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ABSTRACT

We consider filters for the detection and extraction of compact sources on a background. We make a one-
dimensional treatment (though a generalization to two or more dimensions is possible) assuming that the sources
have a Gaussian profile whereas the background is modeled by an homogeneous and isotropic Gaussian random
field, characterized by a scale-free power spectrum. Local peak detection is used after filtering. Then, a Bayesian
Generalized Neyman-Pearson test is used to define the region of acceptance that includes not only the amplifi-
cation but also the curvature of the sources and the a priori probability distribution function of the sources. We
search for an optimal filter between a family of Matched-type filters (MTF) modifying the filtering scale such
that it gives the maximum number of real detections once fixed the number density of spurious sources. We have
performed numerical simulations to test theoretical ideas.
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1. INTRODUCTION

The detection of compact signals (sources) embedded in a background is a recurrent problem in many fields of
science. Some common examples in Astronomy are the separation of individual stars in a crowded optical image,
the identification of local features (lines) in noisy one-dimensional spectra or the detection of faint extragalactic
objects in microwave frequencies.

Regarding the detection of point sources on maps of the cosmic microwave background radiation (CMB),
several techniques based on different linear filters have been proposed in the literature: the Mexican Hat Wavelet
(MHW Cayén et al.,! Vielva et al.>?), the classic matched filter (MF, Tegmark and de Oliveira-Costa?), the
Adaptive Top Hat Filter (ATHF, Chiang et al.%) and the scale-adaptive filter (SAF, Sanz et al.,® Herranz et
al.”?). A certain deal of controversy has appeared about which one, if any, of the previous filters is optimal for
the detection of point sources in CMB data.

In order to answer that question it is necessary to consider first a more fundamental issue, the concept of
detection itself. The detection process can be posed as follows: given an observation, the problem is to decide
whether or not a certain signal was present at the input of the receiver. The decision is not obvious since the
observation is corrupted by a random process that we call ‘noise’ or ‘background’.

Formally, the decision is performed by choosing between two complementary hypotheses: that the observed
data is originated by the background alone (null hypothesis), and the hypothesis that the observation corresponds
to a combination of the background and the signal. To decide, the detector should use the totality of the available
information in terms of the probabilities of both hypotheses given the data. The decision device separates the
space R of all possible observations in two disjoint subspaces, R, and R_, so that if an observation y € R_ the
null hypothesis is accepted, and if y € R, the null hypothesis is rejected, that is, a source is ‘detected’. Hence,
we will call any generic decision device of this type a detector.

Any detector can produce two kinds of errors: on the one hand, it can produce a false alarm or spurious
detection when an observation in which no source was present is assigned to the subspace R.. The probability
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of this kind of error depends on the statistical properties of the background and the choice of the detector. On
the other hand, a signal that is present in the observation can be missed by the detector (i. e. the observation
is wrongly assigned to the subspace R_). This error is often referred as false dismissal. The probability of false
dismissal depends on the statistical properties of the background, the choice of the detector and the properties
of the signal (for example, its intensity). In general, it is not possible to decrease the incidence of both types of
error at the same time: one of them can be reduced at expense of increasing the other. The goodness of a given
detector must be established by taking into account the balance between these two types of error.

The most simple example of detector, and one that has been exhaustively used in Astronomy, is thresholding.
Thresholding considers that the space R of observations consists of all the possible values of the measured
intensity ¢ (in the case of an astronomical image) and subdivides this space into two simple regions R_ = {{ €
R:&<&}and R, ={£ € R: & > &} The value &, is an arbitrarily chosen threshold that is often expressed as
a number of times the standard deviation of the background, &, = v,0(p. Thresholding works on the assumption
that the probability of finding a value of £ due to the background decreases as the value of £ increases. In the
case of a Gaussian background, this assumption has a very precise meaning and it allows us to straightforwardly
control the probability of occurrence of spurious detections simply by setting a large enough threshold. However,
this may lead to a very high probability of false dismissals.

