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ABSTRACT

Quantitative steganalysis aims to estimate the amount of payload in a stego object, and such estimators seem
to arise naturally in steganalysis of Least Significant Bit (LSB) replacement in digital images. However, as with
all steganalysis, the estimators are subject to errors, and their magnitude seems heavily dependent on properties
of the cover. In very recent work we have given the first derivation of estimation error, for a certain method of
steganalysis (the Least-Squares variant of Sample Pairs Analysis) of LSB replacement steganography in digital
images. In this paper we make use of our theoretical results to find an improved estimator and detector. We also
extend the theoretical analysis to another (more accurate) steganalysis estimator (Triples Analysis) and hence
derive an improved version of that estimator too. Experimental results show that the new steganalyzers have
improved accuracy, particularly in the difficult case of never-compressed covers.
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1. INTRODUCTION

Many steganalysis methods do more than simply diagnose the presence or absence of hidden data: they form
an estimate for the size of embedded payload. Such quantitative steganalysis seems to present itself naturally in
certain frameworks, including the leading class1 of detectors for embedding by bit replacement in images. But the
estimates are subject to errors, whose nature, for some particular cases, have been investigated empirically.2–4

The empirical results show that the magnitude of the errors varies hugely, and is influenced by properties of the
cover object used for embedding.

Suppose, then, that a steganalyst has developed a quantitative method. In a particular instance, how accurate
is the payload estimate, and how much confidence should the steganalyst have in the result? This question goes
to the heart of steganalysis, and it seems clear that a measure of steganalysis confidence could enhance the
reliability of detectors. In very recent work5 we addressed this question head-on and, for one particular payload
estimator – the Least-Squares Method (LSM) variant6 of the Sample Pairs Analysis detector7∗ – applied to one
particular embedding method (simple LSB replacement in images), were able to derive the distribution of the
estimator in the restricted case when no payload was in fact embedded. It was suggested that the theoretical
results could lead to development of better detection methods, and here we will follow up that comment by
constructing improved steganalysis estimators.

The aim of this paper is twofold: to use the results of Ref. 5 to improve the steganalyzer (by reducing its
bias and variance), and to extend the results to a newer, related, estimator called Triples.1 Benchmarking of
the various steganalyzers is an important part of this work and we will include a substantial suite of experiments
to demonstrate the extent of the improvement. It will be seen that the improved estimators and detectors are
generally more accurate, and they are particularly successful in the most difficult case (never-compressed bitmap
covers) for which other work on LSB replacement steganalysis1, 8 struggled to make much headway.

The rest of this paper is presented as follows. In Sect. 2 we sketch the Couples/LSM estimator and then
summarise the theoretical results of Ref. 5, which predict its error distribution in the case when no payload is
present. In Sect. 3 we suggest a modified estimator which introduces weighting into the least-squares computation
and derive optimal weights according to the theory of Sect. 2. New theory is sketched out in Sect. 4, which extends
the results of Ref. 5 to the Triples/LSM estimator, and a similar optimal weighting is derived. Section 5 includes
a comprehensive experimental survey to demonstrate the extent to which the new weighted estimators, and other
estimators arising naturally out of the error-derivation work, are superior. Finally we draw conclusions in Sect. 6.
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∗In Ref. 5 and this paper we use the almost-equivalent detector we have called Couples, which avoids some special-case
behaviour without affecting performance. See Ref. 1.



2. ERROR DISTRIBUTION OF COUPLES/LSM STEGANALYSIS

We present only an outline of the Couples/LSM estimator, including the principles that drive it but not going
so far as to repeat an explicit formula for the estimator itself (a clear exposition can be found in Ref. 9). We
will include just enough of the theoretical analysis of Ref. 5 for our subsequent application and extension.

2.1. The Couples/LSM Estimator

Suppose that a digital image consists of a series of N samples with values s1, s2, . . . , sN in the range 0 . . . 2M +1
(typically M = 127). A sample pair is a pair of sample locations (j, k) for some 1 ≤ j 6= k ≤ N . Let P be a set
of sample pairs; we will use the set of all pairs that come from horizontally adjacent pixels. We then count how
many sample pairs, in a fixed cover image, lie in certain trace subsets:

em = |{(j, k) ∈ P | sk = sj + m, with sj even}|
om = |{(j, k) ∈ P | sk = sj + m, with sj odd}|
dm = |{(j, k) ∈ P | sk = sj + m}|

for −2M +1 ≤ m ≤ 2M +1. We also count these quantities in the same image after a payload has been embedded
by LSB replacement, and call the counts e′m, o′m, and d′m respectively. The key to structural steganalysis1 is to
relate the cover and stego counts via the size of embedded payload.

We suppose that embedding a payload flips the least significant bit of each sample in each pair, independently,
with probability p

2 , for example when a payload of length pN is embedded using the standard form of LSB
replacement that spreads the payload pseudorandomly throughout the cover. Structural detectors consider the
effect of least significant bit flipping on pairs in em and om, deriving:
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. (1)

We will not repeat the derivation because it can be found in many places in the literature, including Refs. 1
and 9 or (using the original definition of trace subsets, with a slightly more complex derivation) Refs. 6 and 7.
The equation is approximate because the counts e′m, o′m depend on the content of the payload; if the payload is
random or randomly placed then the equation refers to their expectations and the Law of Large Numbers tells
us that it is exact asymptotically as the size of cover and payload tends (in fixed ratio) to infinity.

