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ABSTRACT

Quantization-based watermarking schemes comprise a class of watermarking schemes that achieves the channel
capacity in terms of additive noise attacks.1 The existence of good high dimensional lattices that can be efficiently
implemented2–4 and incorporated into watermarking structures, made quantization-based watermarking schemes
of practical interest. Because of the structure of the lattices, watermarking schemes making use of them are
vulnerable to non-additive operations, like amplitude scaling in combination with additive noise.

In this paper, we propose a secure Maximum Likelihood (ML) estimation technique for amplitude scaling
factors using subtractive dither. The dither has mainly security purposes and is assumed to be known to the
watermark encoder and decoder. We derive the probability density function (PDF) models of the watermarked
and attacked data in the presence of subtractive dither. The derivation of these models follows the lines of,5

where we derived the PDF models in the absence of dither. We derive conditions for the dither sequence statistics
such that a given security level is achieved using the error probability of the watermarking system as objective
function. Based on these conditions we are able to make approximations to the PDF models that are used in
the ML estimation procedure. Finally, experiments are performed with real audio and speech signals showing
the good performance of the proposed estimation technique under realistic conditions.

Keywords: watermarking, quantization, subtractive dither, probability of error, maximum likelihood estima-
tion, statistics.

1. INTRODUCTION

Watermarking schemes based on quantization theory have recently emerged as a result of information theo-
retic analysis.1, 6 In terms of additive noise attacks, these schemes have proven to perform better than tradi-
tional spread spectrum watermarking because the used lattice codes achieve capacity for the AWGN channel.
The existence of good lattices in high dimensions2 that can be directly and efficiently implemented have made
quantization-based schemes of practical interest. Another important feature of quantization-based watermarking
schemes is that they can completely cancel the host signal interference, which makes them invariant to the host
signal. A similar phenomenon exists in channel coding with side information at the encoder.7, 8

Since lattices have a particular structure, watermarking schemes making use of them are vulnerable to
non-additive attacks like amplitude scaling. Furthermore, operations like amplitude scaling, linear and non-
linear filtering induce a large amount of distortion with respect to the mean-squared error, but do not cause
significant perceptual degradations. Non-additive operations on watermarked signals are quite common in many
applications. One example is audio play-out and capturing, where the watermarked signal is passed through an
D-A converter, transmitted through an analog noisy channel, captured by a microphone, and converted back to
a digital representation. Clearly the microphone will capture a less powerful and degraded watermarked signal,
which has led us to model the noisy channel as an amplitude scaling operation followed by additive noise.

Furthermore, in channel coding with side information at the encoder using lattices, it is known that (see9 for
more information on lattice techniques) to achieve the capacity 0.5 log(1 + SNR) over the AWGN channel, the
decoder has to scale the received data with a factor α before lattice decoding. In the context of watermarking
where the communication channel is not secure, an attacker may try to disturb the decoder by applying amplitude
scaling with a factor β in addition to noise. To counter this scaling attack, the decoder has to know the scaling
factor to apply the correct scaling α

β prior to lattice decoding.
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Several techniques are known in the literature for combating non-additive operations. One of the approaches
is based on designing watermarking codes that are resilient to non-additive operations, such as modified trellis
codes.10, 11 Another approach is based on estimating the non-additive operations and inverting them prior to
watermark decoding.12 However, most of the proposed techniques in the literature lack an underlying theoretical
model and experimental validation with real signals.

In this paper we propose an ML procedure for estimating amplitude scaling factors, based on probabilistic
models in the presence of subtractive dither. Moreover, in the watermarking literature, the dither has been
mostly analyzed from a statistically independent quantization noise point of view, while the security aspects of
the dither itself were absent. In this paper we also give conditions for the dither sequence statistics, such that
a given level of security is achieved, using the probability of error of the watermarking system as an objective
function. Adhering to the subtractive dither conditions we are able to make simplified approximations of the
PDF models, on which the ML estimation procedure relies.

