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ABSTRACT

Computed Tomography (CT) screening and pediatric imaging, among other applications, demand the develop-
ment of more efficient reconstruction techniques to diminish radiation dose to the patient. While many methods
are proposed to limit or modulate patient exposure to x-ray at scan time, the resulting data is excessively noisy,
and generates image artifacts unless properly corrected. Statistical iterative reconstruction (IR) techniques have
recently been introduced for reconstruction of low-dose CT data, and rely on the accurate modeling of the dis-
tribution of noise in the acquired data. After conversion from detector counts to attenuation measurements,
however, noisy data usually deviate from simple Gaussian or Poisson representation, which limits the ability of
IR to generate artifact-free images. This paper introduces a recursive filter for IR, which conserves the statis-
tical properties of the measured data while pre-processing attenuation measurements. A basic framework for
inclusion of detector electronic noise into the statistical model for IR is also presented. The results are shown to
successfully eliminate streaking artifacts in photon-starved situations.
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1. INTRODUCTION

The objective of Computed Tomography (CT) is to reconstruct the cross-section of an object by measuring
the line integrals of attenuation through the object for a number of projection angles. For example, consider
an object with a two-dimensional cross-section specified by p(z,y), where z,y specify the position along two
orthogonal axis. Here, u(x,y) represents the density of the object’s cross-section, which specifies the rate at
which photons (or other particles) are absorbed as they pass through the object.

In order to reconstruct cross-sectional images, it is necessary to measure the projections through the object
at various angles and positions. A projection angle at angle 6 and displacement ¢ can be expressed as

p(0,t) = / w(—zsinb + tcosb, zcosf + tsinb) dz (1)

as illustrated in Figure 1.

It is generally not possible to measure the projection p(6,t) directly. Instead, one measures the photons at
the detector that pass through the object along the line of the projection. The measurement at angle # and
displacement ¢ can be expressed as the function A(6,t), which is proportional to the number of detected photons.
Generally, A(,t) is corrupted by a number of sources of noise and distortion. This noise can be photon counting
noise that is often modeled by a Poisson distribution, or it can be additive noise, that is often modeled by
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Figure 1. Single projection through the object for view angle # and displacement ¢.

additive Gaussian noise. However, it is usually the case that the expected value of A\(6,t) is related to the desired
projection by the equation -
A(0,1) = E[M0,t)] = Ar exp (—=p(0,1)) , (2)

where E[] denotes the expectation, A(6,t) denotes the expected value of A\(6,t), and Az denotes the number of
photons which are impinging on the object from the photon source. In practice, the value of Ay may vary with
the projection, but in this discussion we assume without loss of generality that Ar is constant. For purposes of
explanation, we also use the exponential function; however, this exponential function may sometimes be replaced
with another non-linearity that more accurately models the actual attenuation. Generally, any such non-linearity
must map values of p(f,t) to positive values of A(f,¢), and must be an invertible function.

Given equation (2), the desired projections may be computed from the expected measurements using the
relationship

p(6.0) = —tog (0} )

So from equation (3), it can be seen that the projections can be determined once the value of \(6,t) is known.
The difficulty in applying equation (3) is that the value of A(6,t) is not known since only the noisy value of (6, t)
can be directly measured. There are two major sources of noise in A(6,t): photon statistics noise and electronic
noise. The former corresponds to quantum noise related to the mechanism of interaction of x-ray with matter
through absorption, Compton effect, and pair production,’ and often dominates the distribution at usual scan
techniques. The latter originates in the data acquisition system formed by the x-ray detector, analog-to-digital
converters, encoders, and cables, and comes mainly from dark currents in the electronics, interference noise from
inter-connecting cables, and many other sources. In scan techniques aimed at low-dose tomographic imaging,
electronic noise certainly becomes non-negligible and affects measurements in a way which makes processing
more difficult and risks degradation of the reconstructed images.