Inverting (1) is possible as long as p 6= 1: the inverse system is
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Equation (2) holds for each m.

To construct the detector we need an assumption about cover objects. In LSB replacement detectors based
on the structure of sample pairs this is

e2m+1 ≈ o2m+1 for each m; (3)

such approximate equalities have been called symmetries8 and they are well-justified for continuous-tone natural
images. Putting together (3) with the relevant elements of (2) gives the following approximate equation for p
which involves only observations of the stego image:

0 ≈ e2m+1 − o2m+1 ≈ 1

(1 − p)2
(s′m + t′mp + u′

mp2) (4)



where
s′m = e′2m+1 − o′2m+1

t′m = 1
2 (d′2m+2 − d′2m) − (e′2m+1 − o′2m+1)

u′
m = 1

4 (d′2m − d′2m+2 + o′2m−1 − e′2m+3 + e′2m+1 − o′2m+1)

There are many such equations, for one each −M ≤ m ≤ M . The principle of least-squares steganalysis,
introduced in Ref. 6, is to find the value of p = p̂ which implies that all the approximately-zero quantities (4)
are as close as possible to zero by minimizing their sum-square. The calculations for finding such an estimate p̂
(mutatis mutandis to account for our modified definition of trace subsets, and different notation) can be found
in Ref. 6 and we will not need to repeat it here. We will refer to this estimator as Couples/LSM, to emphasise
its dependence on finding a least-square cover model fit, and its use of pairs of pixels in the analysis of bit
replacement structure.

Although some limited experiments in Ref. 6 support a claim that the least-squares method improves the
accuracy of payload estimation (over standard SPA,7 which effectively sums the equations (4)), we will see
in Sect. 5 that this is not universally (or even often) the case. Regardless of its merits as an improvement
on standard SPA, the Couples/LSM estimator has the advantage that its error distribution is amenable to the
analysis of Ref. 5, which we now sketch.

2.2. Derivation of Error Distribution

Reference 4 points out that there are generally two approximations made in derivation of a quantitative steganal-
ysis estimator, leading to two sources of error. Assumptions about cover images (here (3)) cause error which is
dependent only on the cover, called between-image error. Assumptions about the payload and the embedding
process (here the approximation (1)) cause error which may be influenced by the cover but depend primarily on
the payload, called within-image error. Within-image error is closely linked with payload size and for small pay-
loads is practically zero; it is demonstrated in Ref. 4 that, for some quantitative steganalysis methods including
Couples/LSM, only for very large payloads does within-image error become a serious consideration.

In Ref. 5 we are only able to consider between-image error, deriving the distribution of the estimator in
images that have no payload. It was noted that this is at least sufficient for the computation of a p-value for the
presence of payload, and it does address the more significant source of error. Nonetheless, it would be valuable
in future work to extend the analysis to both sources of error and images with any payload size.

When there is no payload, all estimation error is due to (3). We need to quantify deviations from exact
equality, and Ref. 5 proposes a simple model in which each sample pair (j, k) with sk = sj + m (i.e. that counts
towards dm) has sj even, or odd, independently and equiprobably. That is, we assume that the dm are not
random but the em (and hence om) become binomial random variables. For large enough dm this model implies

em − om
·∼ N(0, dm). (5)

In Ref. 5 this model is investigated and found good at least for never-compressed images if |m| > 3 and marginal
for |m| = 3, but not accurate for |m| < 3 or for JPEG-compressed covers. It was suggested that the Couples/LSM
detector could be modified to remove any dependence on this model for |m| ≤ 3, and we will return to this
possibility later. The theoretical results should not be assumed accurate for covers that have been subject to
JPEG compression, a process which certainly damages their parity structure.

We will identify the relevant deviations from (3) by writing εm = e2m+1−o2m+1 and, with a caveat regarding
m ∈ {−2,−1, 0, 1}, we have that εm ∼ N(0, d2m+1) are independent random variables.

We now return to the Couples/LSM estimator. When there is no payload, each e′m = em and o′m = om (these
are exact equalities of course) so the formula for p̂ becomes

p̂ = argmin
p

M
∑

m=−M

(

1

(1 − p)2
(s′m + t′mp + u′

mp2)

)2

(6)



where
s′m = e2m+1 − o2m+1

t′m = 1
2 (d2m+2 − d2m) − (e2m+1 − o2m+1)

u′
m = 1

4 (d2m − d2m+2 + o2m−1 − e2m+3 + e2m+1 − o2m+1)

We write s′ (respectively t′, u′, ε) for vectors whose entries are each s′m (t′m, u′
m, εm) for −M ≤ m ≤ M . Let

us decompose s′, etc, each into two components s′ = s + s̄, etc, thus separating out the supposedly nonrandom
dm from the influence of the random deviations εm. We have

s = 0 s̄ = ε

tm = 1
2 (d2m − d2m+2) t̄ = −ε

um = 1
4 (d2m − d2m+2) + 1

8 (d2m−1 − d2m+3) ūm = εm − 1
8 (εm−1 + εm+1)

(7)

