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ABSTRACT

Regularized nonrigid medical image registration algorithms usually estimate the deformation by minimizing a cost func-
tion, consisting of a similarity measure and a penalty term that discourages “unreasonable” deformations. Conventional
regularization methods enforce homogeneous smoothness properties of the deformation field; less work has been done
to incorporate tissue-type-specific elasticity information. Yet ignoring the elasticity differences between tissue types can
result in non-physical results, such as bone warping. Bone structures should move rigidly (locally), unlike the more elastic
deformation of soft issues. Existing solutions for this problem either treat different regions of an image independently,
which requires precise segmentation and incurs boundary issues; or use an empirical spatial varying “filter” to “correct”
the deformation field, which requires the knowledge of a stiffness map and departs from the cost-function formulation.

We propose a new approach to incorporate tissue rigidity information into the nonrigid registration problem, by devel-
oping a space variant regularization function that encourages the local Jacobian of the deformation to be a nearly orthogonal
matrix in rigid image regions, while allowing more elastic deformations elsewhere.

For the case of X-ray CT data, we use a simple monotonic increasing function of the CT numbers (in HU) as a “rigidity
index” since bones typically have the highest CT numbers. Unlike segmentation-based methods, this approach is flexible
enough to account for partial volume effects. Results using a B-spline deformation parameterization illustrate that the
proposed approach improves registration accuracy in inhale-exhale CT scans with minimal computational penalty.
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1. INTRODUCTION

Medical imaging is an essential component of a large number of clinical applications. Very often, information obtained
from multiple images are of complementary nature, and spatial alignment is required to properly integrate useful infor-
mation from separate images [1]. This procedure is called registration, which aims at retrieving the transformation T that
maps from the reference image f ’s coordinate space to the homologous image g’s coordinate space, such that f ≈ g ◦ T .

Registration algorithms can be classified according to the space that T belongs: (global) rigid/affine registration algo-
rithms have only a few degrees of freedom, while nonrigid registration algorithms have a very high dimensional space for
feasible transformations. Usually, rigid registration methods provide satisfactory matching results for bone structures, but
are in general not descriptive enough for elastic tissues regions that can have more free-form deformations.

Nonrigid registration problems are highly under-determined due to the extremely high dimensionality of transformation
field, and this results in ill-conditioning as well as instability of solutions and local optima issues. Regularizations are
introduced to alleviate these issues and also to incorporate prior physiological knowledge into the problem formulation.
Therefore, regularized nonrigid medical registration algorithms are usually set up to use a cost function, consisting of a
similarity measure and a penalty term that discourages undesirable transformations. Conventional registration methods use
homogeneous regularization for smoothness or incompressibility properties of the deformation field [2–4].

However, ignoring the elasticity difference between tissue types can result in non-physiological results, such as bone
warping. Existing work addressing this issue either treats different regions of an image independently [5,6], which requires
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precise segmentation in the first place and incurs boundary issues that could cause discontinuity and nondifferentiability;
or use an empirical spatial varying “filter” to “correct” the deformation field, which requires the explicit knowledge of a
stiffness map and may desire further justification for an efficient filter design scheme [7].

This paper describes a new approach to utilize tissue-type-dependent rigidity information into nonrigid registration
framework.

Section 2 proposes a novel method for the overall cost function design and in particular the tissue-type-dependent
regularization function. Section 3 describes clinical data used in the validation experiment. Section 4 reports validation
experiment and test results. We conclude with summary and discussions for further investigation in section 5.

2. OPTIMIZATION PROBLEM FORMULATION AND REGULARIZATION DESIGN

The goal of nonrigid registration is to find the transformation T ∗ such that the transformed homologous image best matches
the reference image. In this report, we denote with f, g : Ω → R , where Ω ⊂ R

d, the intensity map for the reference
image and homologous image respectively, where d is the dimensionality of imagery. The open set Ω denotes the physical
region of interest for registration. Let T : Ω → Ω be the transformation. Let x ∈ Ω denote the coordinate (in vector form)
of a specific location. Our goal is to find:

T ∗ = arg min
T∈Γ

Φ(T , f, g)

= arg min
T∈Γ

{C(f, g ◦ T ) + R(T )}, (1)

where Γ is the class of allowable transformations. Here, Φ is the overall objective function that we want to minimize,
consisting of two parts: C(f, g ◦ T ) denotes the data (dis)similarity measure, and R(T ) denotes the regularization term
that we apply to penalize undesirable transformations.