Unfortunately, in many cases the sources are very faint and this makes very difficult to detect them: a high
threshold means that the number of detections will be very small. Here is where filtering enters in scene. The
role of filtering is to transform the data in such a way that a detector can perform better than before filtering.
For example, a filter can be designed in order to reduce the fluctuations of the background so that we can
safely use lower detection thresholds and, hopefully, increase the number of detections without increasing the
number of spurious detections. We remark that a filter is not a detector: the decision device we call ‘detector’
can be applied after the application of any imaginable filter, or even no filter at all, while the use of any filter
without a posterior detection criterion means nothing. However, the two different steps in the process (filtering
and detection) are not independent. In the thresholding example, the use of a filter that cancels most of the
fluctuations in the background allows us to change the detection threshold from its original high value to a lower
one. Given an adopted detector and a background, it is licit to ask which is the filter that creates the most
favorables conditions in the filtered background for the detector to perform. In other words, the ‘optimality’ of
a filter for detection depends on the type of detector chosen which, in turn, depends on the specific goal the
observer has in mind: in certain cases the observer will accept a relatively large number of spurious detections
in order to have a large number of true targets, whereas in other cases it could be more important to be certain
that the detections are all of them reliable, and so on.

For example, let us consider that we have chosen thresholding as our detection device. In that case, it has
been shown that the optimal linear filter is the matched filter. It produces the maximum amplification of the
signal with respect to the background fluctuations, so that the threshold for a given probability of spurious
detections is minimum, allowing the thresholding detector to find more sources than would be detected if we
filtered with any other filter. A sub-optimal approach, using only thresholding, is to select a priori a filter and
adapt its scale in order to produce a maximum amplification in a given background. Such is the case of the
Mexican Hat Wavelet at the optimum scale (MHO, Vielva et al.23) and the Adaptive Top Hat Filter (ATHF,
Chiang et al.®).

Thresholding has a number of advantages, among them the facts that it is straightforward, it has an obvious
meaning in the case of Gaussian backgrounds, and it has been successfully used for many years in many fields of
science. It, however, does not use all the available information contained in the data to perform decisions. The
question is then: is it possible to devise a detector that uses additional information apart from mere intensities
and that produces better results than thresholding? And, if so, which is the filter that optimizes the performance
of such a detector?

Let us focus on the case of one-dimensional data (such as stellar spectra, or time-ordered scannings of the sky
in CMB experiments) and linear filters. Data in a one-dimensional array is entirely described by two quantities,
namely the position in the array (corresponding to the spatial or temporal coordinate, for simplicity we will
refer it as spatial information) and the value (intensity) at each position. Thresholding uses only the intensity
distribution to make the decision. Clearly, the inclusion of spatial information in a detector should be useful.



For example, it could help to distinguish the sources from fluctuations in the background with similar scale but
a different shape. A full description of this ‘spatial information’ should include the probability distribution of
events (both due to background and sources) in space, with all its infinite moments. We will somewhat relax this
demand of information assuming that the background is homogeneous and isotropic, and asking at each point
for some information about the shape of the sources and the autocorrelation of the background (for example,
the curvature of the peaks).

In fact, even a simple filtering-and-thresholding scheme uses implicitly some degree of spatial information.
Both the MHO and the ATHF adapt to the scale at which the contrast between sources and background produces
the maximum amplification. The MF includes as well the information on the profile of the sources in order
to amplify the structures whose shape correlates with the shape of the sources. SAF goes a step further in
constraining additionally the scale of the filter. Moreover, in most cases the detection is performed not in all the
points of the data but only in the peaks, that is, in those points where the curvature is positive.

