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ABSTRACT 
 
With the deployment of 2.5G/3G cellular network infrastructure and large number of camera equipped cell phones, 
the demand for video enabled applications are high. However, for an uplink wireless channel, both the bandwidth and 
battery energy capability are limited in a mobile phone for the video communication. These technical problems need 
to be effectively addressed before the practical and affordable video applications can be made available to consumers. 
In this paper we investigate the energy efficient video communication solution through joint video summarization and 
transmission adaptation over a slow fading channel. Coding and modulation schemes, as well as packet transmission 
strategy are optimized and adapted to the unique packet arrival and delay characteristics of the video summaries. 
Operational energy efficiency – summary distortion performance is characterized under an optimal summarization 
setting.  
 
Keywords: video summarization, wireless video, energy efficiency.  

1. INTRODUCTION 

With the proliferation of camera equipped cell phones and deployment of the higher data rate 2.5G and 3G 
infrastructure systems, providing video capability for consumers over the cellular communication infrastructure can 
drive a large number of valuable applications. However, wireless video communication presents some unique 
challenges. Due to shadowing and multi-path effect, the channel gain varies over time and this makes the reliable 
signaling difficult. On the other hand, communication of information over a wireless link consumes energy. For 
mobile devices, the energy is always limited, and even irreplaceable. How to achieve reliable video communication 
over a fading channel with energy efficiency is crucial for wide deployment of wireless video based applications.  
 There are quite a number of works in energy efficient wireless communication. A rather intuitive solution is to 
put the device into sleeping mode when not used. This has been explored in [12] and [14]. However, as the semi-
conductor technology improves, the energy consumption on circuits side can always be driving down, while the 
communication energy cost is lower bounded by information theory results, and its efficient usage need to be 
addressed. In [1], the fundamental trade-off between average power and delay constraint in communication over 
fading channels is explored and characterized. In [2], optimal power control schemes for communication over fading 
channels are developed. In [22] and [7], optimal off-line and near optimal on-line packet scheduling algorithms are 
developed to directly minimize energy used in communication a given amount of information over fading channels 
with certain delay constraints.  
 For streaming wireless video, the packet arrival pattern is not entirely random, and the delay constraint has certain 
unique aspects that differ it from other applications. Taking advantage of the specific source characteristics of video, 
and jointly adapting video source coding decisions with transmission power, modulation and coding schemes can 
achieve substantial energy efficiency compared with non-adaptive transmission schemes. Examples of this type of 
work are reported in [3], [6], [11], [13], and [18]. In those works, source-coding controls are mostly based on frame 
and / or macro block (MB) level coding mode and parameter decisions.   
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 When both bandwidth and energy are severely limited for video streaming, sending over a video sequence with 
severe PSNR distortion is not desirable. Instead, we are looking at joint video summarization and transmission 
approaches to achieve energy efficiency. Video summarization has been an active research topic for a number of 
years. The main motivation for summarization is view time constraint. A shorter version of the original video 
sequence may be desirable in some applications, for example, a 2 minute summary of a 30 minute surveillance video   
can save people time in reviewing the video. Examples of the video summarization and related shot segmentation 
work can be found in [25], [5], [8], [21] and [17], [9], in which a video sequence is segmented into video shots, and 
then one or multiple key frames per shot are selected based on certain heuristic or metric for the summary.  
 Since the summarization process inevitably introduces distortion, and the summarization ”rate” is related to the 
conciseness of the summary, we formulated the summarization problem as an rate-distortion optimization problem in 
[15], and developed an optimal solution based on dynamic programming. We extended the formulation to handle the 
case where bit rate is used as summarization rate in [16]. In this paper, we formulate the energy efficient video 
summarization and transmission problem as an energy-summarization distortion optimization problem, the solution is 
found through jointly optimizing the summarization and transmission parameters/decisions to achieve the operational 
optimality in energy efficiency performance.  
 The paper is organized into the following sections: In section 2 we give assumptions on the communication over 
fading channels and formulate the problem as an energy-summarization distortion optimization problem. In section 3 
we develop an optimal solution based on Lagrangian relaxation and dynamic programming. In section 4 we present 
simulation results. Finally in section 5 we draw conclusions and discuss future works in this area.  

2. ASSUMPTIONS AND PROBLEM FORMULATION 

In this section we will discuss the channel model, delay analysis for video summary packets and the problem 
formulation.  

