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Abstract

Digital fingerprinting is an emerging technology to protect multimedia from unauthorized
use by embedding a unique fingerprint signal into each user’s copy. A robust embedding
algorithm is an important building block in order to make the fingerprint resilient to vari-
ous distortions and collusion attacks. Spread spectrum embedding has been widely used for
multimedia fingerprinting. In this paper, we explore another class of embedding methods –
Quantization Index Modulation (QIM) for fingerprinting applications. We first employ Dither
Modulation (DM) technique and extend it for embedding multiple symbols through a basic
dither sequence design. We then develop a theoretical model and propose a new algorithm
to improve the collusion resistance of the basic scheme. Simulation results show that the
improvement algorithm enhances the collusion resistance, while there is still a performance gap
with the existing spread spectrum based fingerprinting. We then explore coded fingerprinting
based on spread transform dither modulation (STDM) embedding. Simulation results show that
this coded STDM based fingerprinting has significant advantages over spread spectrum based
fingerprinting under blind detection.
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I. INTRODUCTION

With the rapid development of the internet and multimedia processing techniques, the protection of
multimedia content becomes increasingly important. Digital fingerprinting is an emerging technology
to protect the multimedia from unauthorized redistribution [1]. It embeds a unique ID into each user’s
copy, which can be extracted to help identify culprits when an unauthorized leak is found. A powerful,
cost-effective attack is the collusion attack from a group of users, where the users combine their copies
of the same content to generate a new version. If designed improperly, the fingerprints can be attenuated
or even removed by collusion attacks.
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Several techniques have been proposed in the literature to provide collusion resistance in multimedia
fingerprinting systems [1] [2]. One category is orthogonal fingerprinting in which each user is assigned
a spread spectrum [3] sequence as fingerprint, and the sequence is chosen so that they are mutually
orthogonal to each other. Another category of approaches employs explicit code constructions [4] [5].
Most of these techniques use spread spectrum techniques to embed the fingerprints.

An important alternative to spread spectrum embedding is Quantization Index Modulation (QIM) [6].
In QIM, the host data is quantized using multiple quantizers, the index of which is chosen based on the
message to be embedded. In this paper, we explore the possibility of employing QIM for anti-collusion
fingerprinting applications. Specifically, we employ dither modulation (DM) for the fingerprint embedding.
We have observed that the existing DM algorithm primarily focusses on embedding binary bits. We first
construct a basic embedding scheme to resist collusion attacks by extending the existing DM to embed
multiple symbols, and study its performance. To better understand the results, we introduce a general
theoretical model and analyze the collusion resistance of DM based fingerprinting. From our theoretical
analysis, we infer that fingerprint sequences with low correlation have better collusion resistance. We
then design a new algorithm to construct dither sequences so that the resulting fingerprints have low
correlation and are approximately orthogonal. We demonstrate through simulations that our proposed
method performs better than the basic scheme, and compare the results with those obtained using spread
spectrum based fingerprinting. Our results show that the fingerprint correlation is not easy to control
through QIM embedding and hence it does not perform as well as the spread spectrum based fingerprinting
even under non-blind detection.

Spread Transform Dithered Modulation (STDM) is an alternative robust quantization-based embedding
approach whereby a random unitary transformation is applied to the signals before quantization. With this
embedding method, every bit of information can be spread over the signal. This would have similar effect
as spread spectrum based embedding, and the quantization operation during the embedding would bring
benefits in blind detection scenario. Meanwhile, we notice that the existing QIM embedding techniques
are well defined for embedding binary bits, and our results on DM based fingerprinting show that it is
non-trivial to extend these methods to embed non-binary symbols. In principle, it would be possible to
construct binary fingerprint sequences employing collusion-secure codes such as Boneh-Shaw’s [2] for
fingerprinting multimedia. However, since these codes are designed without considering the embedding
issues explicitly, they are often too long to be reliably embedded [2], and/or are unable to resist a
nontrivial number of colluders [7]. For example, to attain moderate levels of collusion resistance such
as to resist 10 colluders out of 1000 users, the Boneh-Shaw code requires a long codeword at least on
the order of 106 bits. Such high payloads often exceed the embedding capacity for most multimedia data
under stringent robustness requirements. In this paper, we propose to use non-binary fingerprint code,
such as traceability code employed in [8] and map each symbol to a binary codeword through an efficient
construction for embedding.