The paper is organized as follows. In Section 2 we formulate the problem mathematically, as well as the
watermark encoder and decoder. In Section 3 we derive the PDF models in the presence of subtractive dither.
In Section 4 we give conditions for the dither sequence such that an attacker without having knowledge of the
dither is not able to decode the watermark. In Section 5 we give simplified approximations to the PDF models
adhering to the subtractive dither conditions. A description of the estimation procedure is given in Section 6.
Section 7 contains experimental results from real audio host signals, and Section 8 concludes the paper.

2. MATHEMATICAL FORMULATION

In this paper we focus on the most popular quantization-based watermarking scheme, namely Quantization
Index Modulation with Distortion Compensation (QIM with DC). Throughout the paper, random variables are
denoted by capital letters and their realizations by the respective small letters. The notation X ∼ f(x) indicates
that the random variable X has a PDF f(x).

Fig. 1 shows the watermark encoder, where W ∈ {0, 1} denotes the message bits that are embedded in the
host data, X̃ is the host signal itself with a variance σ2

X̃
, X is the watermarked signal, D is the dither sequence

with a variance σ2
D, and U is the output of the quantizer. Q(·) denotes uniform quantization with step size

∆. The quantization noise is denoted by N1 and has a variance σ2
N1

. The heart of the watermark encoder is a
quantizer, whose input-output characteristic is shown in Fig. 2.

The attack channel is shown in Fig. 3. It consists of the amplitude scale factor β and the noise N2 ∼ N (0, σ2
N2

).

The coefficient α =
σ2

N1
σ2

N1
+σ2

N2

in the encoder is known from.8 In most applications, watermarking schemes operate

in the small distortion case, i.e., σ2

X̃
� σ2

N1
, σ2

N2
, so as to preserve the quality of the host signal. Therefore, high-

resolution quantization theory is applicable, from which it follows that N1 ∼ U(0, σ2
N1

) and N1 is statistically
independent from the host signal X̃. Moreover, the quantization noise is statistically independent of the host
signal and uniformly distributed over the base quantization cell independently of the choice of the dither sequence,
as long as D is statistically independent of the host signal. The total noise introduced by the watermark encoder
is equal to N1, which is shown as follows:

N1 = αX̃ − (
X − (1 − α)X̃

)
= X̃ − X. (1)

The attacked (received) signal Y , which is an input to the watermark decoder, can be written in the following
way:

Y = βX + N2 = β
(
U − D + (1 − α)X̃

)
+ N2. (2)

Using the relation αX̃ = U − D + N1, we obtain the received data Y in terms of N1, N2, and the watermark-
bearing signal U :

Y =
β

α

(
U − D + (1 − α)N1

)
+ N2. (3)
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Figure 1. Watermark encoder.
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Figure 2. Quantizer input-output characteristics

From (3), we observe that the optimal countermeasure against the attacker’s scale β is just scaling by 1
β ,

which of course assumes that the decoder knows the value of β. The watermark decoding process is based on U
and is depicted in Fig 4. To get an estimate that is as close to U as possible, the decoder first scales the received
data by α

β and adds the dither D, thus obtaining:

Û =
α

β
Y + D = U + (1 − α)N1 +

α

β
N2. (4)

The decoder then computes the absolute value of the quantization noise ‖Û − Q(Û)‖ and makes an estimate of
the embedded watermark in the following way:

Ŵ =
{

0 if ‖Û − Q(Û)‖ ≤ ∆
4

1 if ‖Û − Q(Û)‖ > ∆
4

(5)

3. PDF MODELS

Since in the presence of subtractive dither the PDF of X will be perturbed by D, it is difficult to derive a
useful exact mathematical expression for it. That is why we choose to manipulate X in a convenient way, having
knowledge of D, so that we are able to mathematically describe the structure of the PDF of the resulting random
variable.
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Figure 3. Attack Channel
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Figure 4. Watermark decoder

For the purpose of estimation and for simplicity, we will assume that only message W = 0 is embedded.
Extension to the more general case of embedding zeros and ones is straightforward.

