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ABSTRACT

In the past decade, statistical shape modeling has been widely popularized in the medical image analysis com-
munity. Predominantly, principal component analysis (PCA) has been employed to model biological shape
variability. Here, a reparameterization with orthogonal basis vectors is obtained such that the variance of the
input data is maximized. This property drives models toward global shape deformations and has been highly
successful in fitting shape models to new images. However, recent literature has indicated that this uncorrelated
basis may be suboptimal for exploratory analyses and disease characterization.
This paper explores the orthomax class of statistical methods for transforming variable loadings into a simple
structure which is more easily interpreted by favoring sparsity. Further, we introduce these transformations
into a particular framework traditionally based on PCA; the Active Appearance Models (AAMs). We note that
the orthomax transformations are independent of domain dimensionality (2D/3D etc.) and spatial structure.
Decompositions of both shape and texture models are carried out. Further, the issue of component ordering
is treated by establishing a set of relevant criteria. Experimental results are given on chest radiographs, mag-
netic resonance images of the brain, and face images. Since pathologies are typically spatially localized, either
with respect to shape or texture, we anticipate many medical applications where sparse parameterizations are
preferable to the conventional global PCA approach.

1. INTRODUCTION

Due to the frequent noisy and highly complex nature of many medical imaging modalities, constrained solutions
are often required. One popular class of constrained image analysis is the various forms of shape models. Here,
a top-down approach is taken to the localization of a structure in a medical image using an explicit model of
the geometrical layout of the structure supplemented by a set of associated variation patterns. Combined, these
two entities should optimally be able to represent the given variability of the structure and nothing apart from
that. Hence, only valid solutions can be produced, provided that the model can be fitted with a sufficiently high
likelihood. Further, in many applications it may be desirable to be able to extend the use of such models from
the classic segmentation or registration scenario, to a level where the model parameterization possesses inherent
interpretive powers where latent variables are expressed directly. An example of such is disease characterization
by surrogate markers, see e.g.1

Decomposition of shape and texture variability is predominately carried out by principal component analysis
(PCA), which produces a reparameterization with orthogonal basis vectors such that the variance of the input
data is maximized. Although this basis is in many senses optimal, recent literature indicate that it might
not posses a sufficiently expressive basis for some medical interpretation scenarios.2–5 Since PCA maximizes
variance, new variables (i.e. the principal components) will typically affect the shape or texture globally. In
turn, this may lead to confounding of effects due to the chance correlation inherent to limited medical data sets.
Interestingly, it has been observed that independent component analysis (ICA) of shape produces new variables
showing more localized effects, and thus being able to describe specific pathologies.2–5 We note that localization
is often a desirable property for a basis aimed at explaining complex latent relations between pathology and
geometry/texture. Consequently, it seems natural to promote transformations favoring locality directly, rather
than indirectly. In this paper we explore the orthomax criterion for optimizing sparsity corresponding to new
variables being associated to localized modes of variation.

Corresponding author is M. B. Stegmann, E-mail: mbs@imm.dtu.dk, Web: http://www.imm.dtu.dk/∼mbs/.



2. RELATED WORK

Although orthomax rotations are well-known within the statistical discipline factor analysis, this work is arguably
among the first within medical image analysis to explore a method that directly optimizes sparsity. This can be
seen as a natural continuation of the previously mentioned work on ICA shape modeling by Üzümcü et al.2, 3

and Suinesiaputra et al.4, 5 in addition to the general literature on alternative parameterizations of shape.