In a recent work, Barreiro et al.'® propose a detection criterion based on the Neyman-Pearson decision rule
that uses the information of both the intensities £ and the curvatures « of the peaks in a data set. In that work
the performances of several filters (SAF, MF and MHW) is compared in terms of their reliability, defined as the
ratio between the probability density of true detections over the probability density of spurious detections. They
find that, on the basis of this quantity, the choice of the optimal filter depends on the statistical properties of the
background. For the case of backgrounds that can be described with a power spectrum of the form P(q) o« ¢~7,
the SAF outperforms the other two filters for the case 1 < « < 1.6, whereas in the range 0 < v < 1 the MF is
the most reliable. The MHW is the most reliable filter in this sense when v > 1.6.

The reliability, defined in the previous sense, could not be a valid measure of performance of the filters,
since it favors a situation in which the number of the detections is very low in order to keep a ‘safe’ number of
spurious detections. A different approach can be used in which the number density of spurious detections (or,
alternatively, of true detections) is fixed for all the filters, and then the number density of true detections (or
spurious detections) is compared for all the filters. In this work, we first clearly define the goal of our experiment:
fixed a certain number density of spurious detections, to obtain the maximum possible true detections from the
data. Note that this goal is not universal: in other applications, an observer may desire to work on the basis of
the reliability described in Barreiro et al.,'? or define its own requirements. Once fixed the goal, we will develop
a detection criterion that corresponds to a Bayesian Generalized Neyman-Pearson test. Then, a particular
filter from the family of matched-type filters (MTF) that optimizes the performance of the detector under the
optimality conditions set by our goal will be obtained. Finally, the performance of the optimal MTF will be
compared with the standard MF using simulations.

The overview of this paper is as follows: In section 2, we introduce two useful quantities: number of maxima
in a Gaussian background in the absence and presence of a local source. In section 3, we introduce the detection
problem and define the region of acceptance. In section 4, we obtain different analytical and numerical results
regarding point sources and scale-free background spectra and compare the performance of a new family of
matched-type filters. In section 5, we describe the numerical simulations performed to test some theoretical
aspects and give the main results. Finally, in section 6, we summarize the main results and applications of this

paper.

2. BACKGROUND PEAKS AND COMPACT SOURCES
2.1. The background

Let us assume a 1D background (e. g. one-dimensional scan on the celestial sphere or time ordered data set)
represented by a Gaussian random field {(x) with average value ({(x)) = 0 and power spectrum P(q), ¢ = |Q:
(@)X (@) = P(q)dp(q—¢'), where £(Q) is the Fourier transform of £(x) and dp is the 1D Dirac distribution.
The distribution of maxima was studied by Rice'! in a pioneer article. The expected number density of maxima
per intervals (z,x 4 dz), (v,v + dv) and (k, k + dk) is given by
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being n; the expected total number density of maxima (i. e. number of maxima per unit interval dx)
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where v € (—00,00) and k € (0, 00) represent the normalized field and curvature, respectively. o2 is the moment
of order 2n associated to the field. 6., 0,, are the coherence scale of the field and maxima, respectively.

If the original field is linear-filtered with a circularly-symmetric filter ¥ (z; R,b), dependent on 2 parameters
(R defines a scaling whereas b defines a translation)

1 —-b
v = o (1), (@)
we define the filtered field as
w(R,b) = / do £(2) W (2 R, b). (5)

Then, the moment of order n of the linearly-filtered field is
72 =2 [ da " Pl (o) (6)
0

being P(q) the power spectrum of the unfiltered field and ¥(Rq) the Fourier transform of the circularly-symmetric
linear filter.

2.2. The presence of a local source

Now, let us consider a Gaussian source (i. e. profile given by 7(x) = exp(—2?/2R?)) embedded in the previous
background. Then, the expected number density of maxima per intervals (z, z + dx), (v,v + dv) and (k, k + dk),
given a source of amplitude A in such spatial interval, is given by (Barreiro et al.!?)

_(r=ve) 24 (h—rs)2—2p(v—vs)(K—Ks)
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where v € (—00,00) and & € (0,00), vs = A/0p is the normalized amplitude of the source and rs = —A7,; /02 is

the normalized curvature of the filtered source. The last expression can be obtained as
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We consider that the filter is normalized such that the amplitude of the source is the same after linear filtering:
[ dxT(z)¥(x; R, b) = 1.