II. BACKGROUND ON FINGERPRINTING AND QIM

A. Spread Spectrum based Fingerprinting

Spread spectrum embedding has been widely used for multimedia fingerprinting [4] [8] [9]. One typical
example is orthogonal fingerprinting, whereby mutually orthogonal spreading sequences are generated as
fingerprint for each user. Another way to construct fingerprint is to employ a coding step, such as error



correcting code (ECC), and map symbols in the alphabet to orthogonal sequences [5]. The ith user’s
fingerprinted copy yi is obtained by adding his/her fingerprint sequence ui to the host signal x, i.e.

yi = x + ui. (1)

After the fingerprinted copies reach end users, some users may mount collusion attacks and try to
remove the traces of the embedded fingerprint. Averaging collusion plus additive noise is mostly studied
in the literature [1] [9] and a number of non-linear collusions have been shown to be well approximated
by this model [10]. Under averaging collusion, the resulting signal, z, is the average of c colluders’
fingerprinted copy:

z =
1
c

∑

i∈Sc

yi + n, (2)

where Sc is the colluder set containing c colluders, n = [n1, n2, . . . , nN ]T is additive noise that models
additional distortions applied on the colluded signal, and N is the length of the fingerprint sequence. For
simplicity, we assume n follows an i.i.d. Gaussian distribution.

The goal of the detector is to catch at least one of the colluders with a high probability given
the suspicious copy, z. As the host signal can be made available to detectors in many fingerprinting
applications, we subtract the host signal from the suspicious copy to obtain a test signal. Match filter
detector is then employed to find the colluder; that is, we correlate the test signal with each of the Nu

spreading sequences (one for each user) and identify the sequence that gives the maximum correlation.
The detection statistic for the ith user is defined as

Ti =
(z− x)T ui√||ui||2

, (3)

and the m̂th user is declared as a colluder if

m̂ = arg maxi=1,2,...,Nu
Ti. (4)

B. Quantization Index Modulation(QIM)

1) Dither Modulation(DM): In quantization based methods, the host data is quantized using multiple
quantizers and the index of the quantizer is chosen based on the message to be embedded [6]. A simple
way to build multiple quantizers is by dither modulation (DM). Specifically, for a host-signal x, the
embedding function for hiding binary messages can be written as

qxi
= Q∆(x + di)− di ∀i ∈ {0, 1}, (5)

where Q∆(.) represents the quantization function with step size ∆ and di represents the dither sequence
that is used to perturb the host signal before quantization. One possible way to construct the dither
sequence is by first choosing one dither vector (say d0) as i.i.d. random variables following a uniform
distribution over [−∆

2 , ∆
2 ] and then the second one can be obtained using [6]

d1k =

{
d0k + ∆k

2 if d0k < 0,

d0k − ∆k

2 if d0k ≥ 0,
∀k ∈ {1, 2, . . . , N}, (6)

where di = [di1, di2, . . . , diN ]T .



It has been shown in [6] [11] that the rate-distortion and robustness tradeoff can be improved in the
basic QIM method by compensation and other postprocessing operations. In the distortion compensated
QIM (DC-QIM), a fraction of the quantization error is added back to the original signal. Thus, the
watermarked image can be represented as

yi = α
(
Q∆

α
(x + di)− di

)
+ (1− α)x ∀i ∈ {0, 1}, (7)

where the constant α can be chosen appropriately to maximize the Signal-to-Noise Ratio (SNR) [6] or
to maximize embedding capacity [11] [12].

