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SteganographyJessia Fridrih and Tomá² FillerDepartment of Eletrial and Computer EngineeringSUNY Binghamton, Binghamton, NY 13902-6000, USAABSTRACTIn this paper, we propose a general framework and pratial oding methods for onstruting steganographishemes that minimize the statistial impat of embedding. By assoiating a ost of an embedding hange withevery element of the over, we �rst derive bounds on the minimum theoretially ahievable embedding impatand then propose a framework to ahieve it in pratie. The method is based on syndrome odes with low-densitygenerator matries (LDGM). The problem of optimally enoding a message (e.g., with the smallest embeddingimpat) requires a binary quantizer that performs near the rate-distortion bound. We implement this quantizerusing LDGM odes with a survey propagation message-passing algorithm. Sine LDGM odes are guaranteedto ahieve the rate-distortion bound, the proposed methods are guaranteed to ahieve the minimal embeddingimpat (maximal embedding e�ieny). We provide detailed tehnial desription of the method for pratitionersand demonstrate its performane on matrix embedding.Keywords: Steganography, embedding impat, low-density odes, survey propagation, matrix embedding1. INTRODUCTIONIn passive warden steganography, the goal is to ommuniate as many bits as possible without introduingstatistially detetable artifats into the over objet. In pratie, a steganographi sheme is onsidered seureif no existing attak an distinguish between over and stego objets with a suess better than random guessing.Formal de�nition of steganographi seurity was given by Cahin.3The seurity of a steganographi sheme is a funtion of its attributes, whih are (1) the over objet sourewhose properties are known to the attaker (Kerkho�s' priniple), (2) the embedding operation that is appliedto individual over elements to embed a message, and (3) the seletion rule aording to whih over elements areseleted for embedding. For the sake of onreteness and without loss of generality, at times we will be referringto the over objet as image and the over elements as pixels.The statistial impat of embedding at a given pixel depends on many fators, suh as the harater ofembedding modi�ations, their amplitude, loal pixel neighborhood, et. Assuming eah pixel an be assigneda number that measures the statistial impat of making an embedding hange at that pixel, we are interestedin the minimal possible impat needed to embed m ≤ n bits in a over objet onsisting of n pixels. If theembedding impat is de�ned simply as the number of embedding hanges d, it is known1 that d ≤ nH−1(m/n),where H−1(x) is the inverse of the binary entropy funtion H(x) = −x log2 x − (1 − x) log2(1 − x) on [0, 1/2].For a �xed relative message length α = m/n, this bound is ahievable using syndrome odes of length n anddimension n −m as n → ∞.8 Pratial odes were proposed in.1, 2, 6, 7, 14, 15 Unfortunately, their performaneis not very lose to the bound. In this paper, we study the problem of minimizing the embedding impat, deriveappropriate bounds, and propose a general framework using whih pratial near-optimal embedding shemesan be onstruted.The paper is strutured as follows. After introduing some basi onepts, in Setion 2 we de�ne embeddingimpat in steganography and give a preise problem formulation. In Setion 3, we desribe the building bloksof the proposed framework for onstruting embedding shemes with minimal embedding impat. We startSetion 4 with explaining the relationship between optimal embedding and ahieving the rate-distortion boundJ.F.: E-mail: fridrih�binghamton.edu, Telephone: +1 607 777 6177, Fax: +1 607 777 4464



in soure oding. Then, we introdue the entral element of near-optimal embedding shemes�the binaryquantizer realized using LDGM odes with survey propagation message-passing algorithm. Setion 5 explainsother missing elements of the embedding sheme and the extration algorithm. In Setion 6, we demonstrate theperformane of the proposed framework on matrix embedding. The paper is onluded in Setion 7.2. STEGANOGRAPHIC EMBEDDING SCHEMEThroughout the text, boldfae symbols denote vetors or matries while the aligraphi font is reserved forsets. The over objet is a sequene of n elements g = (g1, . . . , gn) ∈ Gn, where G = {0, . . . , 2r − 1} and
r is the number of bits needed to desribe eah element. Most steganographi shemes work with a �nite�eld representation of g obtained through some symbol-assignment funtion symb : G → Fq. For example,
symb(gi) = gi mod 2 (symb(gi) = gi mod 3) assign a bit (ternary symbol) to eah over element. Thus, the overobjet g is represented as a vetor x ∈ Fnq .A steganographi sheme is a pair of embedding and extration mappings Emb : Fnq×M → Fnq , Ext : Fnq → Msatisfying

Ext(Emb(x,M)) = M, ∀x ∈ F
n
q , ∀M ∈ M, (1)where M is the set of all messages M that an be ommuniated. We say that the embedding apaity of thesheme is log |M| bits. Emb(x,M) = y is the �nite �eld representation of the stego objet g′ obtained bymodifying g so that symb(g′i) = yi. For example, in LSB embedding with symb(gi) = gi mod 2, the LSB of thebinary representation of gi is �ipped. In ±1 embedding, gi is randomly hanged by 1 or −1. We note that thenature of the modi�ation has a major impat on the seurity of the steganographi sheme.The impat of making an embedding hange at pixel i will be measured using a salar value ρi ≥ 0. The totalembedding impat is then

