it was reported in [10] that DjVu spends over 10 seconds to encode one 768×928 scanned document image. To trade-
off between complexity, coding efficiency, and image quality, the best choice is our hybrid algorithm, which produces
perfect visual quality, and achieves high compression ratios and low computational complexities simultaneously, for
examples in Fig. 9(f) and 10(f). In an 802.11b wireless network with a realistic throughput of 2.5-4 Mbps, approximately
two full-screen 800×600 true color pictures can be transmitted in one second by using our hybrid algorithm.

5. DISCUSSIONS

1. Lossless coding for colored text and graphics. The forthcoming JBIG2 standard is only for binary image

compression, and much effort is needed to extend the JBIG2 for colored text and graphics. Token-based
compression, or token dictionaries, is the heart of JBIG2. Although token dictionaries are useful to represent
repeatedly occurring English characters, they offer little coding gains for Asian characters such as Chinese
characters. Moreover, token-based compression requires connected component analysis and token matching, which
demands heavy computations. Ideal compact representation of text and graphics is to decompose a document into a
list of drawing operations, such as “fill a rectangle”, “draw a line”, or “draw a line of text”. However, this
decomposition procedure is difficult because it is the reverse of drawing a compound document. Multilayer
document representation and our proposed shape-based coding appear to approximate the above ideal document
representation.

TABLE VI
COMPUTATIONAL COMPLEXITY FOR THREE WEBPAGES AND WALLPAPER IMAGE

Encoding Time (msec.) Decoding Time (msec.)

Image
msn pku sina wall msn pku sina wall

VNC 38 35 43 80 16 14 20 13
LZW 213 198 223 338 24 23 23 58
JPEG 102 106 107 123 68 63 63 76
JASPER 870 891 981 991 410 380 430 560
DjVu
OURS 99 76 110 220 29 22 29 126

TABLE V
COMPRESSION RATIOS FOR THREE WEBPAGES AND WALLPAPER IMAGE

Image msn pku sina wall
VNC 5.7 8.9 5.4 1.1
LZW 10.9 18.9 12.9 1.5
JPEG 23.6 31.4 19.0 10.7
JASPER 23 31 19 11
DjVu 8.2 7.5 5.4 9.3
OURS 23.3 31.6 19.3 11.7

2. Wavelet vs. DCT for lossy picture coding. Wavelet-base coding, like JPEG 2000, is reported to offer many
functionalities like ROI, and provide better quality than DCT-based JPEG. On the other hand, wavelet-based
transform requires several times of computational complexity than DCT, which obstructs wavelet-based coding
from real-time applications.

3. Extension to JPEG and MPEG-1/2/4. Our block-based lossless coding algorithm can be easily integrated into
existing JPEG and MPEG-1/2/4 coders. With this extension, compound image such as commercial posters, cartoon
movies, and commercial videos can be compressed with text and graphics delivering visually lossless quality.

4. Extension to scanned document compression. The difference between computer-generated compound images and
scanned document images is that scanned document images invariably contain visually noticeable noise. Our hybrid
image compression scheme can be applied to color quantized scanned documents, but its performance needs
experimental verifications.

6. CONCLUSION

We have presented an efficient hybrid image coding scheme with very low complexity for computer screen images. Two
significant contributions are the shape-based segmentation to extract text and graphics, and a block-based lossless coding
algorithm which employs several techniques. Experimental results demonstrate the advantages of our hybrid image
coding scheme with low complexity, high compression ratio, and visual lossless image quality. We also discussed some
useful extensions and other applicable prospects. Our future work is to improve the coding efficiency of our lossless
algorithm and to extend to JPEG, MPEG, and scanned document compression applications.

REFERENCES

1. http://www.uk.research.att.com/vnc/index.html
2. http://www.microsoft.com/windows/smartdisplay/
3. Draft Recommendation T.44, Mixed Raster Content (MRC), ITU-T Study Group 8, Question 5, May 1997.
4. R. de Queiroz, R. Buckley and M. Xu, “Mixed raster content (MRC) model for compound image compression,”

Proc. EI’99, VCIP, SPIE Vol. 3653, pp. 1106-1117, Feb. 1999.
5. L. Bottou, P. Haffner, P. G. Howard, P. Simard, Y. Bengio, and Y. LeCun, “High quality document image

compression with ‘DjVu’,” Journal of Electronic Imaging, vol. 7, no. 3, pp. 410-425, July 1998.
6. D. huttenlocher, P. Felzenszwalb, and W. Rucklidge, “DigiPaper: A versatile color document image representation,”

in Proc. ICIP, vol. I, pp. 219-223, Oct. 1999.
7. R. de Queiroz, Z. Fan, and T. D. Tran, “Optimizing block-thresholding segmentation for multilayer compression of

compound images,” IEEE Trans. Image Processing, vol. 9, pp. 1461-1471, Sep. 2000.
8. D. Mukherjee, N. Memon, and A. Said, “JPEG-matched MRC compression of compound documents,” in ICIP’01,

pp. 434-437, 2001.
9. H. Cheng and C. A. Bouman, “Multilayer document compression algorithm,” in ICIP’99, pp. 244-247.
10. X. Li and S. Lei, “Block-based segmentation and adaptive coding for visually lossless compression of scanned

documents,” in Proc. ICIP, vol. III, pp. 450-453, 2001.
11. D. Mukherjee, C. Chrysafis, and A. Said, “Low complexity guaranteed fit compound document compression,” in

Proc. ICIP, vol. I, pp. 225-228, 2002.
12. K. Konstantinides and D. Tretter, “A JPEG variable quantization method for compound document,” IEEE Trans.

Image Processing, vol. 9, pp. 1282-1287, no. 7, July 2000.
13. F. Ono, I. Ueno, T. Takahashi, and T. Semasa, “Efficient coding of computer generated images with acceptable

picture quality,” in ICIP, vol. 2, pp. 653-656, 2002.
14. X. Li and S. Lei, “On the study of lossless compression of computer generated compound images,” in ICIP’01, vol.

3, pp. 446-449, 2001.
15. http://www.gzip.org/zlib/.
16. http://Any2DjVu.djvuzone.org/.

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 9. Details of the wall image. (a) Original data, 1407KB. (b) JPEG, quality factor 75, 131KB, encoding 123ms,
decoding 76ms. (c) JPEG 2000, compression ratio 11, 128KB, encoding 991ms, decoding 560ms. (d) DjVu, 151KB, run
time unknown. (e) Our hybrid coding without intra-block segmentation, 97KB, encoding 143ms, decoding 66ms. (f) Our
hybrid coding (with intra-block segmentation), 122KB, encoding 220ms, decoding 126ms.

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 10. Details of the sina image. (a) Original data, 1407KB. (b) JPEG, quality factor 17, 74KB, encoding 107ms,
decoding 63ms. (c) JPEG 2000, compression ratio 19, 74KB, encoding 981ms, decoding 430ms. (d) DjVu, 260KB, run
time unknown. (e) Our hybrid coding without intra-block segmentation, 66KB, encoding 104ms, decoding 24ms. (f) Our
hybrid coding (with intra-block segmentation), 74KB, encoding 110ms, decoding 29ms.