2) Spread Transform Dither Modulation (STDM): Another robust way to implement QIM is STDM.
Instead of applying scalar DM directly on each component of host signal, STDM first applies a random
unitary transformation by projecting the host signal x onto a random direction, u. The projection values,
x(p) = uTx, are then quantized using DM to obtain the watermarked signal [6], i.e.

y = x + (y(p) − x(p))u, (8)

y(p) = Q4(x(p) + db)− db, b ∈ {0, 1}, (9)

where b is the message bit to be embedded. Typically, the projection direction u is randomly generated
according to a secret key, and therefore we do not need to introduce uncertainty in the choice of dither
sequence db. In our implementation, we choose the dither sequences to be deterministic. Due to random
projections, only the noise in the direction of u would affect performance. Thus, the STDM provides a
higher effective Watermark to Noise Ratio (WNR), and is more robust against additive noise attacks [6].

During the detection, the test signal z = y + n, is projected onto vector u to get z(p) = zTu. The
embedded bit is determined as

m̂ =

{
arg minb=0,1 ‖z(p) − (Q4(x(p) + db)− db)‖ for non-blind detection,

arg minb=0,1 ‖z(p) − (Q4(z(p) + db)− db)‖ for blind detection.
(10)

III. DITHER MODULATION BASED FINGERPRINTING

A. Extending QIM to Fingerprinting

It is known in the recent literature that lattice-based quantizers can be used to embed multiple
alphabets [13], but they generally have a very high computational complexity. To overcome this problem,
we consider a simple extension of the DM scheme for embedding multiple symbols, i.e. use mutually
orthogonal dither sequences for each user. Specifically, we construct Nu random dither sequences di

following an i.i.d. Gaussian distribution such that E(dT
i dj) = 0 ∀i, j ∈ {1, ..., Nu} and i 6= j. The

fingerprinted copies are then obtained using equation (7).
When the content owner obtains the suspicious copy z, he/she can apply maximum likelihood detection,

which would involve an exhaustive search over O(2Nu) different colluder combinations. Although this
detector is optimal in minimizing the probability of detection error, its complexity is very high and grows
exponentially with the number of users. Therefore, in our implementation, we apply the minimum-distance
detection as used in the QIM literature [6] to find one of the colluders. More specifically, the m̂th user
is declared a colluder if

m̂ = arg mink=1,2,...Nu
||z− yk||2. (11)



0
5

10
15

20
25

30 −20

−15

−10

−5

0

0

0.2

0.4

0.6

0.8

1

WNR (dB)

No. of colluders

P
d

0
5

10
15

20
25

30 −20

−15

−10

−5

0

0

0.2

0.4

0.6

0.8

1

WNR (dB)

No. of colluders

P
d

(a) (b)

0
5

10
15

20
25

30 −20

−15

−10

−5

0
0

0.2

0.4

0.6

0.8

1

WNR (dB)

No. of colluders

P
d

0 5 10 15 20 25 30
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

No. of Colluders

P
d

Basic QIM FP
Spread Spectrum FP
Improved QIM FP

(c) (d)

Fig. 1. Comparison on the performance of QIM-based and spread spectrum based fingerprinting: (a) Basic QIM-based
Fingerprinting; (b) Improved QIM-based Fingerprinting; (c) Spread spectrum based Fingerprinting; (d) Results under WNR=
−10dB.

This detector also provides a fair comparison with the spread spectrum based fingerprinting employing
match filter detection of equation (3) [9].

We simulated this basic scheme for Nu = 1024 users under averaging collusion on a 256× 256 size
Lena image with the PSNR of the fingerprinted image with respect to the original set to 42dB. The
embedding was done in the block DCT domain and the quantization step sizes were chosen according
to the JPEG quantization table. We examine the probability of catching one colluder, Pd, at different
watermark-to-noise-ratio (WNR), and the results are shown in Fig. 1(a). For comparison purposes, we
show in Fig. 1(c) the performance of a spread spectrum based fingerprinting under the same conditions.
From the results, we observe that the basic QIM-based fingerprinting can only resist about half dozen
colluders at moderate to high WNRs, while spread spectrum based fingerprinting can resist more than
30 colluders with high probability in the same WNR range. To facilitate the analysis of results, we build
a theoretical model to study the detection performance in the next subsection.
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Fig. 2. Theoretical results on probability of correct detection with respect to number of colluders for different ρ values