D(x,y) = ‖x − y‖D =
n
∑

i=1

ρi|xi − yi|. (2)We an interpret ρi as the ost of making an embedding hange at pixel i. This detetability measure shouldbe designed to orrelate with the statistial detetability of the embedding hanges. In pratie, ρi is usuallyproposed using heuristi priniples. For example, for a non-negative parameter α and weight fators ωi ≥ 0

ρi = ωi|gi − g′i|
α. (3)If the embedding hange is probabilisti, then we understand (3) as the expeted value. Below, we give a fewexamples of (3) typially used in steganography.If ωi = 1 for all i and |gi − g′i| = 1, D is the total number of embedding hanges. For ωi = 1 and α = 2, Dis the energy of modi�ations. Wet paper oding6 an be modeled by setting ωi = 1 for i ∈ Dry and ωi = 0otherwise, for some index set Dry ⊂ {1, . . . , n}. In general, the weighting fators may depend on the loal textureto re�et the fat that embedding hanges in textured (or noisy) areas are more di�ult to detet than hangesin smooth segments of the over image.The impat ρi may also be determined from some side-information available to the sender as in PerturbedQuantization steganography (PQ).5 For example, let us assume that the over is a TIFF image sampled at 16bits per hannel. The sender wishes to embed a message while dereasing the olor depth to a true-olor 8-bitper hannel image while minimizing the ombined quantization and embedding distortion. Let zi be the 16-bitolor value and let Q = 28 be the quantization step for the olor depth redution. The quantization error is

ei = Q|zi/Q− [zi/Q]|, 0 ≤ ei ≤ Q/2, and the error when rounding zi to the opposite diretion is Q− ei leadingto embedding distortion as the di�erene between both errors ρi = Q − 2ei. In PQ, oe�ients are seleted forwhih ei ≈ Q/2 beause for suh oe�ients, the embedding distortion is the smallest. Also note that in thisase, sine the quantization error is approximately uniform on [−Q/2, Q/2], when sorting ρi by their values theresulting pro�le will be well modeled with a straight line.We point out that (2) impliitly assumes that the embedding impat is additive beause it is de�ned as asum of detetability measures at individual pixels. In general, however, the embedding modi�ations ould be



interating among themselves, re�eting the fat that making two hanges to adjaent pixels might be moredetetable than making the same hanges to two pixels far apart from eah other. A detetability measure thattakes interation among pixels into aount would not be additive. If the density of embedding hanges is low,however, the additivity assumption is plausible beause the distanes between modi�ed pixels will generally belarge and the embedding hanges will not interfere muh.2.1. Problem formulationThe entral problem investigated in this paper is design of steganographi shemes whose expeted embeddingimpat E[D(x,y)] is as small as possible for overs of length n, embedding apaity m, and detetability measure
ρi. The expeted value is taken over all over objets x and messages of length m.From now on, we will onstrain ourselves to the binary ase Fq = GF(2) when the symbol-assignment funtionassigns a bit to eah over element. In Appendix A, we show that for the binary ase the minimal expetedembedding impat is

D(n,m, ρ) =

n
∑

i=1

piρi, (4)where
pi =

e−λρi

1 + e−λρi
, (5)and λ is given by the following onstraint

n
∑

i=1

H(pi) = m, (6)where H(x) is the binary entropy funtion. Moreover, the embedding operation will on average modify the i-thpixel with probability pi. Thus, if we design an embedding sheme that modi�es pixels with these probabilitiesand ommuniates m bits, it will leave the minimal possible embedding impat.3. THE BASIC FRAMEWORKIn this setion, we desribe the framework for onstruting near-optimal embedding shemes using syndromeodes. The individual elements from whih the framework is omposed are explained in detail in the next twosetions. From now on, all vetors are olumn vetors and all arithmeti operations between binary vetors andmatries are arried in the GF(2). A good text on oding theory is.17Let us assume that the reeiver knows the relative message length α = m/n and thus the number of seretmessage bits m. Indeed, this an be either pre-agreed or a small, key-dependent portion of the over an bereserved to ommuniate a suitably quantized α enoded using a few bits. Let C be an [n, n−m] binary ode Cwith an n× (n−m) generator matrix G and an m×n parity hek matrix H. Both matries are shared betweenthe sender and the reipient. Let C(m) = {u ∈ {0, 1}n|Hu = m} be the oset orresponding to syndrome
m ∈ {0, 1}m (m is the seret message). The following embedding sheme ommuniates m bits in an n-elementover x

y = Emb(x,m) , arg min
u∈C(m)

‖x − u‖D

Ext(y) = Hy = m. (7)Here, y are the bits assigned to the stego image. In other words, in an attempt to minimize the embeddingimpat, the sender selets suh a member y of the oset C(m) that is losest to x (losest in metri ‖.‖D).Let vm ∈ C(m) arbitrary. Then,
min

u∈C(m)
‖x− u‖D = min

c∈C
‖x − (vm + c)‖D = D(x − vm, C) = min

w∈{0,1}n−m
‖x − vm − Gw‖D , (8)where we denoted by D(x − vm, C) the distane between x − vm and C. From (8), we see that embedding isa binary quantization problem. The sender needs to �nd w ∈ {0, 1}n−m suh that Gw is losest to x − vm.