One approach to this problem is to use the approximation A(0,t) = A(6,t). If A(6,t) is large, such as for high
scanning techniques, this approximation is good since in this case the value of the signal is large compared to
the level of noise. However, if the object being imaged is very dense or large, then the attenuation may be very
great, and the value of \(6,t) will be very small. In this case, the measured value of \(6,t) may have a large
percentage error, or may even be negative, which conflicts with equation (3). This is usually due to the fact that
the electronic noise in the CT system becomes significant as compared to the photon statistical noise. If A(6,t)
is negative, the approximation A(6,¢) = A\(f,t) cannot be used because it would require that the logarithm of
a negative number be computed in equation (3). Simple methods of dealing with this problem such as simply
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zeroing the negatives, or replacing them with absolute values \(6,t) = |\(6,t)| to avoid generating artifacts due
to large numbers of measurements clipped to zero, allow processing through equation (3), but corrupt the true
statistical nature of the data and introduce negative bias in the reconstruction.

A second possible approach consists of taking many measurements of A(#,¢) and computing the statistical
average of those contributions to form the data set used for reconstruction. The noise in different measurements
is generally independent, so by averaging one can obtain an approximation of the desired mean A(#,t). However,
this approach has a number of important disadvantages to practical use. First, it requires more time to perform
the necessary acquisitions since A(f, t) must be measured multiple times. More importantly, it exposes the object
to more harmful radiation; in human patient medical tomography, greater exposure to x-ray ionizing radiation
may result in greater health risk, which is undesirable.

A third approach, representative of techniques often used in practice in pre-processing data for conventional
reconstruction methods such as Filtered Back-Projection? (FBP), is to smooth neighboring values of \(6,t). Let
A(i,7) denote the measured value for the i*" angle (i.e. the variable #) and the j*" displacement (i.e. the variable
t). Then one may apply a smoothing filter to A\(¢,j) which averages values which have nearly equal angles and
displacements to produce a smoothed version of the measurement denoted by 5\(1, 7).3 One may then use the
approximation A(f,t) = A(6,t). This smoothing filter can reduce the noise by averaging values with different
noise samples, but has a number of disadvantages. It does not necessarily guarantee that the resulting smoothed
value is positive since it might happen that a group of negative values fall near one another in the data. The
averaging process also tends to blur the resolution of the reconstruction in regions that do not require averaging
in the high signal-to-noise projections. Finally, the process may not preserve the physically accurate statistical
nature of the data: corrupting the mean value of local regions in the measurements can lead to bias in the
reconstruction, and shading artifacts in images.

Other approaches have been proposed to directly account in the processing for the distribution of detector
counts including both quantum photon noise and detector readout noise, by considering mixed additive Poisson-
Gaussian models.* Although, these techniques were investigated successfully, particularly for image restoration,
such hybrid models for conversion from detector counts to projection attenuation measurements in CT can be
used only at the cost of significant additional complexity in the reconstruction.

In this work, we introduce a simple recursive method for estimating A(6,t) from A(#,¢) which respects the
true nature of the distribution of the measurement data for processing in equation (3) prior to reconstruction.
In particular, preserving the local mean of the data is important to avoid introducing bias in the reconstruction.
The technique we propose is specifically designed for iterative reconstruction by statistical modeling.? For such
techniques, the quality of the noise modeling in the projection data is critical to image quality. Therefore, we
also present in this paper the development of accurate noise modeling for statistical iterative reconstruction for
low-dose imaging which accounts for electronic noise distribution, and introduce a similar iterative formulation
of the bias correction filter as an alternative to the recursive method proposed above.

Section 2 details the proposed recursive filter to estimate A(6,¢) with high statistical fidelity to A(6,t) before
applying equation (3). Section 3 introduces the statistical formulation of the reconstruction problem which can
be solved iteratively, and focuses especially on developing a noise model which includes electronic noise. The
iterative solution to the reconstruction problem also leads to an analogous method of iterative bias correction,
in which the causal filter of section 2 can be replaced by a non-causal iterative filter we derive in section 4
for possibly improved results. Section 5 finally presents the application of the causal filter to phantom data,
indicating promising outcomes for practical application.