2.1. L2 norm for data (in)fidelity measure
We are interested in nonrigid registration problems for calibrated X-ray CT images in particular, where sum of squared
difference (L2 norm) is a sensible choice to measure data similarity, i.e.,

C(f, g ◦ T ) =
∑

x∈Ω

(f(x) − g(T (x)))2.

In our experimental result, we choose to use it as our data fidelity measure, although the regularization design method
applies generally to other data similarity metrics as well.

2.2. Regularization Design
The regularization R(T ) is composed of two parts: a homogeneous spatial roughness penalty for deformation field, and
a spatial varying (inhomogeneous) penalty that accounts for local tissue rigidity. For parametrization purpose, our reg-
ularization design takes the deformation instead of the transformation itself as input. We denote the deformation field
D : R

d → R
d � T − I . The homogeneous smoothness penalty is defined with the commonly used squared Frobenius

norm as ‖∇D‖2
Frob. A reasonable local tissue rigidity based penalty is

∑
x γ(x)r(Tx), and the overall regularization

becomes:
R(T ) = γs ‖∇D‖2

Frob +
∑

x∈Ω

γ(x)r(Tx).

We can equivalently represent the penalty as a function of the deformation field, since there is a one-to-one correspon-
dence between transformation and deformation:

R(D) = γs ‖∇D‖2
Frob +

∑

x∈Ω

γ(x)r(Dx + I), (2)

where r(Dx + I) penalizes the deviation of the local transformation from being rigid, and γ(x) is a spatial varying weight
that reflects local tissue rigidity properties. In particular, γ(x) can be looked on as the local “trade-off” between intensity
match and tissue rigidity condition. It should be large where bone structure lies and small within more elastic regions. We
also call it “local stiffness factor” to illustrate its physical meaning.
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2.2.1. Local Rigidity Functional

The next step is to design an appropriate non-rigidity penalty function. The following claims help define reasonable
choices.

To design the proper functional r : (Rd → R
d) → R

≥0, we make the following claim:

CLAIM 2.1. A necessary and sufficient condition for a map T to be rigid at x is that its Jacobian matrix JT (x) = ∇T (x)
be orthogonal.

The proof is straight forward as follows:

The general isometry in R
d includes rotation, translation, reflection, and arbitrary compositions of the previous opera-

tions. It is easy to check that isometry defined on R
d → R

d is a well-defined group with group operation being the standard
map composition and identity element e being the identity map Id.

LEMMA 2.2. If we define a map J : G → O(d), via J(g) � Jacobian matrix of g for g ∈ G.

where G denotes the group of isometries on R
d, and O(d) being the orthogonal group in d-dimension,

then J is a group homomorphism between G and O(d).

It is easy to check according to the definitions:

• The group operation is preserved: J(g1 ◦G g2) = J(g1) ◦o J(g2).

The Jacobian matrix of the composition of a sequence of isometric maps is identical to the matrix multiplication (the
group operation on O(d)) of the Jacobian matrix of each isometry.

• The identity is mapped to identity: J(eG) = eo.

eG = Id and its Jacobian is itself, J(Id) = Id = eo.

Moreover, we know that the image J(G) = O(d), and the group kernel J−1(eo) = {the set of translations}.

Lemma 2.2 shows the claim. Since if Tx ∈ G, then J(Tx) ∈ J(G) = O(d). On the other hand, if JT (x) ∈ O(d),
then Tx mod {the normal group of translations} = JT (x). But JT (x) ∈ O(n) ⊂ G, and G is closed under composition
with translations, so the orbit of JT (x) under all possible translations (the group kernel) is a proper subset of G, thus,
Tx ∈ G.

With the above claim, we have found a mathematically rigorous way to describe the deviation of the local transforma-
tion Tx from being rigid. It suffices now to design a penalty that measures how “non-orthogonal” the Jacobian matrix of
the local transformation JT (x) is.

We use the following fact:

LEMMA 2.3. A necessary and sufficient condition for a matrix M ∈ R
d×d to be orthogonal is that

∥∥MMT − Id

∥∥ = 0,
where ‖·‖ denotes any matrix norm.