Alternatively, we an say that the sender is ompressing the soure bit sequene z = x−vm to n−m informationbits w so that the reonstruted vetor Gw is as lose to the soure sequene as possible. Let us denote thelosest odeword Gw as cm,x.Assuming there exists an e�ient algorithm for �nding both vm and cm,x, the stego objet y is
y = x + cm,x − z = cm,x + vm. (9)Four things need to be supplied to make the desription of this embedding sheme omplete. We need todesribe the proess by whih we generate the ode, the algorithm for �nding vm, and the algorithm for binaryquantization. We also need to explain why the distortion of this embedding sheme is lose to the bound (4).The most di�ult step in the proposed sheme is the binary quantization. In fat, it ditates the hoie of theode and determines the omputational omplexity. This is why we start with it in the next setion.4. BINARY QUANTIZATION USING LDGM CODESIn this setion, we give the implementation details for the binary quantizer, whih is the entral element inour embedding sheme based on syndrome odes. Here, we intentionally fous on a pratial desription of themethod to enable the reader to implement the embedding sheme without being neessarily familiar with alltehnial details of the underlying material. We refer the reader to the original publiations10, 16 for more details.We lay out the method for the speial ase when all ρi are the same, postponing the non-onstant detetabilitymeasure to our future work. In fat, we believe that the same framework an be used after some adjustments.The modi�ations are pointed out in the text.When all ρi are the same, D is simply the number of embedding hanges and the problem of minimizing theembedding impat turns into what is known in steganography as Matrix Embedding.4 The quantization task(8) is equivalent to �nding the oset leader of C(m), whih is an NP hard problem. From the binary quantizationinterpretation, the rate-distortion theory implies that the rate R = 1 −m/n of any soure enoding algorithmthat ompresses n bits into n−m bits is bounded by R = 1 −m/n ≤ 1 −H(d), where d = D/n is the averagedistortion per bit. Denoting the average number of message bits embedded per unit distortion by e = m/D andrealling that α = m/n is the relative message length, the rate-distortion bound is reognized in its equivalentform as a bound on the maximal embedding e�ieny e of any Matrix Embedding sheme

e ≤
α

H−1(α)
. (10)It is known8 that for �xed α and n → ∞ this bound is saturated for almost all linear odes. This explainswhy the proposed framework is near-optimal for n su�iently large. The big problem, of ourse, is how to �ndodes for whih e�ient algorithms exist for large n. Strutured odes1, 2, 14, 15 and random odes6, 7 that werepreviously proposed do not perform too lose to the bound and their omplexity grows too quikly.Wainwright and Maneva16 reently showed that duals of LDPC odes alled Low Density Generator Matrixodes (LDGM) ombined with Survey Propagation (SP) message-passing algorithms ould be used to onstrutlow-omplexity binary quantizers with performane very lose to the rate-distortion bound. Subsequent workproved that with n → ∞ ompound low density odes saturate the bound with matries whose number of onesin rows and olumns is bounded.11 We use the onstrution given in16 to implement near-optimal embeddingshemes.We start with the desription of the generator matrix G. For a given message length α, we selet G as theparity hek matrix of an LDPC ode optimized for the binary symmetri hannel (BSC) with error probability

p = 1 − α. The matries are generated randomly but with a onstraint that the number of ones in eah rowfollows a prespei�ed optimized irregular distribution. Desription of algorithms for generating the distributionsis given in12 and an interative pratial algorithm for their generation is available from http://lthwww.epfl.h/researh/ldpopt/. Furthermore, as explained in more detail in Setion 5, we additionally preproess G bypermuting its rows and olumns to enable easy �nding of the oset member vm and fast message extration.
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ce + wi + wj + wk = 0
cf + wk = 0Figure 1. Fator graph representation of a linear ode with generator matrix G.4.1. Graph representation of a odeEah ode C an be represented as a fator graph in the following manner. Assuming G is full rank, for eahodeword c ∈ C there exists exatly one w ∈ {0, 1}n−m, c = Gw. Thus, eah odeword c an be uniquelyassoiated with a vetor of 2n−m bits (c,w), alled extended odeword, satisfying

[I,G]

(

c

w

)

= 0, (11)where I is the n× n unity matrix. Therefore, (11) an be viewed as a de�nition of a ode via a bipartite graphwith two types of nodes�n hek nodes and 2n−m variable nodes. Consider, for example, the ode de�ned inFigure 1 with generator matrix G. The bipartite graph on the left has 6 heks a, . . . , f and 9 variable nodes.We now introdue the following terminology and notation for fator graphs. The bits onneted to the heks�from above� ca, cb, cc, . . . will be alled soure bits and the bottom bits wi, wj , wk will be alled information bits.The set of all heks is denoted C and the set of all information bits V . The set of all heks onneted to aninformation bit i is denoted C(i) and the index set of all information bits onneted to hek a is denoted V (a).We further denote V (a) = V (a) ∪ {a}, where index a is used for the soure bit za assoiated with hek a. Forour example above, C(i) = {a, c, e}, V (a) = {i, k}, V (a) = {i, k, a}.4.2. Belief-propagationOne way to look at the quantization problem (8) is that z = x − vm is a noisy odeword in a binary symmetrihannel (BSC) with �ip probability p < 1/2 and we wish to perform maximum likelihood deoding and �nd thelosest odeword cm,x to z. In LDPC odes, this problem is approahed using belief-propagation (BP) message-passing algorithm. It starts by forming the following probability distribution p(v,w) over the spae of all possiblebinary vetors (v,w) ∈ {0, 1}2n−m. Let φa(va, wV (a)) be the XOR of all bits from V (a). Then,
p(v,w) =