2. POSITIVE BIAS CORRECTION

We introduce here a non-linear filtering process in one, two, or three dimensions, that smoothes only the low
signal-to-noise measurements in A(6,t), while preserving the local average of the projection measurements and
insuring that all resulting values are positive and ready for processing through equation (3) and subsequent
iterative reconstruction.

Such local filtering methods have been derived for different applications in the past, for instance in the field
of digital half-toning. A good example is the Floyd-Steinberg® error diffusion algorithm. The function of this
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algorithm is to generate binary patterns whose local mean are nearly equal to the local mean of an image to
be rendered, by means of displaying on a screen or printing it. Error diffusion operates by dispersing the error
produced by binarization of pixels that have not yet been processed. Other methods, such as Direct Binary
Search” (DBS) have been developed for digital half-toning and disperse the errors generated by binarization to
all surrounding pixels. In some cases, these algorithms can be viewed as distributing the errors non-causally to
both pixels that have not been processed and also pixels that have been processed. This type of algorithm is
usually iterative by nature because of the fact that past pixels are affected by the processing of a present pixel.
Generally, these iterative digital half-toning methods yield higher quality results than simpler techniques, but at
the cost of additional computation, which is mitigated in practice by the use of specialized hardware in copiers,
printers, etc.

Here, we apply a similar concept to the pre-processing of projection data for tomographic imaging, to specify
the operation of a causal mean-preserving filter (MPF) on data corrupted by quantum and electronic noise.
First, a non-linear function must be chosen to map any real valued input A to strictly positive values. It is
desirable that such a function does not significantly change positive values in A(6,t). These usually correspond
to higher signal-to-noise ratios in the measurement data and pose no particular problem in the negative logarithm
operation. Noise distribution for such data can be modeled as part of the statistical formulation for iterative
reconstruction. Generally, it is best to use a strictly increasing monotone function, for instance:

g(A) = &log (exp(A/6) + 1), (4)

where ¢ is a parameter that can be tuned for best performance. This is accompanied by the choice of normalized
weighting coefficients, for instance:

w1 27/16,11)2: 1/16,w3:5/16,w4:3/16. (5)

With this initiation, the MPF filter works recursively to compute a new array :\(i, j) from the measurements
(%, 7). We refer to each position (7,j) in the 2-D array as a detector element (for each projection angle 6 and
displacement t). First, the values of a new array are initialized to the values of the measurement for all elements
(4,7): N

A4, ) — Ali, 4), (6)
where the symbol « denotes that the values of A(i,j) are assigned to the array A(i,j). Next, the values of
the elements (i,7) are considered in some order, such as raster or serpentine, defined to sequentially visit each
element once at each iteration. For each such position (,j), the non-linear transformation in equation (4) is
applied to compute a strictly positive value for 5\(1, 7):

A g) < g (Mi.9)) (7)
Next, the error is computed as
e =g (A0,9)) = Mi.) (8)
and the negative of this error is distributed to elements that have not yet been processed. We choose to use
standard dispersion such as illustrated in Figure 2 (a) when processing from left to right:

i, j+1) « )\(ij—i—l)—wle
)\(z—i—lj—i—l) — Mi+1,j+1) —wse
MNi+1,j5) « ;\(Z—Fl,j)—ng
Mi+1,j-1) — Ai+1,j—1)—we (9)
and such as illustrated in Figure 2 (b) when processing from right to left:
Niyj—1) — Xi,j—1)—wie
A@+1]—U — ANi+1,j—1) —wse
MNi+1,5) « 5\(2+1,j)—w36
MNi+1,7+1) — Mi+1,j+1)—wye (10)
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Figure 2. Forward (a) and backward (b) error dispersion for bias correction.