B. Theoretical Analysis of QIM-based Fingerprinting

Without loss of generality, we assume the first c colluders perform averaging collusion as formulated
in equation (2). Then, the probability of catching one colluder, Pd, is

Pd = Pr(min(X1, X2, . . . , Xc) < min(Xc+1, Xc+2, . . . , XNu
)), (12)

where Xk = ||z− yk||2 is the detection statistic for user k. We can show that for a system with totally
Nu users and c colluders, X = [X1, X2, . . . , XNu

]T approximately follows a multi-variate Gaussian
distribution with mean and covariance matrix given by:

mk = E(Xk) =





(
c−1

c

)
Λ
2 + Nσ2

n if 1 ≤ k ≤ c,(
c+1

c

)
Λ
2 + Nσ2

n if c + 1 ≤ k ≤ Nu,
(13)

R(i, j) = cov(Xi, Xj) = 2σ4
n

[
N +

(
Λ
σ2

n

)
P (i, j)

c

]
, (14)

where N is the length of fingerprint sequence, σ2
n is variance of the additive noise, and Λ is the average

mean square difference between two fingerprinted copies. The matrix P(Nu×Nu) is given by

P (i, j) =





c− 1 if 1 ≤ i, j ≤ c and i = j,

−1 if 1 ≤ i, j ≤ c and i 6= j,

0 if 1 ≤ i ≤ c and j > c,

0 if 1 ≤ j ≤ c and i > c,

c + 1 if c < i, j ≤ Nu and i = j,

1 if c < i, j ≤ Nu and i 6= j.

(15)

The detailed derivation is described in Appendix A. We remark that the above theoretical framework is
general and applicable to any fingerprinting scheme as long as the distance between any pair of fingerprints
is identical. Thus, this model can help explain the results obtained by spread spectrum techniques as well.

From equation (13), we notice that the difference between the means of Xk for the colluders and the
innocent users is ∆m = Λ

c . Thus, we infer that the average performance in terms of probability of catch
one colluder would improve as the distance between two fingerprint sequences, Λ, is increased, or the



number of colluders c is decreased. This result can also be interpreted in terms of the correlation between
the fingerprint sequences ρ = 1− Λ

2W (W is the average energy of the fingerprint). In Fig. 2, we show
the probability of correct decision Pd for different values of the correlation parameter ρ by numerically
evaluating the theoretical model. We observe from the plot that the performance of the fingerprinting
system increases when ρ reduces (or Λ increases). Based on this principle, we examine the correlation
for basic QIM-based fingerprinting. We observe that the main reason for our basic QIM construction not
performing well compared to the spread spectrum case is because the resulting correlation value ρ = 0.45
was much higher than that of the spread spectrum based fingerprinting (close to zero). Therefore, in
order to improve the collusion resistance of QIM-based fingerprinting, we need to carefully select dither
sequences so that the resulting fingerprint sequences have low correlation. In the next section, we propose
a new technique that will help reduce the correlation and improve the detection performance.

C. Improved Dither Sequence Construction for QIM-based Fingerprinting

According to the theoretical model, for best results, the dither sequences should be constructed so as
to make the final fingerprints have as low correlation as possible. The problem can be formulated as

min (Q∆(x + di)− x− di)T (Q∆(x + dj)− x− dj), ∀ i, j ∈ {1, 2, . . . , Nu}, i 6= j, (16)

subject to the fairness constraints that the fingerprint energies for different users are equal, i.e.

(Q∆(x + di)− x− di)T (Q∆(x + di)− x− di) = W, ∀i = 1, 2, . . . , Nu. (17)

Let ∆ = [∆1,∆2, . . . ,∆N ]T , where ∆k is the step size of the uniform quantizer in the kth component.
We can show that the quantization operation (for the mid-raiser quantizer) is given by