1

Z

∏

i∈V

ψi(wi)
∏

a∈C

ψa(va)
∏

a∈C

(1 − φa(va, wV (a))), (12)where Z is the normalization fator, ψi(wi) = 1/2, ∀i, and ψa(va) = 1 − p when va = za and ψa(va) = p when
va 6= za. Note that p(v,w) = 0 for extended odewords not satisfying the XOR-SAT problem [I,G]

(

v

w

)

= 0.Also note that the hoie of information bits wi does not in�uene the probability while the mismath betweensoure bits za and va is penalized aording to the probability of bit �ipping in the BSC. We denote by pi(0) themarginal probability
pi(wi = 0) =

1

Z

∑

v∈{0,1}n

∑

w∈{0,1}n−m

wi=0

p(v,w),where Z is a normalization fator. A similar expression an be obtained for pi(1). The information bits are setto either 0 or 1 based on whih marginal probability is larger. When the ode graph is yle-free (a tree) the



marginal probabilities an be alulated e�iently using the belief-propagation algorithm. The algorithm is alsoused on graphs with yles (suh as our bipartite graph) and gives good results.The BP algorithm is of iterative nature and onsists of rounds in whih heks proess the messages theyreeive from their neighboring information bits and send bak messages to the information bits. The informationbits proess the messages reeived from their heks and send messages bak to their heks. The message sentby hek a to information bit i in the ℓ-th iteration is the ordered pair (M
(ℓ)
a→i(0),M

(ℓ)
a→i(1)) and the message frominformation bit i to hek a in the ℓ-th iteration is (M

(ℓ)
i→a(0),M

(ℓ)
i→a(1)). The update formulas are

M
(ℓ)
i→a(wi) =

∏

b∈C(j)\a

M
(ℓ−1)
b→i (wi)

M
(ℓ)
a→i(wi) =

∑

wV (a)\i

(1 − φa(va, wV (a)))
∏

j∈V (a)\i

M
(ℓ)
j→a(wj).After normalizing the messages so that in eah round M (ℓ)

i→a(0) +M
(ℓ)
i→a(1) = 1, the messages have the followingprobabilisti interpretation. Chek a sends to its neighboring information bit i the probability that it is satis�edgiven the soure sequene z and the messages reeived from all information bits other than i in the previousround. Information bit i sends to its neighboring hek a the probability that it is 0 (or 1) given the informationreeived from its neighboring heks other than a in the previous round. The soure bits always send the samemessage to their heks: (Pr{va = 0|za}, P r{va = 1|za}), whih is either (p, 1−p) or (1−p, p). The whole proessis initialized by starting with soure bits sending their messages to the heks who forward the messages to theinformation bits (the initial message is denoted (M

(0)
i→a(0),M

(0)
i→a(1))). The BP algorithm is run till it onverges(message vetors do not di�er in two onseutive iterations) and the marginals are then omputed from the �xedpoint message M̂ in the ℓ̂-th iteration as

p(wi) =
∏

b∈C(i)

M̂
(ℓ̂)
b→i(wi).The information bits are �nally determined by hoosing the value of wi with a larger pi(wi).4.3. Survey propagationThe problem with the BP is that it onverges only when z is already lose (within the error-orreting distaneof the assoiated LDPC ode with parity hek matrix G), otherwise it does not onverge. This is known asthe folklore statement �LDPCs are poor quantizers.� Beause z is determined by the (random) message m, itis unlikely to be lose to a odeword. As a result, the BP algorithm annot be used for embedding. The spaeof all odewords essentially breaks up into disjoint lusters inside whih the BP will �nd the losest odeword.Survey propagation is an algorithm for �nding the losest luster to z. It is again a message-passing algorithmin whih information bits are set to their values through a series of deimation and message-passing steps.Similar to BP, in the SP algorithm the soure and information bits send messages to heks and then heksproess the reeived messages and send messages to information bits. The bits again proess the reeived messagesand send messages bak to heks, et. The proess stops when the messages sent by information bits intwo onseutive passes di�er by less than a small predetermined bound. After the message-passing algorithmonverged, seleted information bits are set to spei� bits and the bipartite graph is simpli�ed. The message-passing proeeds again on the simpli�ed graph till onvergene, a portion of the information bits are set to bits,the graph is again simpli�ed, and the whole proedure repeats till all information bits are determined. Onepass of the message-passing updates in both diretions will be alled iteration. The proess of assigning the bitsand simplifying the graph is alled deimation. The whole proess of running the message-passing updates tillonvergene followed by deimation is one round.The messages exhanged by bits and heks are �ve-dimensional vetors of non-negative real numbers. In the ℓ-th iteration, the i-th information bit sends to hek a the vetorM(ℓ)

i→a = (M
0f (ℓ)
i→a ,M

1f (ℓ)
i→a ,M

0w (ℓ)
i→a ,M

1w (ℓ)
i→a ,M

∗ (ℓ)
i→a )