Referring to Fig. 1, let us assume that αX̃ + D belongs to the k-th quantization cell, i.e.:

∆
(

k − 1
2

)

< αX̃ + D < ∆
(

k +
1
2

)

. (6)

Multiplying by 1−α
α and adding k∆, we obtain:

∆
α

(

k − 1 − α

2

)

< (1 − α)X̃ + k∆ +
1 − α

α
D <

∆
α

(

k +
1 − α

2

)

. (7)

Recognizing that (1 − α)X̃ + k∆ + 1−α
α D = X + 1

αD (see Fig. 1), we can write the PDF of X + 1
αD for a

particular k as

f ′
X+ 1

α D(x) = f
(1−α)X̃+k∆+ 1−α

α D
(x)IAk|W=0(x) (8)

where IAk|W=0(x) denotes the indicator function of the set Ak|W=0 defined as:

IAk|W=0(x) =
{

1 if x ∈ Ak|W=0

0 if x /∈ Ak|W=0
(9)

and

Ak|W=0 =
[∆

α
(k − 1 − α

2
),

∆
α

(k +
1 − α

2
)
]

. (10)

Generalizing for all k, we have

fX+ 1
α D(x) =

+∞∑

k=−∞
f
(1−α)X̃+k∆+ 1−α

α D
(x)IAk|W=0(x). (11)

Eq. (11) is the key expression for the estimation procedure in the presence of subtractive dither. We can see
that although X is perturbed by the dither, if we add the term 1

αD to the watermarked signal, we are able to
obtain a signal that has a PDF with a structure.

Taking into account β and the additive noise N2, we now have:

fY + β
α D(x) = fN2(x) ∗ fβX+ β

α D(x), (12)

where the convolution ∗ follows from the independence between N2 and βX + β
αD.
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4. DESIGN OF THE DITHER SEQUENCE

Since the dither sequence has a security role in the watermarking system, we give conditions for the dither
sequence statistics such that an attacker is not able to decode the watermark with an error probability∗ different
than 0.5. These conditions will also allow for an approximation of the PDF models.

To derive the dither conditions, we first need to derive the error probability of the watermarking system,
which is given by the following theorem.

Theorem 1: For the case where the dither sequence D is not known to the decoder, the error probability Pe

of the watermarking system is given by the expression:

Pe =
∑

m

Pr[m∆ − 3∆
4

≤ (1 − α)N1 +
α

β
N2 − D ≤ m∆ − ∆

4
]. (13)

Proof: The error probability Pe can be expressed as

Pe = Pr[Ŵ = 1|W = 0]Pr[W = 0] + Pr[Ŵ = 0|W = 1]Pr[W = 1]
= Pr[Ŵ = 1|W = 0] (14)

where the last line follows from the fact that the encoder is a symmetric scheme of two quantizers, that the channel
strategy is independent of the embedded message (i.e. Pr(N2|W ) = Pr(N2)), and that Pr(W = 0) + Pr(W =
1) = 1. Therefore we can model the whole watermarking system, together with the attack channel, as a Binary
Symmetric Channel (see Fig. 5).

From (14) and from Fig. 1, it is straightforward to show that the probability of error can be expressed as

Pe = Pr[Ŵ = 1|W = 0]

= Pr[‖Q(Û − D) − (Û − D)‖ ≥ ∆
4

]. (15)

Using the following relation for scalar quantizers,

‖Q(Û − D) − (Û − D)‖ = ‖(Û − D +
∆
2

) mod ∆ − ∆
2
‖, (16)

we have

Pe = Pr[‖(Û − D +
∆
2

) mod ∆ − ∆
2
‖ ≥ ∆

4
] (17)

= Pr[(Û − D +
∆
2

) mod ∆ ≤ ∆
4

(18)

⋃
(Û − D +

∆
2

) mod ∆ ≥ 3∆
4

] (19)

where
⋃

denotes the union of two events.

Using (4) and taking into account that U ∈ Λ, the quantizer lattice, we can write

Pe = Pr[((1 − α)N1 +
α

β
N2 − D +

∆
2

) mod ∆ ≤ ∆
4

⋃
((1 − α)N1 +

α

β
N2 − D +

∆
2

) mod ∆ ≥ 3∆
4

].

Using Number theory,13 we can write that for any b, and any c such that b > c > 0, and any a �= mb, where
m ∈ (−∞,+∞) is an integer, the solution to the inequalities

a mod b ≥ c (20)
a mod b ≤ c (21)

∗Since we have one-dimensional, one-bit watermarking, the error probability and bit error probability are equal.
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is

mb + c ≤ a ≤ (m + 1)b and (22)
mb ≤ a ≤ mb + c , respectively (23)

Therefore, after simple arithmetics, we arrive at

Pe =
∑

m

Pr[m∆ − 3∆
4

≤ (1 − α)N1 +
α

β
N2 − D ≤ m∆ − ∆

4
]. (24)

end of proof.