Even for complex biological phenomena, principal component analysis typically yields a very good decomposi-
tion of shape variability in a cohort. However, significant non-linearities exist in some cases, which render the
implicit assumption of a multivariate Gaussian distribution invalid. Thus, PCA models will yield a poor speci-
ficity, leading to potential synthesis of implausible shape configurations. Some of these problematic cases are
designed synthetically to emphasize the limitations of a PDM, while others are demonstrating actual, real-world
examples of shape variability with dominating non-linearities. Attempts to deal with such non-linearity include
the polynomial regression PDM, PRPDM, by Sozou et al.6 Later, Sozou et al.6 outperformed this using a back
propagation neural network employing a multi-layer perceptron, which resulted in another xPDM acronym; the
MLPPDM. A different approach is to employ a kernel-based density estimation of the shape distribution. This
was proposed by Cootes and Taylor7, 8 along with a computationally more attractive variant using a Gaussian
mixture model to approximate the density function. Building on similar ideas, Heap and Hogg9 proposed a hi-
erarchical PDM, the HPDM, also based on multiple Gaussian models. Non-linear shape models are also treated
in depth by Bowden.10

Advances within machine learning that allow working implicitly in infinite dimensional spaces have also been
utilized in shape modeling using kernel methods. By employing a variant of non-linear PCA called Kernel
PCA (KPCA), complex non-linear shape distributions can be modeled. This was demonstrated on shapes from
projections of varying-angle faces by Romdhani et al.11 Further developments of this work were presented by
Twining and Taylor12 on synthetic shapes, and shapes from images of nematode worms.

While PCA decomposes variation by maximization of variance, other measures may also be of interest when a
shape basis is to be chosen. For example, Larsen13, 14 and Larsen et al.15 chose to maximize autocorrelation along
2D shape contours using the maximum autocorrelation factors (MAF) due to Switzer.16 Hilger and Stegmann17

later employed MAF as texture basis in Active Appearance Models (AAMs). The MAF approach was further
extended to three-dimensional PDMs by Hilger et al.,18 Larsen and Hilger,19 and Larsen et al.20 Interestingly,
it turns out that Molgedey-Schusters algorithm for performing ICA21 is equivalent to MAF analysis, see.15

Turning to the specific use of the orthomax criterion, Ramsay and Silverman give an instructive case study on
varimax rotation of principal components based on one-dimensional temperature curves.22 Related to this is
also the work by Peterson et al.23 where two-dimensional contours of the brain structure corpus callosum were
decomposed using PCA and subsequently rotated using the varimax criterion. While a similar corpus callosum
case is presented here, the two papers are contrasted by the depth in which the rotation method is treated, and
the depth in which the case study is analyzed, e.g. w.r.t. functional correlates such as IQ, handedness, et cetera.

Chennubhotla and Jepson24 developed a sparse PCA method∗ bearing resemblance to the original varimax
algorithm25 by employing a sequence of bi-variate rotations. However, rather than optimizing variance, a function
composed of the projected data and the basis vectors were investigated. This was carried out with a weight term
controlling the transition from a PCA solution to a sparse solution. Examples were given on images, vector
fields, and one-dimensional curves.

Regular PCA extracts new variables, the principal components, as linear combinations of the original variables.
For interpretation purposes, the problem is that each new variable is a linear combination of all original variables.
Sparse PCA aims at approximating the properties of regular PCA, while keeping the number of dependent
variables, or equivalently, the number of non-zero loadings, small. Recently, Zou and Hastie presented an
algorithm for computing sparse loading matrices.26 It is heavily based on variable selection methods from
regression analysis, primarily the elastic net.27 Similarly to the SCoTLASS28 method, a constraint is imposed
on each loading vector, limiting the sum of absolute loadings. This drives some loadings to exactly zero, producing
a sparse loading matrix in the strict sense. Results are given for the classic ”pitprops” data set, some simulated
data, and the Ramaswamy microarray data set. Results on medical shape data can be found in Ref. 29.

∗This method is different from the sparse PCA method by Zou, Hastie and Tibshirani described below.