Bits to checks update rules

M
0f (ℓ)
i→a =

∏

b∈C(i)\{a}

[

M
0f (ℓ−1)
b→i +M

0w (ℓ−1)
b→i

]

−
∏

b∈C(i)\{a}

M
0w (ℓ−1)
b→i

M
1f (ℓ)
i→a =

∏

b∈C(i)\{a}

[

M
1f (ℓ−1)
b→i +M

1w (ℓ−1)
b→i

]

−
∏

b∈C(i)\{a}

M
1w (ℓ−1)
b→i

M
0w (ℓ)
i→a =

∏

b∈C(i)\{a}

[

M
0f (ℓ−1)
b→i +M

0w (ℓ−1)
b→i

]

−
∏

b∈C(i)\{a}

M
0w (ℓ−1)
b→i −

∑

c∈C(i)\{a}

M
0f (ℓ−1)
c→i

∏

b∈C(i)\{a,c}

M
0w (ℓ−1)
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M
1w (ℓ)
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∏

b∈C(i)\{a}

[

M
1f (ℓ−1)
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1w (ℓ−1)
b→i

]

−
∏

b∈C(i)\{a}

M
1w (ℓ−1)
b→i −

∑

c∈C(i)\{a}

M
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∏
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M
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M
∗ (ℓ)
i→a = winfo

∏

b∈C(i)\{a}

M
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b→i

(13)
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Checks to bits update rules
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Bias equations calculated in ℓ-th iteration
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Figure 2. Update equations for message-passing in the SP algorithm.and the a-th hek sends to the i-th information bit the vetorM(ℓ)

a→i = (M
0f (ℓ)
a→i ,M

1f (ℓ)
a→i ,M

0w (ℓ)
a→i ,M

1w (ℓ)
a→i ,M

∗ (ℓ)
a→i ).The soure bits always send the same message to their heks :

M(ℓ)
za→a =

(

ψa(0), ψa(1), 0, 0, wsou
)

, (16)where wsou is a onstant, typially wsou = 1.1, and ψa(1) = zae
γ + (1 − za)e

−γ , ψa(0) = 1
ψa(1) . We note that

γ > 0 is a onstant and za is the a-th omponent of vetor z(r) to be ompressed in the r-th round, z(1) = z.The parameter γ re�ets the e�ort of the message-passing algorithm to �nd a odeword cm,x as lose to z aspossible. The larger the γ, the stronger is the e�ort. On the other hand, the struture of the ode C imposes alimit on how strong this e�ort an be. By assigning to eah soure bit za its own parameter γa, we ould ontrolthe probability of eah soure bit being preserved and thus ontrol the probability of making an embeddinghange at that pixel. This should enable us to onstrut embedding shemes for an arbitrarily de�ned (e.g.,non-onstant) detetability measure ρ. We leave this diretion to our future work.4.4. Detailed desription of SP algorithmWe now give a detailed desription of the SP algorithm. As a template, we will use the pseudoode from Figure 3.It de�nes two proedures: the main funtion SP() and SP_iter() that implements the message-passing iterations.



proedure w = SP(G, z)while not all_bits_fixed(w)bias = SP_iter(z, G)bias = sort(bias)if max(bias)>tnum = min(num_max, num_of_bits(bias>t))elsenum = num_min[G,z,w℄ = de_most_biased_bits(G,z,w,num)endend
proedure bias = SP_iter(z, G)M_zaa = normalize(al_soure_message(z))M_ai = send_sr_message(G, M_zaa)while |M_ai_old-M_ai|<e OR iter<max_iterM_ai_old = M_aiM_ia = normalize(al_ia(M_ai))M_ai = normalize(al_ai(M_ia, M_zaa))if iter>start_damp then M_ai = normalize(damp(M_ai))iter = iter+1endbias = al_bias(M_ai)endFigure 3. Pseudoode for the SP algorithm. This ode is disussed in detail in Setion 4.4.The SP algorithm (SP() funtion) starts its �rst round with a bipartite graph G(1) representing the fatorgraph of the linear ode with generator matrix G and a vetor of soure bits z(1) = z. Using these parameters,we run SP_iter() to alulate the bias Bi = |µi(1) − µi(0)| for eah free info bit (in the beginning, all info bitsare free). The bias Bi expresses the tendeny of eah free info bit to be set to a spei� value. In the next step,we use this information to sort the free info bits aording to their bias and we selet num most biased info bitsto be set by deimation in this round. We use the following deimation strategy: set num to the number of freeinfo bits with Bi > t (onstant threshold), but no more than num_max. If there are no Bi > t, set num to somesmall onstant num_min. The �nal step is the deimation funtion de_most_biased_bits(). The values of theonstants num, num_max, num_min will be disussed in Setion 6.The purpose of the deimation funtion is to set a given number of the most biased info bits, redue the graph