Q∆(x + di) = a +
1
2
∆⊗ Yi, (18)

where a = [a1, a2, . . . , aN ]T , Yi = [Yi1, Yi2, . . . , YiN ]T and ∆⊗Yi = [∆1Yi1, ∆2Yi2, . . . , ∆NYiN ]T . The
corresponding kth element in the vector can be represented as

ak =

{
tk∆k if tk∆k ≤ xk < (tk + 0.5)∆k,

(tk + 1)∆k if (tk + 0.5)∆k ≤ xk < (tk + 1)∆k;
(19)

Yik =

{
−1 if −∆k

2 ≤ dik < (ak − xk),
1 if (ak − xk) ≤ dik < ∆k

2 .
(20)

Here, we assume that −∆k

2 ≤ dik < ∆k

2 . Note that ak is a multiple of the quantization step size ∆k,
that is closest to the host data sample xk. Further, the value of ak is independent of the choice of the
dither sequence. The term 1

2∆kYik denotes the residue term that would choose one among the two nearby
quantization points based on the value of the dither sequence.

By substituting equations (19) and (20) back into the minimization problem, and using the Lagrange
multipliers to incorporate the equal-energy constraints we obtain an equivalent cost function−J given by

J = (a− x +
1
2
∆⊗ Yi − di)T (a− x +

1
2
∆⊗ Yj − dj)

+ ν1

(
(a− x +

1
2
∆⊗ Yi − di)T (a− x +

1
2
∆⊗ Yi − di)−W

)

+ ν2

(
(a− x + ∆⊗ Yj − dj)T (a− x +

1
2
∆⊗ Yj − dj)−W

)
, (21)



where ν1 and ν2 are Lagrange multiplier constants. Setting the gradient of J with respect to both the
dither vectors to zero, we get a set of linear equations solving which we obtain

di =
1
2
∆⊗ Yi − κi(x− a), (22)

where κi are scalars chosen so that the total energy of the fingerprint is equal to W . In our implementa-
tions, we first choose the vectors Yi ∈ {−1, 1}N for each user. The dither sequences are then generated
according to equation (22). In the next section, we present the results for this scheme and compare it
with our basic dither based approach presented earlier in Section III-A.

D. Results and Discussions

To examine the effectiveness of the proposed improvement algorithm, we apply the constructed dither
sequences on the Lena image with the same parameter settings as in Section III-A; that is, 256 × 256
Lena image fingerprinted with a PSNR of 42dB and Nu = 1024 users. The results are shown in Fig. 1(b)
alongside the corresponding plots for the basic QIM scheme and spread spectrum fingerprinting. For
better illustration, we compare the performance of the three schemes at WNR = −10dB in Fig. 1(d).
We observe that the improved scheme performs much better than the basic scheme. This gain can be
attributed to the reduced average correlation among fingerprint sequences in the improved scheme (around
0.1), compared to a high value of 0.45 in the basic scheme. We also observe that our improved scheme
still does not perform as well as the traditional spread spectrum based scheme. A closer examination
shows that the variance of the correlation statistic for QIM based fingerprinting is larger (ρ values range
from −0.15 to 0.2), while the spread spectrum based fingerprinting has correlation ranging from −0.04
to 0.04. Owing to the nonlinear quantization operation employed in QIM, it is not easy to control the
correlation between the fingerprints for a total of Nu users as in spread spectrum based fingerprinting.

From the results, we can see that in the proposed DM based fingerprinting it is non-trivial to construct
dither sequences to get fingerprint sequences with low correlation.Since the QIM has been well studied
for embedding binary bits, a natural way of using QIM for fingerprinting is to embed binary fingerprint
codeword. In the mean time, we observe that STDM based embedding has an effect of spreading the
embedded bit over the host signal. By choosing mutually orthogonal projection vectors for different bits,
we can achieve an effect similar to the overlapped spread spectrum embedding. Taking these two factors
into consideration, we explore the STDM based coded fingerprinting in the next section.

IV. STDM BASED ECC FINGERPRINTING

ECC based fingerprinting with spread spectrum embedding has been shown very promising in providing
an excellent trade-off between the collusion resistance and detection efficiency [8]. In this section, we
explore the performance of STDM based ECC fingerprinting. For embedding, we propose to map each
symbol to a binary codeword that is constructed to well separate q symbols.