3. THE DETECTION PROBLEM

We want to make a decision between filters based on detection. To make such a decision, we will focus on the
following two fundamental quantities: a) the number of spurious sources which emerge after the filtering and
detection processes and b) the number of real sources detected. As seen in the previous section, these quantities
are properties of the Gaussian field and source that can be calculated through equations (1) and (7). As we will
see, the previous properties are not only related to the signal-to-noise-ratio gained in the filtering process but
depend on the filtered momenta to 4th-order (in the 1D case), i. e. the amplification and the curvature of the
source.



3.1. The region of acceptance

Let us consider a local peak in the 1D data set characterized by the normalized amplitude and curvature (vs, k).
Let Hp : n.d.f. np(v, k) = n(v, £|0) represents the null hypothesis, i. e. the local number density of background
maxima, and H; : n.d.f. n(v,k|vs) represents the alternative hypothesis, i. e. the local number density of
maxima when there is a compact source with normalized amplitude and curvature (vs, ks = vsys). Given the
data (v, k), we can associate to any region R. (v, k) two number densities n} and n*

nZ:/ n(v, k|0)dv dk, 9)

n* Z/p(Vs)dl/s /R n(v, klvs)dv dk. (10)

Then, nj is the number density of spurious sources, i. e. due to the background, expected inside the region
R« (v, k), whereas n* is the number density of maxima expected in the same region of the (v, k) space in the
presence of a local source. Hereinafter, we will call it the number density of detections. We will assume a
Bayesian approach: at a concrete pixel we get the number of source detections weighting with the a priori
probability p(vs). R is called the acceptance region. We remark that in order to get the true number of real
source detections such a number must be multiplied by the probability to have a source in a pixel in the original
data set.

We will assume a Bayesian Generalized Neyman-Pearson decision rule using number densities instead of
probabilities: the acceptance region R, giving the highest number density of detections n*, for a given number
density of spurious nj, is the region (criterion for detection)

L(v,k) = /000 dvsp(vs)L(v, Klvs) = J p;V(Z)Zﬁgsﬁlys) > Ly, (11)

where L, is a constant. The proof follows the same approach as for the standard Neyman-Pearson test. Therefore,
the decision rule is expressed by the likelihood ratio: if L > L. we decide that the signal is present, whereas if
L < L, we decide that the signal is absent.

_ Once we have assumed the previous decision rule for detection, the region of acceptance R. is given by
L(v, k) > L, or equivalently by the sufficient linear detector

Re 0V, K) > @x, (12)
where ¢, is a constant and ¢ is given by
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We remark that the assumed criterion for detection leads to a linear detector ¢ (i. e. linear dependence on the
threshold v and curvature k).

3.2. Spurious sources and real detections

Once obtained the region of acceptance R, in the previous subsection, one can calculate the number density of
spurious sources and the number density of detections as given by equations (9) and (10).
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Then, one can invert the equation for the number of spurious to get ¢, = @ (Z—’;, p,Ys) that allows to rewrite the
equation for the number of detections as n* = g(n}; 0m, p, ys)-

4. ANALYTICAL AND NUMERICAL RESULTS
4.1. Point sources

We will considerer as application the detection of compact sources characterized by a Gaussian profile 7(z) =
exp(—x?/2R?), though the extension to other profiles will be considered in the future. Such a profile is physically
and astronomically interesting because represents the convolution of a point source (Dirac § distribution) with
a Gaussian beam.

4.2. The matched filter (MF)

By introducing a circularly-symmetric filter, U(x; R, b), we are going to express the conditions in order to obtain
a matched filter for the detection of the source s(z) at the origin taking into account the fact that the source
is characterized by a single scale R,. The following conditions are assumed: (1) (w(R,,0)) = s(0) = A4, i. e.
w(R,,0) is an unbiased estimator of the amplitude of the source; (2) the variance of w(R,b) has a minimum at
the scale R,, i. e. it is an efficient estimator

1 7(q)
2a P(q)

byr = . (17)

This will be called matched filter as is usual in the literature.