Finally, we note that (6) has a natural geometric interpretation:

p̂ = argmin
p

∥

∥

∥

∥

(s + s̄) + (t + t̄)p + (u + ū)p2

(1 − p)2

∥

∥

∥

∥

(8)

where ‖ · ‖ represents the L2-norm, so that p̂ is the parameter p that places the path r′ = (s+s̄)+(t+t̄)p+(u+ū)p2

(1−p)2

closest to the origin. Note that this path can be considered a randomly perturbed version of r = s+tp+up2

(1−p)2 and

the latter passes exactly through the origin at p = 0. Reference 5 includes a geometric argument (which we will
not repeat here, partly because we are going to prove something more general in Sect. 4) to show that the value
of p̂ can be approximated by

p̂ ≈ − s̄.t

t.t
+ 2

(

(t̄ + 2s̄).t
)

(s̄.t)

(t.t)2
− s̄.(t̄ + 2s̄)

t.t

(“.” represents the scalar product) which, in our case, gives

p̂ ≈ −ε.t

t.t
+ 2

(ε.t)2

(t.t)2
− ε.ε

t.t
. (9)

The first term of (9) is a linear combination of Gaussian random variables with mean zero, and hence is itself
Gaussian with mean zero. The second and third terms, it is argued in Ref. 5, contribute little to the shape of the
distribution and their primary significance is to shift the mean. Using E[εm] = 0, E[ε2

m] = Var[εm] = d2m+1, and
independence of the εm we therefore derive the following approximation to the distribution of the steganalysis
estimator when the true value of p is zero:

p̂ ≈ N
(

µ(d), v(d)
)

, where v(d) =
4
∑

m(d2m+2 − d2m)2d2m+1
(
∑

m(d2m+2 − d2m)2
)2

µ(d) = 2v(d) − 4
∑

m d2m+1
∑

m(d2m+2 − d2m)2
.

(10)

We emphasise that this distribution is image-specific: it does not tell us the distribution of the estimates as
we vary over different images because each image can have a different value for µ(d) and v(d). For this reason
we refer to µ(d) as image-specific bias and v(d) as image-specific variance.

The accuracy of the approximate distribution is verified in Ref. 5. It turns out to be highly accurate only if the
components m = −1, 0 (and sometimes also m = −2, 1) are excluded from the calculation of the Couples/LSM
estimator because, for these values of m, Eq. (5) is inaccurate. It would be a shame to have to make this
exclusion, because it forces us to ignore pixels in the stego image which are close in value to adjacent pixels,
and this can be quite a large proportion (in Ref. 5 it is stated that, in typical cover images, excluding the
components m = −2,−1, 0, 1 means ignoring on average half of the pixels in each cover). In most cases we will



not exclude these components, so the theoretical error prediction will be imperfect, but it is adequate to obtain
better estimators.

Finally, it can be demonstrated that the value of µ(d) is usually quite close to zero, in comparison with the
standard deviation, in digital images. Therefore our estimate of the true value of p (zero) by p̂ is almost unbiased.
But in the novel estimators described in this paper we will sometimes have to take account of the bias.

3. OPTIMAL WEIGHTING

We now make use of the theory to describe a modification to the estimator, in which a weighted sum of the
squared deviations (4) is minimized. We propose to find the value p̂w of p which minimizes

∑

m
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m
+t′

m
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m
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(1−p)2

)2

where the wm are the weighting components. The analogy to (8) is
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√
wms′m, and similarly for t′

w
and u′

w
. Using the results of the previous section, we

now have

p̂w ≈ N
(

µ(d,w), v(d,w)
)

, where v(d,w) =
4
∑

m w2
m(d2m+2 − d2m)2d2m+1

(
∑

m wm(d2m+2 − d2m)2
)2

µ(d,w) = 2v(d,w) − 4
∑

m wmd2m+1
∑

m wm(d2m+2 − d2m)2
.

(11)

We seek a weight vector w to minimize the variance of the estimator. It is derived from the following simple
result:

Lemma 3.1. If all ai ≥ 0 and all bi > 0 then the quantity

v =

∑

w2
i aibi

(
∑

wiai)2

is minimized when all wi ∝ b−1
i .

Proof. We compute
∂v

∂wj

=
2wjajbj

∑

wiai − 2aj

∑

w2
i aibi

(
∑

wiai)3

which is zero if

wjbj =

∑

w2
i aibi

∑

wiai

,

which is constant in j. (One may proceed to compute the Hessian, to check that the stationary point is indeed
a maximum, but we omit to do so here. An alternative proof is possible using Lagrange multipliers.)

This immediately implies that we should take

wm =
1

d2m+1
. (12)

in order to minimize v(d,w).

There are two caveats to the optimality of the weighting. First, we have already said that the cover model
(5) is not accurate for m close to zero. Either we must exclude some components from the calculation of the



estimate (effectively forcing wm = 0 for a few values of m close to zero), or accept that applying the theory will
predict suboptimal weightings for these few components. In Sect. 5 we will see that, slightly suboptimal or not,
we can use the weightings (12) for all components and still see a performance gain.