A. Fingerprint Embedding and Detection

To embed a q-ary fingerprint codeword with length L1, we partition the host signal into L1 segments.
In each segment, we choose a simplex code S(L2,m, D) to represent each of the q symbols. A simplex
code of dimension m has q = 2m codewords, each of length L2 = 2m−1 and provides an equal distance
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Fig. 3. An example of embedding q-ary codeword using STDM.

of D = 2m−1. Simplex code has good properties such as a large relative distance (> 0.5) and a non-
trivial code rate; and thus it can support a large alphabet size q with better separation among symbols.
The binary simplex codeword for each symbol is embedded into a segment of the host signal through
STDM, where we project the host signal to L2 mutually orthogonal random directions and quantize the
resulting projection values. This has an overall effect of overlapped embedding that the bits representing
one symbol are added on top of each other and spread over the segment. An illustration is shown in
Fig. 3.

In the implementation, to get a better robustness, we propose to spread each bit of the simplex codeword
to multiple bits by mapping bit 1 to a l-bit random binary sequence s and 0 to s̄, the bit-wise flipped
version of s. The spreading factor l can be adjusted to tradeoff the perceptibility and robustness. For
clear presentation, we shall use “logic bit” to refer to the bit in the simplex codeword, and “bit” refers
to the bit in the spreading sequence s. Every bit in the sequence s is embedded into the same segment
using STDM by projecting the signal onto a random direction. As a result, a total of L2l bits for all the
L2 logic bit in a simplex codeword are superposed and spread over one segment of host signal. The kth

fingerprinted segment y(k) can be represented as

y(k) = x(k) +
L2∑

i=1

l∑

j=1

(y(p)
ij − x

(p)
ij )uij, (23)

where uij is the projecting direction for the ith bit in logic bit j’s spreading sequence; x
(p)
ij is the projection

of the kth segment host signal x(k) on uij, and y
(p)
ij is obtain by quantizing x

(p)
ij using equation (8).

During the detection, we first calculate the distance information for each bit according to equation
(10). Then we add all these distance information from every bit of each user’s fingerprint codeword. The
user who has the smallest distance with the test signal is declared as colluder.

B. Results and Discussions

We test the performance of the proposed STDM based ECC fingerprinting on a 256×256 Lena image.
We choose Reed-Solomon code (14, 2, 13) as the fingerprint code with code length 14, dimension 2, and
alphabet size 16. Each of the 16 symbols is mapped to a binary codeword of a simplex code (15, 4, 8).
Mutually orthogonal spreading sequences are chosen for projecting the input data and the resulting values
are quantized using the binary dither modulation method. As mentioned earlier, we choose deterministic
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Fig. 4. Simulation results of STDM based and spread spectrum based ECC fingerprinting under averaging collusion and JPEG
compression: (a) blind detection; (b) non-blind detection.

dither sequences d0 = 0 and d1 = 4/2 to maximize separation. The PSNR of the fingerprinted copy is
set at 40.8 dB.

In Fig. 4, we show the probability of catching one colluder, Pd, under averaging collusion and additional
JPEG compression. The results for the blind and non-blind scenarios are shown in Fig. 4(a) and (b)
respectively. We notice that under moderate JPEG compression, the system is able to resist at least a
few dozen users’ collusion in both cases. When the JPEG quality factor reduces, the performance drops
sharply in the case of blind detection even for a small number of colluders. This is expected because the
projected point z(p) moves outside the correct decoding region when a large JPEG quantization step size
is used. This leads to wrong estimates of the true projection points x(p), eventually resulting in a large
probability of decoding error. On the other hand, in the case of non-blind detection, the projected point
z(p) provides some information for correct decoding. Therefore, the performance of non-blind detection
degrades gracefully as the JPEG quality factor reduces and the number of colluders increases.