2.1. Slow Fading Channel Models and Assumptions 
 
Communication of video over a wireless channel has its unique challenges, namely fading and energy efficiency 
issues.  In this work, we assume that the wireless channel can be modeled as a band-limited, AWGN channel with 
discrete time, slow block fading,  

 kkkk nxhy +=           (1) 

in which hk is the channel gain for time slot k and it stays constant for time Tc, the channel coherent time. The channel 
is slow fading because we assume the symbol duration Ts << Tc. Thus, there are many channel uses during each time 
slot. nk is the additive Gaussian noise with power N. The variation of the channel state is modeled as a finite state 
Markov channel (FSMC) [24], which has a finite set of possible states, H={h1, h2, … hm}, and makes transition every 
Tc second with probability given by the transition probability matrix A, where aij = Prob{transition from hj to hk}. 
 To reliably send R bits information over the fading channel in one channel use, the minimum power needed with 
optimal coding is given in information theory [4] as,  

 k
R hNP /)12( 2 −= .           (2) 

Similar to [Elif02], let x=1/R be the number of transmission needed to send one bit over the channel, we can 
characterize the energy-delay tradeoff as Eb, energy per bit, as a function of x as, 

 hxNxPhxE x
b /)12(),( /2 −==         (3) 

Examples of the energy efficiency functions with different fading states are shown in Fig. 1. The range of x in Fig. 1 
corresponds to signal-to-noise ratio of 2.0dB to 20 dB, a typical operating range for wireless communication. To send 
a data packet with B bits and deadline τ , assuming  τ >>Tc , the number of transmission available is τW2 , where W 
is the signaling rate.  Then the expected energy cost will be,  
 },,|),/2({),( 0hHABhBWEBE bH ττ Ε= .       (4) 

In Eq. (4), the expectation is with respect to all possible channel states, which are governed by an FSMC specified by 
the state set H, the transition probability matrix A, and the initial state h0. The function in (4) can be implemented as a 
look up table for a given channel model in simulation. A closed form solution may also be possible, under some 
optimal coding and packet scheduling assumption.  
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Figure 1. Energy efficiency over fading channels 
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Figure 2. Example of DP Trellis 

 
 

2.2. Summarization and Packet Delay Constraint Analysis 
 
Let a video sequence of n frames be denoted by V={f0, f1, …, fn-1}, and its video summary of m frames be 
S= },,,{

110 −mlll fff L . Obviously the video summarization process has an implicit constraint that l0< l1<…< lm-1. Let 

the reconstructed sequence }',','{' 110 −= nS fffV L  be obtained by substituting missing frames with the most recent 

frame that is in the summary S, that is, 
 killlltslik m

ff ≤∈= −
= },,,,{..:)max( 110

' L .         

The summarization distortion is therefore computed as the average frame distortion between the original sequence and 
the reconstructed sequence from the summary,  

 ∑
−

=
=

1

0
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1
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n

k
kk ffd
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SD .         (5) 

where  d(fk, fk’)  is the distortion of the reconstructed frame fk’ , and n is the number of frames in the video sequence. 
For the encoding of the video summary frames, we assume a constant PSNR intra-coding strategy, with frame bit 
budget 

jlB  given by some rate profiler, for example [10]. Packets from different summary frames have different delay 

tolerances. We assume that the first frame of the original sequence,  f0, is always selected for the summary and intra 
coded with some B0 bits. The delay tolerance 0τ  is determined by how much initial streaming delay is allowed. For 

packets generated by the summary frame
jlf , with lj > 0,  if the previous summary frame 

1−jlf  is decoded at time tj-1, 

then the packet need  to arrive by the time tj=tj-1 + (lj – lj-1)/F, where F is the frame rate of the sequence. Therefore, the 
delay tolerance for frame 

jlf  is 
jlτ =(lj – lj-1)/F. This is a simplified delay model, not accounting for minor variations 

in frame encoding and other delays. The energy cost to transmit a summary S of m frames is therefore given by, 
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where  
kl

B  is the number of bits needed to encode summary frame 
kl

f , and 
kl

τ  is the delay tolerance for frame 
kl

f  

packets. There are trade offs between the number of frames, m, in the summary versus the summarization distortion. 
The more frames can be selected into the summary, the smaller the summarization distortion. On the other hand, the 
more frames in the summary, more bits need to be spend encoding the frames, and the packet arrival pattern gets more 
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crowed, which translate into higher bit rate and smaller delay tolerance. More bits to transmit with more stringent 
deadline translate into higher transmission energy cost. Let the summarization rate be,  

 
n

m
SR =)(             

In the next sub-section, we will characterize the relationship between the summarization distortion and energy cost, 
and formulate the energy efficient video summarization and transmission problem as an Energy-Distortion (ED) 
optimization problem.  