Second, note that the theory outlined in the previous section is only accurate for the distribution of p̂ when
p = 0 (we have not yet been able fully to generalise the theory to work for all p) and by continuity we expect
that the weights are close to optimal when p is small. But our detector may not be optimally-weighted when
the true value of p is large. An additional problem here is that d is a property of the cover image, and of course
when payload is embedded we do not know the cover image: one solution is to estimate the values of dm from
d′m given an initial estimate of p, but we will not pursue that idea in this paper. Instead, we will simply use
the observed d as an estimate of the same quantity in the cover, and again this will only be a good estimate as
long as the true value of p is small. Since LSM estimators seem always to suffer from poor performance for large
values of p anyway (for one explanation why, see Ref. 9), this will not concern us.

Despite these reservations, we expect that p̂w, which we call the Couples Weighted Least-Squares Method (or
Couples/WLSM) estimator, will be a more accurate estimator of p than the unweighted version. We will see, in
Sect. 5, that this is true to the extent that the estimator variance is reduced. But there is a price to pay when
introducing weighting: it turns out that the weighted estimator bias µ(d,w) is often substantially larger than
the unweighted bias µ(d) (one cannot minimize both bias and variance with the same weights). However there
is a solution to this conundrum, because we can introduce a bias corrected estimator p̂w −µ(d,w). This solution
is not perfect because the same caveats apply to the theoretically-predicted bias as do to the variance: a) the
theory is only correct when the true value of p is zero, and b) the flaw in the cover deviation model (5) will
require us to modify the detector, weakening its power, if we want the bias computation to be exact. It turns
out that bias correction is necessary if the weighted estimator is to be used, and that it works well for reasonably
small true values of p even given the caveats.

Finally, there is one further way in which we could aim to improve the reliability of the Couples/WLSM
method. Although weighting reduces the image-specific variance, some images still have a high value of v(d,w)
and these are the prime candidates to give outliers (large errors) in their estimate. In particular, when we
consider the problem of discrimination between covers and stego objects (as opposed to payload estimation),
we would like to lend much less significance to images with a high value of v(d,w). A solution is to introduce
the standardized statistic (p̂w − µ(d,w))/

√

v(d,w) as a discriminator between stego and cover images (it is, of
course, no longer a payload estimate). The aim of the statistic is to separate cover and stego objects with a very
low rate of false positives, because outliers in the null distribution are suppressed. We will see that, in some
particular circumstances, the standardized detector does succeed in this aim.

4. EXTENSION TO LEAST-SQUARES TRIPLES STEGANALYSIS

Having applied the theory of Ref. 5, outlined in Sect. 2, to produce improved estimators, we now give new theory
extending the error distribution derivation to another estimator. The estimator in question is that called Triples
in Ref. 1, but here we will call it Triples/LSM since it does indeed use a least-squares cover-fitting approach.
We will first outline the detector; as previously, we will not go so far as to include the final formula for the
estimate since it is not necessary to the error analysis and can be found in full detail in Ref. 1. Then we derive
an optimally-weighted version. The mathematics is not fundamentally different to that in Sects. 2 and 3, but
the algebra is rather more involved.

4.1. The Triples/LSM Estimator

The Triples/LSM estimator analyzes the structure of bit replacement in triplets of pixels. Its derivation can be
presented in very similar way to the Couples/LSM estimator. Again we suppose that the image has N samples
s1, s2, . . . , sN in the range 0 . . . 2M + 1 and we consider triplets of distinct sample locations (j, k, l). Let T be
a set of triplets: we will use all groups of three adjacent pixels in horizontal rows. As before, we count trace
subsets in a fixed cover image, classifying triplets according to successive pixel value differences and the parity
of the first:

em,n = |{(j, k, l) ∈ T | sk = sj + m, sl = sk + n, sj even}|
om,n = |{(j, k, l) ∈ T | sk = sj + m, sl = sk + n, sj odd}|
dm,n = |{(j, k, l) ∈ T | sk = sj + m, sl = sk + n}|



Similarly we count e′m,n, etc, the number in each type of trace subset in the stego image. Potentially we could
have −M ≤ m,n ≤ M . When both m and n are large the total difference between the first and last pixel sample
in the triplet would have to exceed the possible dynamic range of the pixels, but this presents no problem: the
number of such triplets is zero, and this allows us to be free with the range of m and n where it simplifies
calculations.

We must relate the e′m,n and o′m,n to em,n and om,n via the payload size. Again assuming that embedding
flips the LSB of each sample in each pair, independently, with probability p

2 (e.g. when the payload is pN) we
can follow the effect of embedding on trace subsets and derive a system of linear equations. The calculations can
be seen in Ref. 1 and the conclusion is:
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.

For economy of space we have displayed only half of the matrix, which is rotationally symmetric. We will
not display the full inverse, for the same reason, instead picking out the two components that matter to the
Triples/LSM detector:

e2m+1,2n+1 ≈ 1

(1 − p)3

(

(
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2

)3
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(o′2m−1,2n+3)

)

o2m+1,2n+1 ≈ 1

(1 − p)3

(

(

1 − p

2

)3
(o′2m+1,2n+1) − p

2

(

1 − p

2

)2
(o′2m+2,2n + o′2m+1,2n + e′2m+2,2n+1)

+
(

p

2

)2(
1 − p

2

)
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p

2

)3
(e′2m+3,2n−1)

)

Again we need a property of cover images, from which to derive an estimate for p. This can be a little more
complicated than the Couples case because there are a number of plausible symmetries, but it is sufficient to
pick just one class of symmetry which looks very similar to (3):

e2m+1,2n+1 ≈ o2m+1,2n+1 for each m and n. (13)

Other symmetries, including e2m+1,2n ≈ o2m+1,2n and e2m+1,2n+1 ≈ e2n+1,2m+1 are possible but their inclusion
makes almost no difference to the performance of the estimator, and complicates the analysis greatly, so we will
not include them. For a thorough investigation of the difficulties presented by multiple symmetries, see Ref. 8.