W

0

1

Ŵ

Pe

Pe

0

1

Figure 5. A representation of the watermarking system as a Binary Symmetric Channel with cross-over probability Pe.

An illustration of (24) for concrete values of the parameters σ2
N1

, σ2
N2

, σ2
D, and β is shown in Fig. 6. The

intervals [m∆ − 3∆
4 ,m∆ − ∆

4 ] (black intervals in Fig. 6) cover half of the real axis.

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

2

2.5

3
x 10

4

f
(1−α)N

1
+α/β N

2
−D

(x) 

Figure 6. PDF of (1 − α)N1 + α
β
N2 − D ∼ f(1−α)N1+ α

β
N2−D(x) for N1 ∼ U(0, 0.01), N2 ∼ N (0, 0.01), D ∼ U(0, 0.01),

and β = 1. The integral of f(1−α)N1+ α
β

N2−D(x) over the black intervals gives Pe ≈ 0.5.

We would like to design the dither sequence statistics such that the error probability Pe = 0.5 for all choices
of N2. For this we will need to show the independence between N1, N2, and D. Since by assumption the noise
N2 is independent of N1 and D, we will only need show the independence of N1 and D. By definition this is
equivalent to

f(N1|D = d) = f(N1). (25)

From Fig. 1 and for particular k, we can express the quantization noise as

N1 = −(αX̃ + D) + k∆. (26)
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From (25) and (26), we can see that when the dither is known, the conditional PDF of the quantization noise is
a function only of the PDF of αX̃, which we write as

f(N1|D = d) = F
(

f(αX̃)
)

. (27)

Since αX̃ = −D − N1 + k∆, we can write

f(N1|D = d) =
+∞∑

k=−∞
f

αX̃
(k∆ − N1 − d). (28)

Following the same reasoning as in14 with the roles of D and αX̃ interchanged, we can show that:

f(N1|D = d) = f(N1) , as αX̃ ∼ U(0, σ2
N1

), (29)

which is satisfied from the low-distortion case σ2 � σ2
N1

, σ2
N2

, i.e., αX̃ is uniformly distributed over the base
quantization interval.

If we exclude the terms N1, and N2 from Pe, we have

PD
e =

∑

m

Pr[m∆ − 3∆
4

≤ −D ≤ m∆ − ∆
4

], (30)

which is actually the error probability when the attacker does not apply any additive noise.

It is easy to see that

PD
e → 0.5 , as D ∼ U(0, σ2

N1
). (31)

This situation is illustrated in Fig. 7. Therefore, for security purposes, it is sufficient to choose a dither that
is uniformly distributed over the interval [−∆

2 ,+∆
2 ]. Note that other distributions for D giving PD

e = 0.5 also
exist. We choose fD ∼ U(0, σ2

N1
) for simplicity reasons and because we want the power of D as small as possible.

������������ ������������

U(0, σ2
N1)

3∆
4

∆
4

−∆
4

− 3∆
4

1
∆

fD(x)

x

Figure 7. PDF of D ∼ U(0, σ2
N1) denoted as fD(x). The integral of fD(x) over the black intervals gives Pe|σ2

N2
→0 = 0.5.

Note that further increasing σ2
D with respect to σ2

N1
will cause PD

e to oscillate between the values 2
5 and 2

3 ,
i.e., PD

e ∈ [ 25 , 2
3 ]. An illustration of PD

e as a function of σ2
D is shown in Fig. 8. It can be seen that PD

e → 0.5 as
σ2

D

σ2
N1

→ ∞, but oscillates for intermediate values. That is why we choose D ∼ U(0, σ2
N1

) throughout the paper.