3. METHODS

3.1. Principal Component Analysis

Consider a set of n vectors {xi}n
i=1 ∈ IRp having sample dispersion matrix Σx. These could denote shape given

by landmarks, or texture given by image intensities. Principal component analysis (PCA) transforms these
vectors into a decorrelated basis b with dispersion matrix Σb = diag(λ) by b = ΦT(x − x), where Φ denotes
the eigenvector solution to ΣxΦ = ΦΣb and x denotes the sample mean. Each eigenvector holds a variation
pattern referred to as a deformation mode, where each of the original p variables is loaded by a given amount.
Consequently, the terms eigenvectors, deformation modes, and variable loadings will be used interchangeably in
the following. Let eigenvalues, λi, and corresponding eigenvectors be ordered so that λ1 ≥ · · · ≥ λn = 0 (when
n < p). The deformation modes given by the higher order part of b are typically discarded by a variance-based
criterion retaining e.g. 95% of trace(Σb) in k modes. A new example in IRp given by b can now be synthesized
by the projection x = x + Φb. Examples of using this generative property of PCA for image interpretation
include inter-point distance models30 and the later point distribution models (PDMs).31

3.2. Sparse Modeling Using the Orthomax Criterion

Orthomax rotations of a principal component basis reintroduce component correlation to obtain a simple structure
of the final basis. Let Φ be a p×k orthonormal matrix (of column eigenvectors) and R be an orthonormal rotation
matrix in IRk, i.e. RTR = Ik, where Ik denotes the k × k identity matrix. Further, let Rij denote the scalar
element in the ith row and jth column in matrix R. The class of orthomax rotations can now be defined as

Rorthomax = arg max
R




k∑

j=1

p∑

i=1

(ΦR)4ij −
γ

p

k∑

j=1

(
p∑

i=1

(ΦR)2ij

)2

 , (1)

where Rorthomax denotes the resulting rotation and γ denotes the type. This paper investigates γ = 1 (varimax25)
and γ = 0 (quartimax, e.g.32). Further rotations include: γ = k/2 (equamax), and γ = p(k − 1)/(p + k −
2) (parsimax). Orthomax rotations are traditionally computed using a sequence of bi-variate rotations.25, 32

However, since varimax and quartimax are the only cases treated here, this work employ an iterative method
based on singular value decomposition (SVD) for solving Equation 1, which is given in Algorithm 1. Notice that
this returns the rotated basis, rather than Rorthomax. The algorithm is also employed in the statistical language
R and the computational system Matlab. It was first described by Horst33 and independently shortly after in a
different – albeit equivalent34 – formulation by Sherin.35 The relation between Equation 1 and Algorithm 1 is
detailed in Appendix A.

Algorithm 1 Estimation of Orthomax Rotation for γ ∈ [0; 1]

Require: Φ ∈ IRp×k, γ, q, tol, Diag(·) (sets off-diagonal elements to zero), ¯ Hadamard (element-wise) product
1: R = Ik

2: d = 0
3: for i = 1 to q do
4: dold = d
5: Λ = ΦR
6: [U,S,V] = svd( ΦT(Λ¯Λ¯Λ− γ

pΛ ·Diag(ΛTΛ)) )
7: R = UVT

8: d = trace(S)
9: if d/dold < tol then

10: break
11: end if
12: end for
13: Λ = ΦR
14: return Λ



Let us investigate the varimax variation a bit more closely. Let Λ denote the orthomax-rotated basis, ΦR,
and let Λ2

j denote the mean of the jth column of Λ having its elements squared. From Equation 1 we see that
choosing γ = 1 will yield the maximal variance of the squared rotated variable loadings summed over all modes;

p

k∑

j=1


1

p

p∑

i=1

(Λ2
ij)

2 − 1
p2

(
p∑

i=1

Λ2
ij

)2

 = p

k∑

j=1

(
1
p

p∑

i=1

(
Λ2

ij −Λ2
j

)2
)

. (2)