After the error is propagated to the local neighborhood of element (i,7), a new element is selected among the
set of elements yet to be visited, and the process described in equations (7), (8), (9), and (10) is repeated until
all the elements have been processed.

Note that for multi-slice detector arrays, the processing becomes three-dimensional, across projection angles,
detector channels, and detector rows. The filtering may be applied as a number of 2-D processing steps as shown
in the above example, either in rows and channels for each projection angle, or better in projection views and
channels for each detector row, so as to minimize the residual error. Or a similar process may be developed for
error dispersion directly in three dimensions, which we have not experimented with.

The operation of this causal MPF is analogous to the operation of an error diffusion filter used in digital
half-toning in that it is designed to match the local means of the measurement data A(é, j) and the processed
input A(Z, ), but it differs in two significant ways. First, it uses a non-linearity g(\) that is designed to insure
that the output is a continuous positive value rather than being designed to quantize the output. Second, it is
used to process density measurements, rather than to digitally render an image.

3. ELECTRONIC NOISE MODELING FOR STATISTICAL ITERATIVE
RECONSTRUCTION

Iterative methods for CT image reconstruction have originally been introduced on the very first CT scanners, with
such methods as algebraic reconstruction techniques (ART),® which iteratively change subsets of image values
in an attempt to reduce error. A different class of methods allows the inclusion of more realistic descriptions of
the true physical processes involved in x-ray scanning.’ Image reconstruction can be defined in a statistically
optimal sense by developing appropriate models of the distribution of noise in the projection data, and accounting
for the variance in the measurements.

Let r be the vector of x-ray densities of elements of the three-dimensional imaged object, p the actual
projection measurements as defined in section 1. In general, the optimization problem in iterative reconstruction
can be expressed as

f':argm}n{G(p—F(r))+U(r)}, (11)

In equation (11), F(r) is a transformation of the image space r in a manner representative of the CT system.
The model F(r) includes the precise geometry of the scan pattern and the source/detector structure. Frequently,
a linear model of the form p = Ar + n is used, where the noise values in n represent random fluctuations of the
measurement about its mean. U(r) is a regularization function that stabilizes the objective by enforcing local
penalties on the image r. The function G(-) is our focus of interest here. It represents a measure of statistical
confidence in the data, and can be derived from the distribution of the projections. A good approximation for
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the x-ray transmission problem is based on a second order Taylor series expansion of the Poisson distribution of
the measurement counts,'® and yields the quadratic form

G(p—Fr)~5(p—-Fr) Dp-Fr)), (12)

N~

where D is a diagonal matrix. Its coeflicients d; are proportional to detector counts, which are Maximum Likeli-

hood estimates of the inverse of the variance of the projection measurements %.10’ 11 Recall from equation (3)

P
the relation between projection data p; and detector count \; for measurement index i to obtain

1
di ~ N\; = Ape Pt —- (13)

Ip

This formulation can be extended to explicitly model electronic noise in the reconstruction process, in a

manner related to the recursive filter designed in section 2 to preserve the local mean in the projection data.

In reality, the combination of x-ray quantum noise and detector electronic noise yields a compound additive

Poisson-Gaussian distribution. This must be accounted for in the noise modeling so as to minimize related
artifacts. Introduce )\; as the average detector count, and p; as the true projection data. Then

A7 i

P = log</\—i>+10g<>\—i>
s oe [(N
= DPi g 5\1

= p+(1-3). (14)

)

Equation (14) provides a linear approximation of the relationship between projection data and detector counts,
and leads to a related description of their respective variances. Let o) the standard deviation of the x-ray photons
arriving at the detector. For a Poisson process, the variance is equal to the mean, so o3 = \;. Since electronic
noise is an additive process with standard deviation o, the variance in the total detector counts is 03 + o2.
Therefore, under the more physically accurate assumption of a compound Poisson-Gaussian distribution for the
detector counts, we obtain from equation (14) a better estimate of the variance in the projection attenuation
measurements:

2= ot eed) (£) (15

Approximately the inverse of the variance in the projection measurements is used for calculating the coeffi-
cients d; of the diagonal weighting matrix D, so

12
d ~ 1 QL
! 62 N\ + o2
p i n

)\%6’21”

1

Are~Pi 4+ g2

—Pi
Ape P <7e , ) . (16)
e—pi + In
AT

This new formulation incorporates electronic noise into the statistical modeling for iterative reconstruction as
2
in (11). The quantity U—; may be viewed as the ratio between quantum detector noise and photon noise. To

determine this parameter, a first order approximation might be to relate this quantity to the rays of maximum
attenuation in the projection data:

1

0.2

—nE —Pmax 17
% (17
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but this may not apply in the general case since it does not take into account the signal-to-noise ratio. Instead,
experimental means of observation of the standard deviation of electronic noise in the DAS may be needed.

Equation (16) assumes working directly from the pre-corrected projection measurements p. One might argue
that the statistical model may gain in accuracy by directly using the raw count random measurements \; corrected
only by detector offset calibration measurements, in which case D becomes

Ai
o (). s

Offset calibration is usually performed before each scan by taking measurements with x-ray off in order to
determine temporal variations due to changes in temperature.

The statistical formulation formed by the combination of equations (11), (12), and (16) or (18) requires
an iterative solution to obtain the most likely image estimates satisfying the optimization criteria. We use the
Iterative Coordinate Descent!'® (ICD) algorithm to optimize the estimates. The ICD algorithm works by reducing
the N-dimensional optimization problem to a series of one-dimensional greedy updates, solving for one image
element at step (n + 1) based on the full state after step (n):

n . di n n 2 n
f]( U = arg min {Z 5 (pi — A+ Aij(rg- ) rj)) +U(x! ),rj)} : (19)
> -

(2

The ICD algorithm has been shown to converge quite rapidly compared to various other iterative techniques for
computed tomography.'? Interestingly, it also easily enforces positivity constraints on the solution.

4. ITERATIVE BIAS CORRECTION

Much in the way that the ICD algorithm operates on single voxel elements to iteratively obtain optimal positive
estimates by equation (19), an iterative filter for bias correction can be derived to replace the causal MPF of
section 2. The idea is to introduce a statistical model for the detector count elements which guarantees positivity,
and ensures that the corresponding projection data computed by equation (3) are little affected. The Iterative
Positive Filter (IPF) takes the form:

2 ~ 2 ~ - 2
M) = argmin § 57 (MG 3) = M) +7 3 bionget (log (Mk.D) —log (0.0)) - (20)
4, i,5,k,1

In equation (20), S\(i,j) is the processed output of the IPF algorithm, Z” b;; = 1, and v is a constant which is
chosen based on the amount of smoothing that is desired in the result. If v is large, more smoothing is applied,
whereas if v is small, less smoothing is done. Due to the concave nature of the log function, the IPF algorithm
has desirable properties: first, the output 5\(17 J) is strictly positive; second, as the values of A(4, j) become larger,
the amount of smoothing is reduced; third, the local means of A(4,5) and A(4, j) are approximately matched.

The ICD updates for this problem take the form:

- 2 - - 2
A(m,n) < arg _ min Z (/\(m, n) — A(m, n)) + Z bicm,j—n (log (/\(m,n)) —log ()\(i,j))) )
Almm)>0 (G (i) (m,n)

(21)
where S\(m, n) is the single detector count element being updated. This update strategy can be applied to each
element for a single iteration, and the iterations can be repeated until the desired quality is achieved. Elements
are updated in sequential order. Therefore, each time an element is updated, the neighboring elements are
affected due to the influence of the second term in equation (21). One could of course imagine applying different
penalty function to the different terms of equation (20), or other non-linear functions to replace the logarithms
in a manner more representative of the physical conversion from detector counts to attenuation measurements.