G(1) and the vetor z(1), and obtain a new graph G(2) and vetor z(2) for the next round. The proess of graphredution is as follows: set the num most biased info bits to one if µi(1) > µi(0), otherwise set them to zero.For eah info bit i and its set value wseti , do the following operation: z(2)
a = XOR(z

(1)
a , wseti ), ∀a ∈ C(i), where

z
(2)
a = z

(1)
a for eah unhanged hek. This operation reates an equivalent soure vetor for the next round.Finally, the graph G

(2) is obtained from G
(1) by removing all info bits that were set inluding their inidentedges.After the deimation step, we obtain a new pair of input parameters G

(2) and z(2) prepared for the nextround of the SP_iter() funtion. Applying these steps again, we obtain a smaller graph G(3) and a new sourevetor z(3). The SP algorithm ends in the r-th round when the graph G(r) does not ontain any edges (all infobits were set).To �nalize the desription of the algorithm, we need to desribe the SP_iter() funtion in some round r.This funtion takes the soure vetor z(r) and graph G(r) and returns a vetor of biases for eah free info bit.The ore of this funtion is the message-passing iteration proess. This proess is initiated by sending messages
M

(0)
za→a, de�ned in (16), from soure bits in graph G(r) to their heks. Cheks forward these messages totheir neighboring info bits and the proess ontinues by applying the update equations from Figure 2. Eahiteration onsists of applying equations (13) for updating messages M

(ℓ)
i→a using messages M

(ℓ−1)
a→i from theprevious iteration and applying equations (14) to obtain new M

(ℓ)
a→i messages from M

(ℓ)
i→a. In (14), the onstantmessage M

(ℓ)
za→a = M

(0)
za→a is used. All messages are always normalized so that the sum of all elements of the�ve-dimensional message vetor is equal to 1. This is expressed using the normalize() pseudofuntion. To speedup the iterations, after a few initial iterations (start_damp), the damping proess is used. This proess adjuststhe M

(ℓ)
a→i messages using the the following equation: M

(ℓ)
a→i =

(

M
(ℓ)
a→i · M

(ℓ−1)
a→i

)1/2, where the produt andsquare root are elementwise operations. The adjusted messages must be again normalized.After the message-passing algorithm onverged or the maximum number of iteration was reahed, the biases
Bi = |µi(1)−µi(0)| are alulated for eah free info bit i, where the three-dimensional vetor (µi(0), µi(1), µi(∗))de�ned in (15) is normalized to sum to 1.
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(a) (b)Figure 4. (a) Struture of matrix G
T after row and olumn permutation. Matrix T is lower triangular, D should be assmall as possible. (b) The result after applying 'Greedy Algorithm A'.13 The size of matrix D is 0.033 · n.Stepping bak for a while, the SP algorithm when run for the soure vetor z = x − vm gives us the vetorof info bits w and thus the odeword cm,x = Gw needed for embedding (9). The next setion explains the lastmissing ingredient�how to obtain an arbitrary oset member vm.5. DETERMINING THE COSET MEMBER AND CALCULATING SYNDROMESDuring embedding, the sender needs to �nd an arbitrary member of the oset C(m) for the message m. Thisrequires knowledge of the parity hek matrix H. The extration mapping (7) also needs the parity hekmatrix to obtain the message. The problem is that we only have the (sparse) generator matrix G and not H.Finding H using Gaussian elimination would have ubi omplexity and H would beome dense along the proess.Fortunately, sine we are dealing here with a dual LDPC ode, our task is in essene equivalent to enoding usingLDPC odes for whih e�ient algorithms exist. In this paper, we brie�y desribe the approah based on partialdiagonalization of sparse matries using permutations of rows and olumns.13Suppose that G an be brought into the following form by permuting its rows and olumns

GT =

(

A B T

C D E

)

,where T is regular lower diagonal. Here, we hope that the square matrix D is relatively small. The dimensionsof the matries are shown in Figure 4. Denoting Φ−1 = (−ET−1B + D)−1, the matrix
H =

(

I,Φ−1(−ET−1A + C),T−1[A + BΦ−1(−ET−1A + C)]
)is a parity hek matrix of the ode in systemati form. This an be easily seen by verifying that GTHT = 0.Beause H is in systemati form, one easily �nd one member of the oset C(m) as vm = (m,0)T , where the zerovetor has length n−m.We now turn our attention to the extration mapping and obtaining the syndrome m (message). Aordingto (7), the message extration amounts to alulating the produt Hy for the stego objet y, whih is ahievedby multiplying