If we assume that the attacker applies small amount of noise with comparison to the watermark distortion,
i.e. σ2

N2
� σ2

N1
= σ2

D, then independently of fN2(x), we have

Pe|σ2
N2

�σ2
N1

=
∑

m

Pr[m∆ − 3∆
4

≤ −D ≤ m∆ − ∆
4

]

= 0.5 (32)
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σ2
D

P D
e

Figure 8. An illustration of P D
e as a function of σ2

D. The value for the watermark distortion is σ2
N1 = 0.01.

If we assume that the attacker applies a large amount of noise with comparison to the watermark distortion, i.e.
σ2

N2
� σ2

N1
= σ2

D, then independently of fN2(x), we have

Pe|σ2
N2

�σ2
N1

=
∑

m

Pr[m∆ − 3∆
4

≤ N1 − D ≤ m∆ − ∆
4

] (33)

From the independence between N1 and D, we can write fN1−D(x) = fN1(x)∗fD(x). This situation is illustrated
in Fig.9. We can see that integration of fN1−D(x) over the black intervals will give Pe|σ2

N2
�σ2

N1
= 0.5.

������������ ������������

fN1−D(x)

3∆
4

∆
4

−∆
4

− 3∆
4

1
∆

x

fD(x)

Figure 9. An illustration of fD(x) (solid line) and fN1−D(x) (dashed line). The integral of fN1−D(x) over the black
intervals gives Pe|σ2

N2
�σ2

N1
= 0.5.

Experimental curves for the probability of error Pe as a function of σ2
D for different values of σ2

N2
are shown

in Fig.10. It can be seen that Pe → 0.5 as σ2
D → σ2

N1
independently of σ2

N2
.

5. APPROXIMATION TO THE PDF MODELS

In this section, we will make simplified approximations of (11) obeying the subtractive dither conditions derived
in the previous section. We can approximate fX+ 1

α D(x) in the following way:

fX+ 1
α D(x) =

+∞∑

k=−∞
f
(1−α)X̃+k∆+ 1−α

α D
(x)IAk|W=0(x)

≈
+∞∑

k=−∞
f
(1−α)X̃+k∆

(x)IAk|W=0(x) (34)
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Figure 10. Experimental curves for Pe as a function of σ2
D for different values of σ2

N2 . The solid curve is for σ2
N2 = 0, the

dashed curve is for σ2
N2 = 0.01, and the dotted curve is for σ2

N2 = 0.02. Chosen settings are X̃ ∼ N (0, 1), D ∼ U(0, σ2
D),

N2 ∼ N (0, σ2
N2), σ2

N1 = 0.01, and β = 1.

where the approximation follows from the small-distortion case σ2

X̃
� σ2

N1
= σ2

D. Note that the output of the

quantizer depends both on X̃ and D, but since the variance of the first is assumed to be much larger, the term
k∆ is present in the approximation together with X̃. An illustration of fX+ 1

α D(x), its approximation as given
by (34), and fX(x) is given in Fig. 11. The difference between fX+ 1

α D(x) and its approximation can hardly be
recognized. We can also see the huge difference between fX+ 1

α D(x) and fX(x).

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 11. Comparison of fX(x) (dashed line), fX+ 1
α

D(x) (dotted line), and its approximation
∑+∞

k=−∞ f
(1−α)X̃+k∆

(x)IAk|W=0(x) (solid line). The difference between fX+ 1
α

D(x) and its approximation can

hardly be recognized. Chosen settings are X̃ ∼ N (0, 1), σ2
N1 = σ2

N2 = σ2
D = 0.01, β = 1.

6. MAXIMUM LIKELIHOOD ESTIMATION

For the ML estimation approach we will assume that the host signal and attack channel noise are i.i.d. vector
sources. We note though that such an assumption may result in a source of substantial loss in the case of real
data (audio, video), exhibiting high correlation between the samples. The ML estimation of β is done based on
the following relation:

fY + β
α D(x) = fβX+ β

α D ∗ fN2(x) (35)
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By definition, the ML estimation β̂ of the parameter β is given as:

β̂ = arg max
β

fY1+
β
α D1,Y2+

β
α D2,...,Yn+ β

α Dn
(x)

= arg max
β

fY1+
β
α D1

(x)fY2+
β
α D2

(x)...fYn+ β
α Dn

(x)

= arg max
β

∑

i

log fYi+
β
α Di

(x). (36)

Here the second line follows from the assumption that the received data consists of i.i.d. samples, and therefore
the joint PDF can be written as a product of the marginal PDFs. The last line follows from the monotonicity of
the logarithm.