Notice that if M is orthogonal, then MMT = Id, and
∥∥MMT − Id

∥∥ = 0 for any norm. On the other hand, for
any matrix norm,

∥∥MMT − Id

∥∥ = 0 implies MMT = Id, which is exactly the definition for the matrix M to be
orthogonal.

For simplicity, we choose to use the squared Frobenius norm, and design the rigidity regularization function to be:

r(Tx) �
∥∥J(Tx)J(Tx)T − Id

∥∥2

Frob ,

or equivalently,

r(Dx) =
∥∥J(Dx + Id)J(Dx + Id)T − Id

∥∥2

Frob

=
∥∥(J(Dx) + Id)(J(Dx) + Id)T − Id

∥∥2

Frob

=
∥∥J(Dx)J(Dx)T + J(Dx) + J(Dx)T

∥∥2

Frob . (3)
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2.2.2. Local Stiffness Factor

To design the spatial varying local stiffness factor γ(x), which determines the relative weighting between data infidelity
and deviation from rigidity, it is desirable to have it as a monotone increasing (nondecreasing) function of the rigid level of
the local tissue. Ideally, we would like to have it to reflect the relative elasticity among different tissue types, but since we
are not aware of any exact quantitative description of this type, the described monotonicity relationship is the best we can
hope for.

FACT 1. In calibrated X-ray CT images, pixel intensity (CT number) is highly correlated with tissue type information,
hence a good inference source for local rigidity.

Therefore, instead of designing a direct map γ : Ω → R
+, we define the local stiffness factor as an implicit function

that is the composition of a monotone increasing function and the image intensity map:

γ(x) = h(f(x)),

where h : R → R
+ is a monotone increasing map from the domain of CT number to rigidity level. We choose to use

a scaled and shifted hyperbolic tangent function in our application due to its simplicity (two parameters with clear shape
meaning), sharp rising edge and desirable situation behavior in bone structures.

In Fig. 1, we plot the empirical histogram taken from a 192 × 160 × 60 breath-held thorax CT volume with voxel size
0.2 × 0.2 × cm3. Observations for the tissue type v.s. CT number (in Hounsfield unit) relationship agree with theoretical
values [8] in that:

Air : −1000Hu
Fat
Muscle

}
: −100 ∼ 60Hu

Bones : 250 ∼ 1000Hu.

We choose the location and shape parameters for the hyperbolic function such that the rigidity penalty becomes strong
and more dominant when in the bony structure, while much relaxed within elastic tissues.

−1000 −500 0 500 1000
0

1

Intensity Value (Hu)

air lung fat bony structure

−1000 −500 0 500 1000
CT number (HU)

Scaled Histogram

Stiffness Factor

air

lung

fat

muscle

bony structure

(a) (b)

Figure 1. Illustration of h(·). (a) design of functional h based on theoretical tissue-type-to-CT-number map; (b) scaled stiffness factor
v.s. tissue type information inferred from empirical histogram.
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2.2.3. Optimization

We adopt the commonly used B-spline basis to parameterize the deformation field D [9] and solve the optimization
problem with the multi-resolution scheme. In particular, we choose

Dl(x) =
∑

i∈N(x)

θl
iβ(x − i).

For d = 3 case, l ∈ {x, y, z} denotes the deformation direction, and separable B-spline basis is used:

β(x − i) = β(
x

∆x
− i)β(

y

∆y
− j)β(

z

∆z
− k),

where i = [i, j, k]T denotes the B-spline knot location, ∆x,∆y,∆z determines the scale of B-spline in each direction,
x = [x, y, z]T , and N(·) is determined by the support of the B-spline basis.

In each resolution level, we use conjugate gradient method to iteratively solve for the B-spline coefficients until con-
vergence.

3. EXPERIMENT SETUP

We tested our approach with two thorax CT scans of the same patient: one at 80% of the vital capacity inhale breath
hold (deep inhale breath hold, tidal breathing generally peaks at 40% also) and one at exhale. The scans are both of size
512×512×148 with voxel size 0.2×0.2×0.5cm3. We use the deep inhale breath-hold thorax CT image as the reference
and further crop it to size 259×175×107 to reflect the region of interest. Fig. 2 shows typical data slices (different views)
of the reference image, homologous image and the inferred stiffness map (h ◦ f ).

4. TEST RESULTS

We first show the registration results in slice views for pure affine transformation and the regularized nonrigid registration
method. Deformed homologous image is overlay on top of the reference image for comparison purposes in Fig. 3.