Since R is an orthonormal matrix, and thus cannot change the squared sum of the new basis vectors in Λ, the
variance of each column in Λ can only be increased by bringing some variable loadings close to zero, and let
others grow large. Hence, a more simple structure of Λ is obtained. This tends to make the components, or
the basis vectors, easier to interpret. The cost is that component correlation will be introduced for any rotation
of the PCA basis, except for 180 degrees, in which case the variance would remain unchanged. Relaxing Φ
to be orthogonal, rather than orthonormal, will lead to both non-orthogonal variable loadings (i.e. ΛTΛ not
diagonal), as well as to correlated variables.36 It should be added that subgroups of Φ can be rotated, while
other modes are left unchanged. Thus, dispersions with block diagonals will be obtained. Such subgroups could
be determined by identifying clusters in the eigenvalue spectrum of an initial PCA transformation.37 However,
Φ will remain orthonormal and all components will be rotated in this paper.

Setting γ = 0 yields the special case denoted quartimax ; a method introduced almost simultaneously by several
researchers,32 and which preceded the varimax approach by a few years. In the quartimax case, Equation 1
becomes:

Rorthomax = arg max
R

k∑

j=1

p∑

i=1

(ΦR)4ij . (3)

It turns out that this expression minimizes the parsimony criterion put forward by Ferguson (see Ref. 32),

p∑

i=1

k∑

j=1

j−1∑
q=1

(ΛijΛiq)2, (4)

since R remains orthonormal and therefore does not change the squared sum of loadings. If this sum is squared,
then for a single variable, i, we have




k∑

j=1

Λ2
ij




2

=
k∑

j=1

Λ4
ij + 2

k∑

j=1

j−1∑
q=1

Λ2
ijΛ

2
iq. (5)

Consequently, as Equation 5 remains constant when summed over all variables, Equation 4 is minimized when
Equation 3 is maximized. In other words, by emphasizing simplicity within rows of Λ, quartimax is contrasted
to varimax that emphasizes simplicity within columns of Λ. Refer to Ref. 32 for further details on the various,
but similar, quartimax formulations.

When focusing on shape variability, one important – albeit rare – situation deserves mentioning. Imagine that
k is close to p. Then Λ will approach the identity matrix, I. This will happen even when the starting point is
a very uneven eigenvalue spectrum. Such behavior is of course entirely correct; we should obtain a maximally
sparse solution for a set of eigenvectors that span IRp. But the implication for a shape model based on shapes in
IRd (d = 2 or d = 3 typically) is that the solution depends solely on the original orientation of the d-dimensional
coordinate system. The solution is in other words not rotation invariant and this fact becomes very apparent
when k approaches p. In summary, choice of k will greatly influence the level of obtained sparsity, when all
modes are rotated. This issue was also commented by Suinesiaputra et al.4, 5



Obviously, texture models are not affected by the above issue, since d = 1. Although the computations in
Algorithm 1 becomes substantial when p is very large (say p = 30000 for a texture model) the growth is
fortunately linear in p. Notice that the costly singular value decomposition is carried out on a k × k matrix,
which does not pose a problem, as k ¿ p for such models.

Another issue is the ordering of the new variables stemming from an orthomax rotation. To this end, we discuss
a set of criteria below that all order components by decreasing value of the criterion.

Component variance.
This is the normal ordering of the principal components. Using this criterion, very sparse modes
will tend to reside among the last components due to the orthonormality of Λ. That is, sparse
modes will be scaled more than dense, and consequently lead to smaller component scores.

Variance of squared loadings.
As this is the criterion being optimized by the varimax rotation, this ordering may be a natural
choice for having sparsity concentrated among the first modes.

Locality.
Favorable, if prior knowledge is available regarding interesting subparts of the original p-dimen-
sional space. Used by Üzümcü et al.2, 3 and Suinesiaputra et al.4, 5 when ordering sparse, ICA-
based shape modes according to their effects along near-circular endo- and epicardial borders in
cardiac magnetic resonance images.

Correlation.
This ordering is suitable if k has been chosen to produce an appropriate amount of sparsity in
the resulting modes and the objective is to find sparse, yet weakly correlated, modes. Those
will thus be present in the latter part of the ordered modes.