The Maximum Likelihood Functional (MLF) is the expression
∑

i log fYi+
β
α Di

(x). Experimental curves of

the MLF for different values of β and
σ2

N2
σ2

N1

are shown in Fig. 12. Since fY + 1
α D(x) is not differentiable (due to

the indicator function) it is difficult to find an analytical expression of β̂. Therefore, we do a brute force search
for the optimal value of β based on (36).
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Figure 12. Graph of MLF for different values of β̂ (a) and different values of
σ2

N2
σ2

N1

(b). Chosen settings are X̃ ∼ N (0, 1),

D ∼ U(0, 0.01), N2 ∼ N (0, 0.01), and σ2
N1 = 0.01.

7. EXPERIMENTS

In this section we describe experiments with real audio signals (audio and speech with sampling frequency 48kHz)

carried out to test the estimation accuracy of the proposed techniques in terms of the ratio
σ2

N2
σ2

N1

, the parameter

β, and the number of available signal samples s. In principle one aims at developing estimation techniques that
require a small amount of data, so that they can be applied in situations where the estimating parameter slowly
varies.

Experimental results in terms of
σ2

N2
σ2

N1

and s are shown in Fig. 13. The assumed PDF model of the host signal

at the estimator side is a zero-mean Laplacian PDF with variance equal to the variance of the sum of the variances
of the host signal, watermark, and the noise in the attack channel, i.e., L(0, σ2

X̃
+ σ2

N1
+ σ2

N2
). This is a realistic

assumption, because the decoder has access to the received data and can estimate its variance. Furthermore, in
practice most audio signals have a PDF that resembles the Laplacian PDF. The loss in performance of the ML
approach is due to the approximation in fX+ 1

α D(x) and the fact that generally, ML estimation requires a large

sample size.15 In Fig. 14 we plot experimental results of β − β̂ as a function of β for different audio signals.
The assumed host signal PDF at the estimator side is L(

0, β2(σ2

X̃
+ σ2

N1
) + σ2

N2

)
. It can be seen that for small
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values of β the estimation accuracy decreases which is due to the mismatch between the host signal PDF and
the PDF model assumed at the estimator side. For large values of β there is also a mismatch, but it turns out
to be insignificant for the ML estimation procedure.

The ML estimation procedure is computationally very expensive, because of the brute force searching for the
optimal β. The paper16 treats the problem of jointly estimating β and σ2

N2
by transforming the attack channel

into one that is equivalent but computationally less expensive for the ML approach processing chain. However,
this transform does not improve the estimation.
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Figure 13. Graphs of β̂ for real audio signals as a function of
σ2

N2
σ2

N1

(a) and as a function of available signal samples s

(b). The crosses represent the estimation mean, and the lines the estimation standard deviation in both directions. The

chosen settings are 10 log
σ2

X̃

σ2
N1

= 30db, and σ2
N2 = σ2

N1 (b). The assumption for the estimator is X̃ ∼ L(0, σ2

X̃
+σ2

N1 +σ2
N2).
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Figure 14. Graphs of β − β̂ for real audio signals as a function of β. The crosses represent the mean, and the lines the

standard deviation in both directions. The chosen settings are 10 log
σ2

X̃

σ2
N1

= 30db, σ2
N1 = σ2

N2 . The assumption for the

estimator is X̃ ∼ L
(
0, β2(σ2

X̃
+ σ2

N1) + σ2
N2

)
.
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8. CONCLUSIONS

We have presented a Maximum Likelihood estimation procedure for estimating amplitude scaling factors using
subtractive dither in a quantization-based watermarking context. We gave sufficient conditions for the dither
sequence such that a given level of security is achieved. The estimation approach performs well in terms of
additive noise attacks and for a relatively wide range of values for the parameter β, under realistic assumptions.
The disadvantage is the need for a relatively large amount of signal samples for estimating reliably β, which is
mainly due to the approximations in incorporating the subtractive dither and to the nature of ML estimation.
Another disadvantage is that the method is computationally expensive and currently not suitable for real-time
applications.
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