We are now in a position to state an equation estimating the payload p, analogous to (4). There is one
equation for each m and n:

0 ≈ e2m+1,2n+1 − o2m+1,2n+1 ≈ 1

(1 − p)3
(s′m,n + t′m,np + u′

m,np2 + v′
m,np3) (14)

where

s′m,n = e′2m+1,2n+1 − o′2m+1,2n+1

t′m,n = 1
2 (o′2m+2,2n + o′2m+1,2n + e′2m+2,2n+1 − e′2m+1,2n+2 − e′2m,2n+2 − o′2m,2n+1) − 3

2 (e′2m+1 − o′2m+1)

Since we will not need to use u′
m,n or v′

m,n in any of the subsequent analysis (although of course they are needed
in order to compute the estimate) we will not display their long formulae.

The traditional Triples/LSM estimator finds an estimate p̂ to minimize the sum-square of all of the approxi-
mately zero quantities (14) and, as shown in Ref. 1 (verified again here in Sect. 5), it is almost always superior
to both the Couples/LSM estimator and other traditional steganalysis methods.



4.2. Weighted Least-Squares and Derivation of Error Distribution

We now derive the error distribution of the Triples/LSM estimator, again only for the case when truly no data
is embedded. Our presentation will differ from that of Sect. 2, though, because we will immediately depart from
Ref. 1 by introducing weighting into the minimized sum-square:

p̂w = argmin
p

M
∑

m,n=−M

wm,n a2
m,n

where am,n represents the right of (14). Thus we will avoid having to repeat ourselves by giving calculations for
both unweighted and weighted estimators.

Once again we need to model deviations from exact equality in (13) and we will use the same idea: we assume
that the dm,n are nonrandom and that em,n (which then determines om,n) are independent binomial random
variables; this leads to

em,n − om,n
·∼ N(0, dm,n). (15)

Once again there are some situations in which this model is not accurate. Recall that (5) was not necessarily
a good model for values of m very close to zero; the same problem occurs with (15) but it is harder to identify
the components where there are problems. There seem to be a few more cases where the distribution appears to
have heavier tails than Gaussian. Furthermore, the assumption that all deviations (15) are independent is also
less accurate than for the Couples case.

We will not allow ourselves to be sidetracked into investigation of this problem. Instead, we will simply admit,
as in the Couples case, that the model (15) is imperfect, and the consequent weighted least-squares detector will
not be quite optimally weighted. We will use it anyway in the hope that our weighting is better than none at all;
the experimental results of Sect. 5 will show that we have created an improved estimator in spite of the dubious
accuracy of (15) in a few cases.

When no payload is embedded the equation for the weighted estimate becomes

p̂w = argmin
p

M
∑

m,n=−M

(

1

(1 − p)3
(s′m,n + t′m,np + u′

m,np2 + v′
m,np3)

)2

(16)

where

s′m,n =
√

wm,n(e2m+1,2n+1 − o2m+1,2n+1)

t′m,n =

√
wm,n

2

(

o2m+2,2n + o2m+1,2n + e2m+2,2n+1 − e2m+1,2n+2 − e2m,2n+2 − o2m,2n+1

)

−
3
√

wm,n

2

(

e2m+1,2n+1 − o2m+1,2n+1

)

and we need not consider u′
m,n or v′

m,n. We will write s′ for the vector of all s′m,n (in some order, it does not
matter which) and similarly t′, u′, v′. Analogously to (7) we separate s′ into a nonrandom part s, and a part
s̄ that depends on the deviations from (13). Similarly for t′ (but u′ and v′ we need not display here).

s = 0 s̄m,n = εm,n

tm,n =
√

wm,n

4

(

d2m+2,2n + d2m+1,2n + d2m+2,2n+1 t̄m,n = δm,n − 3
2εm,n

−d2m+1,2n+2 − d2m,2n+2 − d2m,2n+1

)

where εm,n =
√

wm,n(e2m+1,2n+1 − o2m+1,2n+1) ∼ N(0, wm,nd2m+1,2n+1) and δm,n is some Gaussian random
variable with mean zero and is independent of all εm,n (the latter because δm,n consists of linear combinations
of ej,k − oj,k never including both j and k odd).
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with s = 0.

Just as in the Couples/LSM case, we give (16) a geometric interpretation:

p̂w = argmin
p

∥

∥

∥

∥

(s + s̄) + (t + t̄)p + (u + ū)p2 + (v + v̄)p3

(1 − p)3

∥

∥

∥

∥

so that p̂w is the parameter p which places the path r′ = (s+s̄)+(t+t̄)p+(u+ū)p2+(v+v̄)p3

(1−p)3 (let us call this path P ′)

closest to the origin. This path can be considered a randomly perturbed version of P , given by r = s+tp+up2+vp3

(1−p)3

and the latter passes exactly through the origin at p = 0 because s = 0.