2.3. Energy Efficient Summarization Formulations 
 
The energy efficient summarization problem can be formulated as a constrained optimization problem. For a given 
constraint on the summarization distortion, we need to find the optimal summary that minimizes the transmission 
energy cost, while satisfying the distortion constraint, Dmax, that is, the Minimizing Energy Optimal Summarization 
(MEOS) formulation, 

 max
* )(..),(minarg DSDtsSES

S
≤= .        (7) 

We can also formulate the energy efficiency problem as the Minimizing Distortion Optimal Summarization (MDOS) 
problem, that is, for a given energy constraint, Emax, find the optimal summary that minimizes the summarization 
distortion,  

 max
* )(..),(minarg ESEtsSDS

S
≤= .        (8) 

The solution to the formulations in Eqs. (7) and (8) is based on Lagrangian relaxation and Dynamic Programming 
(DP) which is given in the next section.   

3. OPTIMAL SOLTUION 

Directly solving the constrained problems in Eqs. (7) and (8) is usually difficult due to the complicated dependencies 
and large searching space for the operating parameters. Instead, we introduce the Lagrangian multiplier relaxation to 
convert the original problem in to an unconstrained problem. The solution to the original problem can then be found 
by solving the resulting unconstrained problem with the appropriate Lagrangian multiplier that satisfies the constraint. 
This approach has been widely used in solving a number of coding and resource allocation problems in video/image 
compression [20]. 
 Considering the MEOS formulation, by introducing the Lagrangian multiplier, the relaxed problem is therefore 
given by, 

 )}()({minarg)(* SDSES
S

λλ += ,        (9) 

in which the optimal solution S* becomes a function of λ . From [19] we know that by varying λ  from zero to 

infinity, we sweep the convex hull of the operational Energy-Distortion (ED) function E(D( )(* λS )), which is also 

monotonic with respect to λ . Therefore a bi-section search algorithm on λ  can give us the optimal solution within a 
convex hull approximation. In real world applications, the operational ED functions are typically convex, and indeed 
the optimal solution can be found by the algorithm above.  
 To solve the relaxed problem in (9) by exhaustive search, which has an exponential computational complexity, is 
not feasible. Instead, we observe that there are built-in recursive structures that can be exploited for an efficient 
dynamic programming solution for the relaxed problem with polynomial computational complexity.  
 First, let us introduce a notation on segment distortion for distortion introduced by missing frames between 
summary frame lt and lt+1 , which is given by,  

 ∑
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Let the “state” of a video summary with t-frames, and the last frame fk be the minimum of the relaxed objective 
function be given by, 
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where |S| denotes the number of frames in S. Notice that l0=0, as we assume the first frame is always selected. The 
minimization process in Eq. (10) has the following recursion, 
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The recursion has the initial condition given by, 

 ),()( 000
0
1 τλλ BEGJ n += .         (13) 

 The Dynamic Program (DP) solution starts with the initial node J1
0, and propagates through a trellis with arcs 

representing possible transitions. The cost of transition is given by edge cost klte ,1−  in Eq. (12). At each node we 
compute and store the optimal incoming arc and minimum cost. Once all the nodes with final virtual frame fn, 

},,2,1|)({ ntJ n
t L=λ , are computed, the optimal solution to the relaxed problem in Eq. (9) is found by selecting the 

minimum cost final virtual frame nodes,  

 )}({minarg)(* λλ n
t

t
JS = , 

and backtracking for the optimal solution. This is similar to the Viterbi algorithm [23]. An example trellis for n=5 is 
shown in Fig. 2. All possible state transitions are plotted. For each state node, the minimum cost incoming is plotted in 
solid line, while other incoming arcs are plotted as dotted lines.  For example, the note J3

4 is computed as 

}{min 3,
2

}3,2,1{

4
3

jj

j
eJJ +=

∈
, and its minimum cost incoming arc is from node J2

2.  The virtual final frame nodes are all at 

the top of the trellis.  
 The Lagrangian multiplier controls the trade off between the summarization distortion and the energy cost in 
transmitting the summary. By varying the value of λ  and solving the relaxed problem in the inner loop, we can obtain 
the optimal solution that minimizing the transmission energy cost while meeting certain distortion constraints. Since 
the operational energy-distortion function E(D(S*( λ ))) is monotonic with λ  , a fast bi-section search algorithm can 
be applied to find the optimal λ *, that results in the tightest bound on the distortion constraint Dmax, i.e., D(S*( λ *)) is 
closest to Dmax. The algorithm can be made even faster by re-using the distortion and energy cost results that only need 
to be computed once in the iteration. The solution to the MDOS formulation can also be solved in the same fashion. 
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4. SIMULATION RESULTS 