Autocorrelation.
Although, sparsity typically is obtained by fairly well-defined coherent parts of the original p
dimensional domain, this behavior is not required by design. Ordering by autocorrelation will
discriminate between abrupt changes and more smooth coherent modes. However, care has to
be taken when estimating the autocorrelation for multi-part or open-contour shapes and for
textures.

Clustering.
If numerically large variable loadings are localized in several clusters e.g. along a contour in
a shape model, then ordering according to the numbers of clusters and cluster size may be
interesting.

The following section will demonstrate the use of three of the above criteria.

4. EXPERIMENTAL RESULTS

To illustrate the effects of orthomax rotation, three different cases have been selected and decomposed by principal
component analysis and subsequently rotated using the varimax criterion. Two shape studies were carried out on
contours stemming from chest radiographs and magnetic resonance images (MRI) of the human brain. Normal
perspective images of frontal faces formed basis for a case study of sparse texture variability. Varimax-rotated
components are compared to principal components in all three cases.



PC 1 PC 2 PC 3 PC 4

PC 5 PC 6 PC 7 PC 8

PC 9 PC 10 PC 11 PC 12

(a) PCA modes (0,±2.5 std.dev. overlaid)

VM 1 VM 2 VM 3 VM 4

VM 5 VM 6 VM 7 VM 8

VM 9 VM 10 VM 11 VM 12

(b) Varimax modes (0,±2.5 std.dev. overlaid)

Mode

Lo
ad

in
g

PCA

5 10 15

50

100

150

200

250

300
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Mode

Lo
ad

in
g

Varimax

5 10 15

50

100

150

200

250

300
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

(c) Loadings

0 2 4 6 8 10 12 14 16
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Mode

V
ar

ia
nc

e

PCA
Varimax

(d) Mode variances

Mode

M
od

e

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

(e) Correlation coefficients

Figure 1. Shape modes calculated from 247 chest radiograph annotations of the lungs, heart and clavicles.

Figure 1 shows a decomposition of 247 chest radiograph annotations of the lungs, heart and clavicles based
on 166 landmarks. This data is described in detail in Refs. 38 and 39. In our case, the 16 largest principal
components were retained. All varimax modes in Figure 1(b) were sorted by the absolute sum of the correlation
coefficients in order to probe for localized yet weakly correlated modes, see Figure 1(e). We see that varimax
mode 4 is related to the position of the aortic arch. Modes 3 and 5 relate to heart size, while modes 8 and
10 relate to clavicle orientation. These localized modes are contrasted by the conventional PCA modes shown
in Figure 1(a). Another way of visualizing the variable loadings in each case is to relate gray-scales to the
magnitudes of the elements in Φ and Λ. This is carried out in Figure 1(c), which clearly demonstrates the
sparsity of the varimax solution. The ’flattening’ of the eigenvalue spectrum carried out by the varimax rotation
is illustrated in Figure 1(d) where the respective variances are plotted.

Figure 2 shows a decomposition of 62 annotations of the corpus callosum in mid-sagittal brain MRI using 78
landmarks. This data is described in more detail in Refs. 38, 40, and 41. Varimax ordering is similar to the
previous case study. In Figure 2(b) we observe that varimax mode 1 relates to the isthmus area, mode 2 to
bending of the splenium, mode 3 to the truncus area, while mode 4 is clearly related to the area of the rostrum
and genu. In contrast, PCA mode 1 describes a simultaneous bending of the entire corpus callosum with an area
change of the rostrum, genu and splenium. Again, the sparsity of the varimax-rotated components can also be
appreciated in Figure 2(c).