The geometric approximation, which extends that in Ref. 5, is to replace P ′ by its tangent at p = 0,
which passes through s′ and has direction vector dr

′

dp
|p=0 = t′ + 3s′. It is easy to say when a straight line

passes closest to the origin: its position must be orthogonal to its direction vector (see Fig. 1), so we have
(s′ + p̂w(t′ + 3s′)).(t′ + 3s′) = 0, which occurs when

p̂w = − s′.(t′ + 3s′)

(t′ + 3s′).(t′ + 3s′)
.

Note that the approximation of P ′ by a straight line has removed any dependence on u′ and v′, which is why
they could be disregarded.

Now writing s′ = s + s̄, t′ = t + t̄, and using s = 0, we have

p̂w = − s̄.t + s̄.(t̄ + 3s̄)

t.t + 2t.(t̄ + 3s̄) + (t̄ + 3s̄).(t̄ + 3s̄)

Expanding in the perturbations s̄ and t̄, disregarding terms with more than a square perturbation in magni-
tude, we have

p̂w ≈ − s̄.t

t.t
+ 2

(

(t̄ + 3s̄).t
)

(s̄.t)

(t.t)2
− s̄.(t̄ + 3s̄)

t.t

which, in our case, gives

p̂w ≈ −ε.t

t.t
+ 3

(ε.t)2

(t.t)2
+ 2

(ε.t)(δ.t)

(t.t)2
− ε.δ

t.t
− 3ε.ε

2t.t
. (17)

As in the Couples/LSM case, only the first term – which is a linear combination of Gaussian random variables
with mean 0 – has a significant contribution to distributional shape (the others have variance one power of N
smaller) and therefore we can approximate the distribution of p̂w by a Gaussian with mean equal to the mean
of (17) and variance equal to the variance of ε.t

t.t
.

The means of the first, third, and fourth terms of (17) are zero, because all components of ε are independent
of all components of δ and have mean zero. For the other terms we use E[ε2

m,n] = Var[εm,n] = wm,nd2m+1,2n+1

to derive

p̂w ≈ N
(

µ(d,w), v(d,w)
)

, where v(d,w) =
16

∑

m,n w2
m,nd̃2

m,nd2m+1,2n+1
(
∑

m,n wm,nd̃2
m,n

)2

µ(d,w) = 3v(d,w) −
24

∑

m,n wm,nd2m+1,2n+1
∑

m,n wm,nd̃2
m,n

.

(18)



where d̃m,n = d2m+2,2n + d2m+1,2n + d2m+2,2n+1 − d2m+1,2n+2 − d2m,2n+2 − d2m,2n+1.

We have not expended a lot of effort testing the accuracy of this approximate distribution, as we did for the
Couples/LSM work in Ref. 5. We expect that it will not be highly accurate unless some components are excluded
from the estimator because of the imperfections in the model (15). Instead we will be content to demonstrate
that we can use it to derive improved estimators.

Now we are in a position to derive “optimal” weightings by minimizing v(d,w). Lemma 3.1 immediately
gives

wm,n =
1

d2m+1,2n+1

and we call the detector thus weighted the Triples/WLSM estimator. As in the case of Couples/WLSM, we must
be prepared to make a bias correction to the estimator because weighting to reduce the variance will generally
increase the bias.

5. EXPERIMENTAL RESULTS

We now measure the improvement that weighting the least-squares estimators brings, as well as testing some
other modified detectors suggested by the error models in Sects. 2–4. Each batch of tests involves a large set of
cover images, into which payloads of different lengths are repeatedly embedded to test the steganalysis methods’
ability a) to estimate the payload size accurately, and b) to classify cover and stego objects correctly. It requires
a large amount of computation, which we perform using the distributed steganalysis project outlined in Ref. 2.

Most of our experiments will be performed on cover images derived from one parent set: 3000 never-
compressed bitmaps downloaded from http://photogallery.nrcs.usda.gov. Originally very high resolution
colour images apparently scanned from film, we reduced them in size to 640 × 416 pixels. In order to compare
steganalysis performance between different types of cover we repeated the tests on the colour images, then using
the same images reduced to grayscale, and then again with the same images subject to moderate JPEG compres-
sion (“quality factor” 80) prior to embedding. Using the same images, but with added JPEG compression and/or
conversion to grayscale, ensures that any differences in performance are due to the image type and not content.
In the final experiment we also use another, independent, set of cover images: 1000 larger never-compressed
bitmaps taken directly from a variety of digital cameras as raw bitmaps and subject to no postprocessing.

Potentially there are a very large number of steganalyzers to test. We wish to include one or two traditional
LSB steganalysis methods: the earliest “second-generation” payload estimator called RS 10 and the original SPA7

method. We can then combine any of the following options for the LSM estimators: Couples- or Triples-based
structure; LSM or new WLSM; plain estimate, bias-corrected (subtract the theoretically-predicted bias, assum-
ing no payload embedded), or standardized (subtract the theoretically-predicted bias and divide by standard
deviation); excluding components for which the model of cover deviations is imperfect, or not.