To facilitate comparison, we also implement the spread spectrum based ECC fingerprinting with the
same Reed-Solomon code, i.e. each symbol is mapped to an orthogonal spreading sequences before
embedding [8]. Match filter detection is employed for catching one colluder. Also in Fig. 4, we show the
results for spread spectrum based fingerprinting under both the blind detection and non-blind detection.
Under blind detection, we notice that the spread spectrum based fingerprinting performs much worse
than STDM based scheme even without further compression. On the other hand, the spread spectrum
based ECC fingerprinting performs a little better than STDM based scheme under non-blind detection.
This is because the spread spectrum based scheme employs orthogonal modulation to embed each
symbol, while STDM based scheme use a simplex code, which does not perform as well as orthogonal
modulation in separating different symbols. Overall, the proposed STDM based fingerprinting shows
significant advantages over spread spectrum based fingerprinting under blind detection and slightly
reduced performance under non-blind detection.



V. CONCLUSIONS

In this paper, we consider using Quantization Index Modulation as an alternative to the popular spread
spectrum technique for fingerprinting applications. We first present a dither sequence construction to
extend the existing QIM technique to embed multiple symbols. We develop a generalized theoretical
model and show that the performance of the fingerprinting scheme can be improved by reducing the
effective correlation between the fingerprints. We propose an improved QIM fingerprinting scheme that
reduces the overall correlation and thus achieves better performance. The comparison results with spread
spectrum based fingerprinting show that the fingerprint correlation is not easy to control through QIM
embedding, and thus it does not perform as well as spread spectrum based fingerprinting.

We then explore the capability of QIM for coded fingerprinting. In particular, we use spread transform
dither modulation (STDM) to embed the fingerprint code, where each q-ary symbol is mapped to a
binary simplex code for embedding. The results show significant advantage of STDM based embedding
over spread spectrum based embedding under blind detection and slightly reduced performance under
non-blind detection. This suggests that STDM is a promising embedding technique for fingerprinting
under blind detection scenarios, which we plan to explore further in future work.

APPENDIX A: GENERAL THEORETICAL MODEL

In this appendix, we present the theoretical analysis on the performance of fingerprinting schemes employing
minimum distance decoding. Let x denote the host signal and yi represent user i’s fingerprinted copy. In the case
of QIM, yi is obtained by quantizing the host signal x as shown in equation (7). Under the averaging collusion
model, the received signal, z, is given by

z =
1
c

c∑

i=1

yi + n, (24)

where n denotes the additive noise used to model any further processing. Here, we assume, without loss of generality,
that the first c colluders participate in collusion. The decoder applies minimum distance decoding as given in equation
(11) to find one of the colluders.

The probability of catching one colluder, Pd, is given by

Pd = Pr(min(X1, X2, . . . , Xc) < min(Xc+1, Xc+2, . . . , XNu)), (25)

where Xk = ||z− yk||2 is the detection statistic for user k. Substituting for z from equation (24), we get

Xk = ||n +
α

c

c∑

i=1

(
qxi

− qxk

) ||2. (26)

The detection statistic Xk is a random variable and its distribution would depend on the noise statistics. The mean
of Xk can be obtained as

mk = E(Xk) = sT
k sk + trace(Σn), (27)

where Σn is the covariance matrix of the noise variable n and sk = α
c

∑c
i=1

(
qxi

− qxk

)
gives the average

difference between the quantization points among the users in collusion set. In a similar note, the (i, j)th element
of the covariance matrix R of the detection statistics Xk can be expressed as

R(i, j) = cov(Xi, Xj) = w(4)
n

T
1N − trace(ΣT

nΣn) + 2w(3)T
(si + sj) + 4sT

i Σnsj , (28)

where 1N denotes a column vector with all N elements as 1 and w(l)
n is a N × 1 vector in which the ith element

represents the lth order moment of the corresponding noise component ni.