Figures 3 and 4 show the results of a decomposition of 37 gray-scale face images. Further analyses of this data
set can be found in Refs. 42 and 43. Prior to our analyses, all images were compensated for any variation in
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Figure 2. Shape modes calculated from 62 corpus callosum annotations in mid-sagittal brain magnetic resonance images.

shape by a piece-wise affine image warp similar to the one usually carried out in Active Appearance Models.44, 45

While the PCA modes in Figures 3(a–j) demonstrate several effects within each mode, the varimax modes in
Figures 3(k–t) show nicely isolated effects. The first principal component for example, shows absence/presence
of beard as well as nostrils. Notice that Figures 3(a–t) show the magnitude of the variable loadings of each
pixel position of the model, rather than the actual values of the basis vectors. Black and white represents high
and low magnitude, respectively. Varimax modes are in this case ordered according to the sparsity criterion,
namely the variance of the squared loadings of a mode. Interpretations of the first five varimax modes are as
follows, absence/presence of i) nostrils, ii) lip spacing, iii) eyebrow thickness/shadow, iv) shadow below lower
lip, and v) mustache. Each of these modes are shown in Figure 4 as modifications of the mean texture. Here it
becomes more apparent that the modes, albeit being sparse, also carries additional information outside the areas
mentioned above. This further indicates that even subtle changes to the texture can carry substantial changes
to the perceived identity.

Orthomax rotations have also been implemented in a complete Active Appearance Models framework42 with
the aim of assessing their potential in future registration studies. A preliminary cross-validation study in the
face data set showed a slight, though presumably insignificant, increase in accuracy† when employing varimax
rotation to the texture model, compared to standard PCA-based texture model. To this end it is important to
stress that uncoupled shape and texture models must be employed. If not, the third PCA traditionally used
in AAMs will diagonalize the covariance matrices and yield a combined basis identical to that of the standard
AAM.

†Measured using the point to point distance between the ground truth shape and the converged model shape.
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Figure 3. The magnitude of eigenvectors calculated from 37 face images arranged as eigenimages. PCA modes are
ordered according to the variance of corresponding principal score. Varimax modes are ordered according to sparsity
given by the variance of the squared loadings.
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Figure 4. Varimax texture modes calculated from 37 face images. (a) mean texture. (b–f) mean texture modified by 2.5
standard deviations of the corresponding mode scores.



Quartimax rotations were also carried out in the two former case studies. Although the deformation modes by
design should show more exclusive changes‡ this behavior was not very clear. Due to the lack of differentiation
from the varimax case, we have chosen not to show the quartimax modes.

5. DISCUSSION

The medical image analysis literature is surprisingly devoid of references to sparse modeling using the orthomax
criterion. The main contribution of this paper is therefore three-fold, i) broadening the knowledge of this simple,
yet powerful, modification of principal components, ii) discussing its merits, and iii) providing a diverse range of
examples on its use in medical applications.

We have found the method to be conceptually simple to understand as well as to implement. This is partly due
to being a well-understood and well-described method within factor analysis. We further note that orthomax
transformations are independent of domain dimensionality (2D/3D etc.) and spatial structure. An additional
benefit is that many common computational frameworks already provide an implementation, e.g. R, S-plus,
Matlab, et cetera. Considering the selection of k (the number of retained components) to lie with PCA, orthomax
rotations are parameter-free. This is obviously a two-edged sword; while it leaves no frustrating choices up to
the operator, it lacks the fine-grained flexibility, found in e.g. the sparse PCA method by Zou, Hastie and
Tibshirani.26 Compared to sparse PCA, orthomax rotations have the benefit of being computationally feasible
even for very high-dimensional spaces, found in e.g. texture modeling. Unfortunately, and unlike sparse PCA,
orthomax rotations will rarely provide entirely sparse components. This is also illustrated by the examples in
this paper. However, the relative differences in magnitude within orthomax modes may in practice be considered
sufficiently sparse in many cases. As hinted earlier, the resulting amount of sparsity is directly related to the
rank of the variation and the number of principal components subjected to orthomax rotation.