For the case of a Gaussian profile for the source and a scale-free power spectrum given by P(q) « ¢~7, the
previous formula leads to the following matched filter

~ 1
YmF = F(m)xwe T, x=qR, m=-——. (18)

For the MF the parameters 6., 6,,, p and the curvature of the source y, are given by

2 S T (19)
R _\/H-—m, p_ 1+m7 ys_p

We remark that the linear detector ¢(v, k) is reduced to
Y=, (20)

i.e. the curvature does not affect the region of acceptance for the MF and the sufficient detector ¢ reduces to
the plain thresholding detector.

4.3. The family of Matched-type filters (MTF)

Let us modify the filtering scale as aR to introduce a family of Matched-type filters. In particular, if we consider
the white noise case (y = 0), this family is given by

~ 1 J1+a? _1,
1/}MTF = ﬁ Te ;( Rq)z. (21)



Therefore, this family allows one to filter at scales different from the one of the source. Obviously, for « = 1 the
usual MF is recovered.

The parameters characterizing the background and source are in this case modified in the following way
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4.4. Uniform distribution of point sources

In this case,

p(VS) = 9 ve [Oa VC] (24)
This allows one to obtain
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4.5. Theoretical results

Hereinafter, we shall consider the case of white noise (7 = 0) for the background and a uniform distribution for
the point sources in an interval v € [0,v.]. v. has been chosen to produce a threshold of 2 for the filtered field
using the standard MF. The corresponding thresholds for the MMF can be easily obtained using equation (23).
We would like to point out that this reflects a situation where we want to detect very weak sources, which were
below the 1o level in the original unfiltered map.

The region of acceptance R. is defined by the sufficient linear detector . Let us consider equation (14),
giving the number density of spurious, then one can invert to get ¢.(n;). In Fig. 1 we show some results for
the cases R=3, nj = 0.05 and R=4, nj = 0.03. The two panels on the left correspond to the first case and the
ones on the right to the second one. The top figures show the expected number density of detections versus the
« parameter of the filter. It is interesting to remark that such a number decreases with a. In fact, the largest
number of detections are obtained for o ~ 0.3 which corresponds approximately to filter at the pixel scale. The
relative ratio to the standard MF defined as r = (n*(a)/n*(a = 1) — 1) x 100 is shown in the bottom panels. For
the first case, the ratio takes values up to ~ 10 per cent whereas for the second it goes up to ~ 5 per cent. These
results clearly indicate that, under certain conditions, the standard MF can be improved by simply modifying
the scale of the filter. We remark the importance of the curvature defining the acceptance regions for the MTF.

5. NUMERICAL SIMULATIONS: RESULTS
5.1. The simulations

In order to test the previous ideas, we have simulated a set of one-dimensional images containing a Gaussian
background characterized by a white noise power spectrum (v = 0) and point sources distributed in intensity
following an uniform distribution such as in eq. (24). Since we are interested in detecting very faint sources, we
set the upper-limit threshold cut v, = 2 with respect to the MF. Specifically, we simulated a set of images with
4096 pixels each, with white noise dispersion unity (background image) and then added a source with a Gaussian
profile of FWHM=T pixels, i.e. R = 3, at the central pixel of each image (background+source image). The size
of the image is such that the addition of the source does not modify the previous dispersion in a significant way.
Then, each image was filtered with the MTF given by equation (21).