m = y1 + Φ−1(−ET−1A + C)y2 + T−1[A + BΦ−1(−ET−1A + C)]y3, (17)where we deomposed y into three shorter vetors y = (y1,y2,y3) with lengths n−m, g, and m−g, respetively.Beause T is regular, lower-triangular, and sparse, alulating T−1u for some vetor u an be ahieved e�ientlyby bak-substitution. Also, all matries are sparse with the exeption of Φ−1. The inverse of Φ an be pre-alulated and is only a one-time ost. Moreover, Φ is g × g, where g is small, and the multipliation by Φ−1has a low omplexity proportional to g2. Thus, the two multipliations in (17) have the following omplexity
O(n + g2) and O(n).
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2
.For example, for (3, 6) regular LDPC odes, the average omplexity for alulating the syndrome (extratingthe message) is 0.0172n2 +O(n), where n is the ode length.In pratie, we ran the 'Greedy Algorithm A' many times (eah time for a slightly di�erent value of theparameter α, see13 for details) and found a row and olumn permutation that gave us the smallest size of thematrix D. The output of the greedy algorithm is our generator matrix G that is used in the binary quantizer.An example of the permuted matrix is in Figure 4(b).6. RESULTSWe have implemented the whole framework for the speial ase of a onstant detetability measure ρi = const.(Matrix Embedding) to be able to ompare the results with previously published pratial odes.



The SP algorithm was implemented in C++ using Intel C++ 9.0 ompiler. Eah update equation wasmanually optimized for using �oat data type with SSE instrutions. The following results were obtained usingan Intel Core2 X6800 2.93GHz CPU mahine with 64bit Linux, where both CPU ores were utilized.We now give the exat values for eah parameter mentioned in Setion 4.4. The following parameters donot depend on the ode or the message length: start_damp=4, t=0.8, wsou=1.1, and winfo=1. The numberof iterations an be ontrolled using the parameter e (we used e=0.001) or by limiting the maximal number ofiterations. Limiting the number of iterations max_iter to 40�100 produed very similar results while providing aspeed up linear in max_iter. We have experimentally determined the parameter γ to maximize the performanefor eah relative message length α, for example, γ0.63 = 0.94, γ0.5 = 1.13, γ0.35 = 1.37, γ0.25 = 1.65. Theparameters num_max and num_min were set to 1% and 0.1% of the total number of pixels in the over objet.These values did not hange during runtime. We have also experimented with a general deimation strategyde�ned as the perentage of the total number of free bits while setting num_min as 0.1× num_max. The algorithman be sped up by enlarging num_max at the ost of losing some embedding e�ieny. For pratial usage, thistrade o� should be onsidered and further explored.We evaluate the performane of the odes by their embedding e�ieny. Figure 5(a) shows the omparisonwith other previously proposed odes. Our results are labeled as 'LDGM odes' and eah embedding e�ienywas obtained by averaging over 20 randomly generated messages. For eah relative message length, we ran theSP algorithm for two di�erent ode lengths n = 10000 and n = 100000. The odes labeled as 'random odes'are obtained from6 and.7 The remaining odes were taken from2 and onsist primarily of blok-wise diret sum(BDS) of non-linear fator odes onstruted using Preparata odes.The generator matrix of eah ode G was generated randomly, where the number of ones in eah row andolumn was given by a spei� (degree) probability distribution. We have tested degree distributions optimizedfor ordinary message-passing over the BSC and the binary erasure hannel (BEC). While odes for both hannelsgave satisfatory results, degree distributions optimized for the BSC provided higher embedding e�ieny. Thus,all results reported here are for odes with matries optimized for the BSC hannel.As an example, in Figures 5(b) and (), we show the performane and speed for odes obtained for thefollowing degree distribution
λ(x) = 0.44676014278323x+ 0.2936700938561x2 + 0.085704194057476x5 + 0.0819921690616x6+

+0.004693193807623312 + 0.017115184041391x13 + 0.038637012348276x14 + 0.0314280100443x39

ρ(x) = x9.Figure 5(b) shows how the proposed embedding algorithm with random odes based on this distribution ap-proahes the upper bound on embedding e�ieny as the ode length grows (for relative message length α = 1
2 ).The �nal gap in embedding e�ieny between the theoretial bound and odes based on the ode length n = 105is less than 0.1 bits per hange.To illustrate the omputational omplexity of our implementation, we de�ne throughput as a number ofembedded bits per seond and plot this variable for di�erent ode lengths and α = 1

2 in Figure 5(). Theomplexity grows linearly with the ode length. The derease in throughput for ode lengths larger than 104 isaused by the limited size of the CPU ahe and not by the nature of the SP algorithm.7. CONCLUSIONS AND FUTURE WORKIn this paper, we present a general approah for minimizing embedding impat in steganography. We startby de�ning the detetability measure at eah element of the over objet and derive theoretial bounds on theminimal embedding impat needed to embed a given payload. Then, we study embedding shemes realized usingsyndrome odes and show that the problem of minimizing embedding impat is equivalent to binary quantizationusing appropriately weighted distane. We use the binary quantizer based on low density generator matriesand the survey propagation algorithm reently proposed by Wainwrigth and Maneva.16 The performane of theproposed embedding algorithm is ompared to previous art on Matrix Embedding where the embedding impatis the same for all elements of the over objet. The algorithm performane ahieves near-optimal embeddinge�ieny (within 0.1 bits per hange) with the speed of embedding at 1000 bits per seond. Another important