In some aspects, the IPF is also similar to the DBS algorithm,” in the sense that elements are affected based
on their local properties, although it is done here for the specific purpose of correcting positive bias in CT.
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(b)

Figure 3. Oval phantom with QA insert in 50 c¢m field of view, 16 x 0.625mm, 120mA. (a) FBP; (b) IR without MPF
nor electronic noise modeling; (c) IR with MPF and electronic noise modeling. Window level 50, window with 350 HU.

5. RESULTS

Both the causal MPF and the non-causal IPF are similar in that they apply an operation that computes the
difference between the estimated and actual measurement of detector counts A(4, j) — A(4, j), and propagates this
error to neighboring elements in a manner designed to match the local means of A(¢, j) and A(i, 7). By preserving
the mean of the measurement data, the MPF effectively corrects the shading artifacts along the lines of strong
attenuation. This is because the MPF reduces or eliminates the bias that would be created by other methods of

ensuring the non-negativity of the data processed through the negative logarithm operation of equation (3).

To illustrate these benefits, we scan and reconstruct an oval phantom with a QA insert. The phantom
contains Teflon rods on both sides so that horizontal rays through the object are attenuated significantly more
than vertical rays, and the susceptibility to quantum detector and photon noise is greater along the horizontal
direction. The scan is 16-slice axial with a detector collimation of 0.625 mm, and is acquired at 120 mA to
exemplify low-signal cases. The data is pre-corrected for beam hardening based on calibration vectors after the
negative logarithm operation is applied, and before the start of image reconstruction. The reconstruction is
performed first with FBP with adaptive low-signal correction, using the simple method of taking the absolute
value of the negative data in A(7,j) before negative logarithm. Second, iterative reconstruction of the same
data without the MPF is done. Figure 3 shows the complete phantom in 50 cm field of view to illustrate the
qualitative aspect of the results. The FBP image (a) with adaptive low-signal correction appears at the top.
The bottom (b) result is the ICD image without applying the MPF nor modeling electronic noise. We used the
GGMRF prior!? for U(r) with exponent 1.2 in this experiment. Although the ICD image is already significantly
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(a)

Figure 4. High resolution image of QA insert in 25 cm field of view. (a) IR without MPF nor electronic noise modeling;
(b) IR with MPF and electronic noise modeling. Window level 50, window with 350 HU.

better than the FBP image, the dark noisy horizontal streaks are clearly visible in both uncorrected images. The
bottom (c) image is the result of applying both two passes of the MPF, and electronic noise modeling in the
iterative loop, to achieve best results.

Figure 4 (a) and (b) show a higher resolution version of the insert in 25 cm field of view with and without
the correction, respectively. The positive bias responsible for the shading streaks in the uncorrected image has
successfully been compensated by proper handling of the low-signal counts in the data. In addition, the effect of
proper electronic noise modeling is to lower the level of confidence in projection data from the photon-starved
regions of the sinogram, which are intrinsically unreliable. A risk of such noise modeling that is worth mentioning,
with or without MPF for iterative reconstruction, is the non-uniform weighting of projection rays depending on
the measured attenuation. The effect of this can be visualized in Figure 4, where it is apparent that the horizontal
edges of the QA insert are blurred compared to the vertical edges. The balance between noise weighting in the
log-likelihood and the regularization terms in equation (11) needs to be studied further to mitigate the risk.

6. CONCLUSION

We have presented methods to explicitly correct the effects of low-signal data with large quantum and detector
noise for computed tomography. Both a causal and a non-causal iterative filter have been introduced for positive
bias correction compared to conventional methods. In addition, a model for including electronic noise in the sta-
tistical formulation for iterative reconstruction was presented. Phantom results demonstrate positive outcomes.
Further advances in the regularization model should address potential issues of non-uniform smoothing in the
reconstructions as a result of spatially-varying smoothing in the sinogram.
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