For consistency, all the relevant quantities needed for the detection were estimated directly from the images.
The observables are the amplitude and curvature of the maxima as well as the moments o2. From these observed
quantities, it is possible to calculate the parameters p and ys of the filtered images and, therefore, the value of
the sufficient detector ¢ (see equation 13) for each peak. The value ¢, that defines the acceptance region can be
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Figure 1. The expected number density of detections (top panels) and the relative ratio to the standard MF (bottom
panels) are given for the MTF for different values of the a parameter. Two cases are considered: R = 3, n; = 0.05 (left
figures) and R = 4, n; = 0.03 (right figures).

obtained from the images as well following a very simple procedure. For any background maxima in the image,
the detector ¢ is calculated. Then all the values of ¢ are sorted. Once we fix the number of spurious sources
n;, the value of ¢, is given by the ¢ above which the number of maxima found corresponds to nj. Once defined
the acceptance region, we can proceed to apply the detector to any maxima where the existence of a source is
suspected. In our simulations, we looked at the central pixel of the images were the sources were introduced and
applied the detection criterion every time a maximum was found in that pixel.

5.2. Results

The results of the simulations are shown in figure 2 for the case R = 3, n;=0.05, where we represent the number
of detections n* vs. the a parameter of the filter. The dotted line represents the result obtained from the
simulations whereas the solid line is the theoretical result. We have done five simulations for each a value to
estimate the error bars. In order to have 10000 images with a maximum of the background in the central pixel,
for each of the simulations we generate between ~ 50000 and ~ 150000 realizations (depending on «). The two
numbers reflect the fact that for lower o the same nj is achieved with a smaller number of realizations. We
remark the agreement between the two results and also that ~ 10 per cent more sources are found filtering at
the pixel scale (« ~ 0.3) than with the standard MF (a = 1). Therefore, we have shown that in conditions of
white noise and for weak sources it is possible to outperform the number of detections given by the MF using
the detection criterion presented here and an appropriate MTF. This clearly suggests the use of other optimal
filters under certain conditions, different from the MF, from the practical point of view, for the detection of weak
sources.

This methodology is optimal for weak sources embedded in white noise. Regarding bright sources, the
amplification plays a major role as compared to curvature entering the acceptance region. Therefore, the use of
the MF is well justified in this case.

Regarding the behavior of the detector with respect to the scale R, we found that if R is very low the sources
become more and more point-like and they are more easily mistaken with the fluctuations of the background.
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Figure 2. Number density of detections for the case R = 3, n; = 0.05 for different values of the « parameter. The solid
line represents the expected theoretical value whereas the dotted line is obtained through the numerical simulations.

Therefore, in these cases the curvature does not help to distinguish among them and the detector tends again
to the thresholding case which favors the use of the MF.

6. CONCLUSIONS

The detection of compact sources on a background is a relevant problem for many fields, in particular for Astron-
omy. Several detection techniques based on the use of linear filters thresholding-based detectors are standard.
Here, we have considered an approach to the problem of detector design based on a Bayesian generalization of
the Neyman-Pearson rule that includes a priori information of the source distribution and the number densities
of maxima (background and background plus source) to define the acceptance region.

Our approach based on maxima includes both the amplitude and the curvature. Therefore, the chances of
detection do not depend only on the amplification of the sources produced by the filtering but also on the filtered
momenta up to the fourth order. This determines in a strong way the designing of the linear filters that are used
to help the detection. We have applied our technique to a family of matched-type filters (MTF) by modifying
the scale of the standard matched filter. We considered the very interesting case of white noise to represent the
background. As an example, we have considered a uniform distribution of sources in the interval 0 < v < 2
in the filtered field, i.e. weak sources. We have shown that the curvature plays an important role defining the
acceptance region and we have proven that the number of detections in the case of a filter with a scale similar
to the pixel size beats the number of detections in the case of the standard MF. This result has been tested with
numerical simulations for a uniform distribution and white noise.

The ideas presented in this paper can be generalized: application to other profiles (e. g. multiquadrics,
exponential) and non-Gaussian backgrounds is physically and astronomically interesting. The extension to
include several images (multi-frequency) is relevant. The generalization to two-dimensional data sets (plane and
spherical maps) and nD images is also very interesting. Finally the application of our method to other fields is
without any doubt. We are currently doing research in some of these topics.
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