We have indeed tested almost every possible combination, but we cannot display all the results here because
of the space it would require. Instead we whittle down the possibilities by ruling out certain combinations that
are never good performers, without displaying results to back up these particular claims. First, standardized
estimates (which in any case cannot estimate payload) are without value unless we do exclude components for
which the cover model is imperfect (it seems that dividing by an incorrect standard deviation simply messes up
the results); on the other hand, excluding components only weakens the detectors if we are not standardizing
the estimate. Additionally, we were not able to form an estimator which excluded the problem components in
the Triples detector (they are hard to identify). Second, correcting the bias is essential if we are aiming for
quantitative steganalysis, but if we are only using the output of the detector as a classifier between the cases
of zero and nonzero payload then subtracting bias is not necessary (in fact it very slightly weakens the results).
Finally, the WLSM steganalyzers uniformly outperform the LSM steganalyzers, although we will certainly want
to include some of the experiments that verify this.

Therefore we will display results from the following algorithms as estimators of payload:

(a) The Couples method (practically equivalent to SPA7);

(b) Couples/LSM (practically equivalent to SPA/LSM6);



(c) Couples/WLSM with bias correction;

(d) Triples/LSM1;

(e) Triples/WLSM with bias correction.

When testing reliability as a discriminator between cover and stego objects, we will display:

(a) Standard RS10 and Couples;

(b) Couples/LSM;

(c) Couples/WLSM without bias correction;

(d) Standardized Couples/WLSM with components m = −2,−1, 0, 1 excluded;

(e) Triples/LSM;

(f) Triples/WLSM without bias correction.

We should clarify some of the minor parameters used in these tests. For each detector we used groups of
pixels (pairs or triplets or, in the case of RS, quadruplets) in horizontal rows. When testing on colour images we
pooled the trace subset counts (and their analogy in the RS method) between the three colour channels. The
RS “mask” used was [0, 1, 1, 0] (see Ref. 10 for details).

Also, it is wise to alter the “optimal” weightings by suppressing any components that involve very few
pixels, because they would be assigned an overly-large weight. This is natural, not least because the Gaussian
approximation used to derive (5) and (15) is not accurate for very small numbers. Without much tuning we
decided to exclude all components when d2m+1 (or, in the case of Triples, d2m+1,2n+1) was lower than 10, zeroing
out that particular weight. This amounts to excluding a few parts of the image where pixel difference is unusually
high.

Finally, there is the possibility that each of these estimators can “fail”: in the case of RS or Couples there is
a quadratic equation to solve and it might have no roots; in the case of the LSM detectors it can rarely happen
that the estimate of p is wildly outside the plausible region of [0, 1]. For the former the only options are to return
an estimate of 1 (on the grounds that failures are more common for high embedding rates) or to give no estimate
at all; for the latter either give no estimate or fall back to an estimate produced by a simpler estimator. We
elected to exclude images for which the RS or Couples algorithm fails to have a root, but in fact no such images
occurred in our tests because we only considered relatively low embedding rates. For the Couples and Triples
LSM and WLSM estimators we caused them to fall back to the standard Couples estimate in the (very rare)
cases where the algorithm gave an estimate of p outside the range [−0.2, 1.2].

5.1. Reduction in Image-Specific Variance

Our first set of experiments determine the extent to which the theory predicts that optimal weighting will decrease
image-specific variance. We compared v(d) from (10) and v(d,w) from (11), with w as in (12), in each image
of the various sets of covers. Those in the set of 3000 never-compressed grayscale covers showed reductions in
theoretically-predicted variance of between 0.19% and 45.28%, with a mean reduction of 15.19%. Very similar
numbers (0.14% to 38.96%, mean 14.07%) were observed in colour covers. Lower numbers (mean around 8%)
were observed in previously JPEG-compressed sets, but we do not expect that the theoretically-derived variance
is correct for JPEG covers because it relies on a cover model which does not extend to such images.

The analogous calculations for standard and weighted Triples showed a greater improvement, with mean
reductions in image-specific variance of around 25%. We found it quite surprising that the unweighted estimators
were as close to optimality as these figures suggest, but at least the theory does predict that the weighted
estimators should be an improvement on the traditional unweighted methods.

On the other hand, we have already mentioned that weighting tends to increase the image-specific bias.
Comparing µ(d) and µ(d,w), we observed that in every case the bias was increased, by a factor of between
1.35 and 372 (mean factor 18.3) in grayscale never-compressed covers and similar results in the other cover
sets. Comparing weighted and unweighted Triples bias (18) showed a rather smaller increase: in a few cases the
weighted Triples bias is smaller than for the unweighted estimator, but generally it was larger by a factor of



around 3. These figures indicate how important it is to introduce bias correction to weighted estimators. But
recall that the theoretically-predicted bias is for true values of p close to zero, so we should expect that the
weighted and bias-corrected estimators will perform poorly for large values of p.

5.2. Improved Estimator Accuracy

We now measure the accuracy of the estimators on our sets of cover images. Inaccuracy takes two forms: bias
in the estimation, and spread of the estimator value. We measure these quantities by computing the median
observed error, and either sample interquartile range or sample standard deviation, when a certain payload is
embedded into each image in each cover set. The argument for choosing median, rather than mean, as a measure
of location is presented in Ref. 4, where it is noted that the tails of the steganalysis error distributions are heavy
enough to cast doubt on the convergence of even quite low-order sample moments. We find it useful to continue
to compute sample standard deviation, however, because it allows us to measure how well the steganalysis
estimators suppress outliers.