We can observe in Fig. 3 that nonrigid registration has an obvious advantage over global rigid/affine model based
registration as far as intensity matching is concerned. Moreover, the better matching result in regions where organs have
undergone extremely elastic deformations (like in the diaphragm region). The different performance in the lung area
is not obvious due to the fact that the overall intensity level in lung region is pretty low, so mismatch in that region
is not emphasized as much as that in high intensity region as far as least squared based similarity metric is concerned.
Furthermore, the introduction of proposed tissue type dependent regularization does not seriously deteriorate intensity
matching performance in general.

More interestingly, notice that CT number is a very good indicator of tissue type, and bone structures corresponds
to high count, we can extract the bony structure by thresholding the CT number to check if our regularization approach
has indeed yielded physiologically reasonable results. We extract the geometry from the reference image volume and that
of the deformed homologous image, overlay them on top of each other to compare the performance in bone structure
alignment. We can clearly observe a nonphysical warping of bones in the deformed homologous geometry using B-spline
based nonrigid registration method without the proposed regularization, while affine based registration does not have such
an undesirable distortion. This is due to the fact that in the under-determined b-spline nonrigid registration framework,
there are many local minima that would yield similar matching result. By taking a close look at where this particular “bone
warping” phenomena occur, we can see that due to the “pseudo-periodic” structure of the ribs, the resulted match and
the desired physical one would yield very similar intensity match (data fidelity metric). On the other hand, since B-spline
is a local smooth basis, and together with smoothness regularization to enforce continuity of the deformation field, the
deformation close to diaphragm/lung region where deformation of more elastic nature occurs, the deformation within bone
regions are compromised to resemble those of elastic tissues.

However, when the proposed regularization is applied, the deformation on the bone structures are given an additional
“force” to conform to rigid transformation. We observe in Fig. 5 an obvious improvement as far as bone-warping issue is
concerned.
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Figure 2. Different views of the original data and tissue information inferred from it. Top row [X(1)]: coronal slices; middle row [X(2)]:
sagittal slices; bottom row [X(3)]: axial slices. Left column [a(#)]: slices from reference image; middle column [b(#)]: slices from
homologous image; right column [c(#)]: slices from inferred stiffness map.

5. SUMMARY AND FUTURE WORK

We have proposed a new method to account for tissue-type dependent rigidity information by regularization design in
nonrigid registration problem. Experiment with clinical data justifies that the proposed regularization design yields more
physiologically sound deformation. As a additive penalty, it acts as a “soft” correcting force in high intensity regions,
which tend to correspond to rigid structures towards locally rigid transformations, and relaxes within low intensity regions
that tends to correspond to more elastic tissue types.

By designing the local stiffness factor as an implicit function via composition with intensity map, our approach avoids
explicit segmentation and is especially robust to partial volume effect, which is important when a multi-resolution technique
is to be applied.

Moreover, the design of local rigidity penalty is based on Frobenius norm, and each term involved in evaluating this
function and its derivative (which is used in optimization step) is easily available from previous computation of the data
fidelity metric. Therefore, the proposed approach hardly incurs any extra computation requirement.

In the future, we will investigate possible quantitative methods to evaluate registration performance besides visual
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Figure 3. Deformed homologous image (green) overlaid with reference image (dark blue) for comparison of intensity match. Different
views are indicated with numbers: [X(1)] coronal view; [X(2)] sagittal view; [X(3)] axial view [X(3)]. Different registration method
are distinguished with letters: [a(#)] rigid transformation model; [b(#)] affine transformation model; [c(#)] B-Spline registration with
smoothness penalty only; [d(#)] B-Spline registration with both proposed regularization.

justification that would provide better physiological interpretation of the alignment results. We will further study the
trade-off between data fidelity metric and prior knowledge guided term (penalty/regularization). Finally, we would like
to generalize this method to other modalities where there is no explicit relationship between observation and tissue type
dependent stiffness factors.
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Figure 4. Geometry extracted (a) unregistered images; (b) B-Spline based registration with homogeneous smoothness regularization
only.

(a) (b)

Figure 5. Geometry extracted from registration results: (a) B-Spline based nonrigid registration with no local rigidity regularization; (b)
B-Spline based nonrigid registration result with proposed local tissue type dependent regularization.
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