A long term goal for sparse modeling in relation to image interpretation and registration is to be able to separate
inherent variation sources from chance correlation, thus providing greater – and justifiable – model flexibility,
and in addition provide parameterizations that capture latent structures more accurately. The latter aspect
could be of crucial importance in highly flexible, non-linear regression methods sensitive to initialization.

Application-wise, we note that pathologies are typically spatially localized, either with respect to shape or
texture. Thus, we anticipate many medical application areas where sparse parameterizations, similar to the
presented approach, are preferable to the conventional global PCA approach.

6. CONCLUSION

We have explored a computationally simple approach for rotation of principal components using the orthomax
criterion, which directly optimizes sparsity leading to localized modes of variation suitable for medical image
interpretation and exploratory analyses. We have found that both high-dimensional sparse modeling of shape
variability (p ≈ 300), as well as extremely high-dimensional sparse modeling of texture variability (p ≈ 30000)
are feasible. Case studies on radiographs, brain MRI, and face images showed local modes of natural variation
contrary to global PCA modes. Applications include computer-aided diagnosis in terms of exploratory analyses,
disease characterization, et cetera.
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APPENDIX A. DETAILS ON ALGORITHM 1
This appendix serves to demonstrate the validity of Algorithm 1 in relation to Equation 1. Let ¯ denote the
Hadamard (element-wise) product, let Aj denote the jth column of A, and let Γ = Λ¯Λ (remember Λ = ΦR).
Further, the following two Hadamard relations46 will be used:

Let A, B, C and DT denote m× n matrices and let 1q be a column vector of q ones. Then

trace((A¯B)(CT ¯D)) = trace((A¯B¯C)D) (6)

and
1T

m(A¯B)(CT ¯D)1m = trace(C Diag(ATB)D). (7)

Equation 1 can now be written in matrix form,

Rorthomax = arg max
R



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


= arg max
R


trace(ΓTΓ)− γ

p

k∑

j=1

1T
pΓjΓT

j 1p




= arg max
R

(
trace(ΓTΓ)− γ

p
1T

pΓΓT1p

)

= arg max
R

(
trace((Λ¯Λ)T(Λ¯Λ))− γ

p
1T

p (Λ¯Λ)(Λ¯Λ)T1p

)

= arg max
R

(
trace(

(
ΛT ¯ΛT ¯ΛT

)
Λ)− γ

p
trace(Λ ·Diag(ΛTΛ)ΛT)

)

= arg max
R

(
trace(RTΦT(Λ¯Λ¯Λ))− γ

p
trace(ΛTΛ ·Diag(ΛTΛ))

)

= arg max
R

(
trace(RTΦT(Λ¯Λ¯Λ)− γ

p
RTΦTΛ ·Diag(ΛTΛ))

)

= arg max
R

(
trace(RTQ)

)
where Q = ΦT(Λ¯Λ¯Λ− γ

p
Λ ·Diag(ΛTΛ)). (8)

In Algorithm 1, an iterative approach is taken to solving Equation 1. Here, the part where R enters non-linearly,
i.e. Q, is kept fixed using the current estimate of R. Then, the singular value decomposition, in line 6 of
Algorithm 1, produces the optimal R for the linear part as shown in Equation 8 which subsequently replaces the
current estimate. The initial estimate of R is the identity matrix.
By assuming that Q does not depend on R, then Equation 8 would be maximized if and only if RTQ is symmetric
and positive semi-definite§. This can be accomplished by choosing R = UVT, where U and V are taken from
the singular value decomposition Q = USVT. That RTQ is symmetric and positive semi-definite can been seen
by the following substitution¶:

RTQ = RTUSVT = (UVT)TUSVT = VUTUSVT = VSVT. (9)

This concludes our presentation of the background of Algorithm 1 based on Refs. 46 and 47. Further details can
be found in Refs. 33–35, 46 and 48.

§See the compact proof of Theorem 2 in Ref. 47 on Procrustes analysis.
¶Remember that S is a diagonal matrix of singular values, and U and V hold orthogonal singular vectors.
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