advantage of the proposed approah over strutured odes is that it provides an essentially ontinuous family ofodes for arbitrarily hosen relative message length α.We postpone pratial appliation of this framework to non-onstant embedding impat pro�les to our futurework. We believe that the proposed framework will provide near-optimal performane in this ase as well afterappropriately adjusting the parameter γ for eah element of the over. Our results were obtained using degreedistributions optimized for the BSC hannel, but it is not lear whether these distributions are optimal in anysense. Optimization of the degree distribution is another interesting future diretion we plan to pursue.APPENDIX A.In this appendix, we derive the expression for the minimal embedding impat for any steganographi sheme thatommuniates m bits in n pixels with detetability measure ρi, i = 1, . . . , n. We do so for the more general asewhen the embedding impat is an arbitrary (i.e., not neessarily additive) funtion of the detetability measure
ρi. For x,y ∈ {0, 1}n, we de�ne the modi�ation pattern s ∈ {0, 1}n as si = δ(xi, yi), where δ(a, b) = 1 when
a = b and δ(a, b) = 0, otherwise. Furthermore, we de�ne D(s) = D(x,y) as the embedding impat of makingembedding hanges at pixels with si = 1. Let us assume that the reipient also knows the over x. By theGelfand-Pinsker theorem,9 the onlusions reahed here do not depend on this assumption. The sender thenbasially ommuniates the modi�ation pattern s. Assuming the sender selets eah pattern s with probability
p(s), the amount of information that an be ommuniated is the entropy of p(s)

H(p) = −
∑

s

p(s) log2 p(s).Our problem is now redued to �nding the probability distribution p(s) on the spae of all possible �ippingpatterns s that minimizes the expeted value of the embedding impat
∑

s

D(s)p(s)subjet to the onstraints
H(p) =

∑

s

p(s) log2 p(s) = m,
∑

s

p(s) = 1,This problem an be solved using Lagrange multipliers. Let
F (p(s)) =

∑

s

p(s)D(s) + µ1

(

m−
∑

s

p(s) log2 p(s)

)

+ µ2

(

∑

s

p(s) − 1

)

.Then,
∂F

∂p(s)
= D(s) − µ1(log2 p(s) + 1/ ln(2)) + µ2 = 0if and only if p(s) = Ae−λD(s), where A−1 =

∑

s
e−λD(s) and λ is determined from

−
∑

s

p(s) log2 p(s) = m.Thus, the probabilities p(s) follow an exponential distribution with respet to the embedding impat D(s).If the embedding impat of the pattern s is an additive funtion of �singleton� patterns (patterns for whihonly one pixel is modi�ed), then D(s) = s1ρ1 + · · · + snρn and p(s) aepts the form
p(s) = Ae−λ

Pn
i=1 siρi = A

n
∏

i=1

e−λsiρi , A−1 =
∑

s

n
∏

i=1

e−λsiρi =

n
∏

i=1

(1 + e−λρi),
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p(s) =

n
∏

i=1

pi(si),where pi(1) and pi(0) are the probabilities that the i-th pixel is (is not) modi�ed during embedding
pi(0) =

1

1 + e−λρi
, pi(1) =

e−λρi

1 + e−λρi
.Of ourse, this further implies that the joint probability distribution p(s) an be fatorized and thus we onlyneed to know the marginal probabilities pi that the i-th pixel is modi�ed. It also enables us to write for theentropy

H(p) =
n
∑

i=1

H(pi),where in the sum the funtion H applied to a salar is the binary entropy funtion.Note that when ρi = 1, ∀i, we obtain
m =

n
∑

i=1

H(pi) =

n
∑

i=1

H

(

e−λ

1 + e−λ

)

, E

(

n
∑

i=1

piρi

)

=
ne−λ

1 + e−λ
.Thus, in agreement with the result derived in1 we obtain the following relationship between the embedding impatper pixel d/n and the relative message length m/n

d

n
= H−1

(m

n

)

.



Let us sort ρi from the smallest to the largest and normalize so that ∑i ρi = 1. Let ρ be a Riemann-integrable non-dereasing funtion on [0, 1] suh that ρ(i/n) = ρi. Then for n → ∞, the average distortion perelement d = D/n = 1
n

∑n
i=1 piρi →

∫ 1

0 p(x)ρ(x)dx, where p(x) = e−λρ(x)

1+e−λρ(x) . By the same token, α = m/n =
1
n

∑n
i=1H(pi) →

∫ 1

0 H(p(x))dx. By diret alulation
ln 2×

∫ 1

0

H(p(x))dx = λ

∫ 1

0

ρ(x)e−λρ(x)

1 + e−λρ(x)
dx+

∫ 1

0

ln(1+e−λρ(x))dx = λ

∫ 1

0

(ρ(x) + xρ′(x))e−λρ(x)

1 + e−λρ(x)
dx+ln(1+e−λρ(1)).The seond equality is obtained by integrating the seond integral by parts. Thus, we an obtain the embeddingapaity-distortion relationship in a parametri form

d(λ) =Gρ(λ)

α(λ) =
1

ln 2

(

λFρ(λ) + ln(1 + e−λρ(1))
)

,where λ is a non-negative parameter and
Gρ(λ) =

∫ 1

0

ρ(x)e−λρ(x)

1 + e−λρ(x)
dx

Fρ(λ) =

∫ 1

0

(ρ(x) + xρ′(x))e−λρ(x)

1 + e−λρ(x)
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