If we assume that the noise n is Gaussian with zero mean and variance σ2
n, then the detection statistic would

follow the chi-square distribution [14] and its mean and variance can be simplified as

mk = sT
k sk + Nσ2

n, (29)

R(i, j) = 2Nσ4
n + 4σ2

nsT
i sj . (30)

We remark that as the length of the fingerprint N is increased, the detection statistic can be well approximated as
a multi-variate Gaussian distribution [14]. Substituting for si, we obtain

sT
i sj =

(α

c

)2 c∑

l=1

c∑

k=1

(qxl
− qxi

)T (qxk
− qxj

), (31)

which can be further reduced to give

sT
i sj =

P (i, j)Λ
2c

. (32)

Here P (i, j) is given as in equation (15) and Λ is the average mean squared difference between any two fingerprinted
copies,

Λ =
2

Nu(Nu − 1)

Nu∑

i=1

Nu∑

j=1,j 6=i

||yi − yj ||2. (33)

Substituting for sT
i sj from equation (32) into equations (29) and (30), we obtain the desired expressions as given

in equations (13) and (14).

REFERENCES

[1] M. Wu, W. Trappe, Z. J Wang, and K. J. R. Liu, “Collusion Resistant Fingerprinting for Multimedia,” IEEE Signal
Processing Magazine, Vol. 21, No. 2, pp 15–27, March 2004.

[2] D. Boneh and J. Shaw, “Collusion-secure Fingerprinting for Digital Data,” IEEE Transactions on Information Theory, Vol.
44, No. 5, pp. 1897–1905, September 1998.

[3] I. Cox, J. Killian, F. Leighton, and T. Shamoon, “Secure Spread Spectrum Watermarking for Multimedia,” IEEE Transactions
on Image Processing, Vol. 6, No. 12, pp. 1673–1687, December 1997.

[4] W. Trappe, M. Wu, Z. J. Wang, and K. J. R. Liu, “Anti-collusion Fingerprinting for Multimedia,” IEEE Transactions on
Signal Processing, Special issue on Signal Proceedings for Data Hiding in Digital Media & Secure Content Delivery, Vol.
51, No. 4, pp.1069–1087, April 2003.

[5] S. He and M. Wu, “Performance Study of ECC-based Collusion-resistant Multimedia Fingerprinting,” in Proceedings of
the 38th Conference on Information Sciences and Systems (CISS), pp. 827–832, Princeton, NJ, March 2004.

[6] B. Chen and G. W. Wornell, “Quantization Index Modulation: A Class of Provably Good Methods for Digital Watermarking
and Information Embedding,” IEEE Transactions on Information Theory, Vol. 47, No. 4, pp. 1423–1443, May 2001.

[7] A. Barg, G. R. Blakley, and G. Kabatiansky, “Digital Fingerprinting Codes: Problem Statements, Constructions, Identification
of Traitors,” IEEE Transactions of Information Theory, Vol. 49, No. 4, pp. 852–865, April 2003.

[8] S. He and M. Wu, “Improving Collusion Resistance of Error Correcting Code Based Multimedia Fingerprinting,” in
Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP’05), Vol. 2, pp. 1029–
1032, Philadelphia, PA, March 2005.

[9] Z. J. Wang, M. Wu, H. Zhao, W. Trappe, and K. J. R. Liu, “Anti-Collusion Forensics of Multimedia Fingerprinting Using
Orthogonal Modulation,” IEEE Transactions on Image Processing, Vol. 14, No. 6, pp. 804–821, June 2005.

[10] H. V. Zhao, M. Wu, Z. J. Wang, and K. J. R. Liu, “Forensic Analysis of Nonlinear Collusion Attacks for Multimedia
Fingerprinting,” IEEE Transactions on Image Processing, Vol. 14, No. 5, pp.646–661, May 2005.

[11] J. J. Eggers, R. Bauml, R. Tzschoppe, and B. Girod, “Scalar Costa Scheme for Information Embedding,” IEEE Transactions
on Signal Processing, Vol. 51, No. 4, pp. 1003–1019, April 2003.

[12] P. Moulin and R. Koetter, “Data-Hiding Codes,” Proceedings of the IEEE, Vol. 93, No. 12, pp. 2083–2126, December
2005.

[13] Q. Zhang and N. Boston, “Quantization Index Modulation using the E8 lattice,” in Proceedings of the 41th Annual
Allerton Conference on Communication, Control and Computing, Allerton, IL, USA, October 2003.

[14] A. Papoulis and S. U. Pillai, Probability, Random Variables and Stochastic Processes, McGraw Hill publications, 2002.