To simulate a slow fading wireless channel, we model the channel fading as a two state FSMC with channel states h0  

and  h1. The channel state transitional probability is given by A= 







−

−
qq

pp

1

1
, and is shown in Fig. 3. In Fig. 3, p and 

q are the probabilities of channel state transition from h0 to h1, and h1 to h0, respectively. The steady state channel state 

probability is therefore computed as 
qp

q

+
=0π  and 

qp

q

+
=1π . Assuming that τ >>Tc, and the signaling rate is W  

(W is selected to simulate typical SNR operating range in wireless communications), then out of total 2Wτ  channel 

uses, τW
qp

p
2

+
 of them are in channel state h1, and τW

qp

q
2

+
 of them are in channel state h0. 
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q
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Figure 3. Two state FSMC example 

Assuming the channel state is known to both the transmitter and the receiver, with the optimal coding and packet 
scheduling, then the expected energy cost of transmitting B bits with delay constraint τ  can then be computed as, 
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In Eq. (14), we need to find an optimal bits splitting, x, of the total bits B, with xB bits transmitted optimally while 
channel state is in h0, and (1-x)B bits transmitted optimally while channel state is h1.  
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Figure 4. Examples of Energy Efficient Video Summarization 
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Notice that Eq. (14) can be implemented as a look up table in a practical system implementation. For simple channel 
models such as the two-state FSMC, a closed form solution can be derived. Checking the 1st and 2nd order conditions 
(See Appendix for more detail) for the minimization problem in Eq. (14), the optimal splitting of the bits is given by, 
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and the minimum energy cost is given by, 
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Eq. (16) can be implemented as a look up table for the ED optimization algorithm. 
 In our simulation, the optimal algorithm is implemented in Matlab and simulation results for the “foreman” 
sequence, frames 150~299 are shown in the Fig. 4. The channel state is modeled as h0=0.9, h1=0.1, p=0.7, q=0.8. 
Signaling rate is W=20kHz. The background noise power is assumed to be N=1mJ per channel use.  The summary 
frames are intra-coded with constant PSNR quality with H.263 implementation TMN5.  Summarization distortion and 
average power during transmission are plotted for different values of Lagrangian multiplier, with 1λ =1.0e-5 and 2λ  

=6.0e-5. For the larger Lagrangian value, 2λ , more emphasis is placed on minimizing the energy cost, therefore the 

energy cost (area under the average power plot) is smaller than the smaller value 1λ .  On the other hand, the 

summarization distortion is larger for 1λ  than 2λ , as expected.  

 The overall operational E-D performances are characterized as the E-D curves in the Fig. 6 below for both 
W=20kHz and W=40kHz cases.  
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Figure 5 . Energy-Distortion Performance 

For the same 150-frame segment of the “foreman” sequence, the upper two plots characterize the relationship between 
the summarization distortion and the total energy cost in log10(mJ) scale. As the summarization distortion goes up 
linearly, the energy cost drops exponentially. The lower two plots characterize the energy cost in terms of the 
summarization rate R(S) = m/n, where m is the number of frames in S. It is clear that in the typical operating range of 
the video summarization, for example, R(S)=[0.2, 0.8], the communication energy cost can change in the order of 5 to 
10 magnitudes. This indicates that summarization is a very efficient energy conserving scheme for wireless video 
communications.   
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5. CONCLUSION AND FUTURE WORK 

In this work we proposed an optimal (within a convex hull approximation) algorithm for energy efficient video 
summarization and transmission. The algorithm is based on the Lagrangian relaxation and dynamic programming. The 
simulation results indicate that this is a very efficient and effective method in optimal communication energy 
utilization for video transmission over a fading channel.  
 In the future, we will extend the work with more complex channel simulations, and develop algorithms that allow 
inter-frame coding scheme for summaries. We will also investigate computation complexity reduction issues by 
looking for heuristic algorithms that can offer near-optimal performances.  
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6. APPENDIX 

Derivation of the optimal bit split solution is given below: 
Assuming the channel state is known to both the transmitter and the receiver, the expected energy cost of transmitting 
B bits with delay τ  is computed as, 
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and since the 2nd order condition is always non-negative:  
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the optimal bit splitting ratio is, 
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and the optimal energy cost is given by,  
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