The experiments were repeated with five estimators and embedding rates p = 0, 0.01, 0.02, . . . , 1 in order
to examine how the true payload effects the estimators’ performance. Results, broken down by cover image
set (colour or grayscale, never-compressed or previously JPEG-compressed) are shown in Figure 2. We already
know1, 4, 9 that LSM-based detectors have poorer performance as p grows, and also that bias correction depends
on the true payload being close to zero, so we have opted to show only the performance up to p = 0.25.

From these tables and charts we conclude as follows. Generally the bias is much less significant than the
estimator spread. In all cases except for colour JPEG covers, the Couples/LSM estimator is worse than the plain
Couples estimator; such performance was not visible in Ref. 6 (it could be seen in the tables in Refs. 1 and 8 but
it was not commented on). In fact the plain Couples estimator collapses when presented with colour JPEGs.
The Triples/LSM estimator is better than plain Couples (non LSM) when used on colour bitmap or JPEG covers
(as tested in Ref. 1) but barely so on grayscale covers and only for very small values of p. Thankfully the WLSM
methods (with bias correction) improve on their LSM counterparts, usually reducing estimator spread by around
10-30%, so that Triples/WLSM is always the best estimator for small enough values of p. We can also see that
the LSM and WLSM estimators start to suffer from a negative bias as p grows, and their estimator spread also
increases. We can conclude that the Triples/WLSM estimator is the best of all the least-squares estimators,
and the overall best choice for p below about 0.2. Above that level it would be best to return to the simplest
structural estimator, plain Couples.

This accords with our expectations (we already knew that LSM algorithms are weak for large values of p).
Of course, estimation of small payloads is the interesting case, when it is hard to distinguish them from zero
payloads.

5.3. Improved Discrimination Between Cover and Stego Images

Although accurate estimation of payload is useful, the primary task for a steganalyst is to decide whether any
payload is present. Since the LSM estimators have best performance for smallest payloads, it seems likely that
they will be able to discriminate between covers and stego objects with the most sensitivity.

In general, accuracy of discrimination is measured by false positive and false negative detections and often
displayed as a Receiver Operating Characteristic (ROC) curve; to characterise the behaviour of the discriminator
one should display ROCs for every embedding rate, which is unmanageable. We must therefore reduce the
dimensionality of the data in some way, in order to obtain a good performance metric, but there are no perfect
ways to do this. To summarise concisely the steganalysis methods’ ability to detect a payload, we have made an
arbitrary but plausible definition of “reliable” detection to mean the ability to separate covers from stego objects
with 5% false positives and 50% false negatives (the same was used in Refs. 1 and 11). We then determine
experimentally the lowest embedding rate at which this reliable detection is achieved, by each discriminator and
in each cover set separately. Table 1 shows the results.

We can see again that the traditional detectors collapse when presented with JPEG-compressed colour covers,
and that in other situations the Couples/LSM method has fairly poor performance as a discriminator. These
parallel the results for estimation. The unweighted Triples detector is the most sensitive of all the unweighted



Zero-payload profile

Detector Bias IQR (SD)

Couples 0.114 1.96 (3.29)

Couples/LSM -0.106 2.87 (4.29)

Couples/WLSM 0.089 2.53 (3.47)

Triples/LSM -0.112 2.18 (2.62)

Triples/WLSM -0.215 1.69 (2.01)

all figures ×10−2
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(a) Grayscale, never-compressed covers.

Zero-payload profile

Detector Bias IQR (SD)

Couples 0.506 2.08 (2.56)

Couples/LSM 0.561 2.71 (3.20)

Couples/WLSM 0.542 2.41 (2.83)

Triples/LSM 0.270 1.79 (2.30)

Triples/WLSM 0.168 1.42 (1.86)

all figures ×10−2

0.00 0.05 0.10 0.15 0.20 0.25

−
0.

00
4

0.
00

0
0.

00
4

ob
se

rv
ed

 b
ia

s

p

Couples
Couples/LSM
Couples/WLSM
Triples/LSM
Triples/WLSM

0.00 0.05 0.10 0.15 0.20 0.25

0.
01

8
0.

02
2

0.
02

6
0.

03
0

S
D

 o
f 
es

ti
m

at
or

p

(b) Colour, never-compressed covers.

Zero-payload profile

Detector Bias IQR (SD)

Couples -0.060 1.17 (1.56)

Couples/LSM -0.162 1.47 (3.65)

Couples/WLSM -0.073 1.30 (2.01)

Triples/LSM -0.915 0.93 (1.52)

Triples/WLSM -0.110 0.88 (1.08)

all figures ×10−2
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(c) Grayscale, previously-compressed covers.

Zero-payload profile

Detector Bias IQR (SD)

Couples 2.967 6.91 (8.76)

Couples/LSM 0.953 2.39 (3.06)

Couples/WLSM 1.128 2.57 (3.33)

Triples/LSM 0.290 0.97 (1.37)

Triples/WLSM 0.327 1.00 (1.25)

all figures ×10−2
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(d) Colour, previously-compressed covers.

Figure 2. Estimator error (observed bias and spread) as computed in four sets of 3000 images, for five different estimators.
The tables show the bias, interquartile range, and standard deviation of the observed estimators when no payload is
embedded, and the charts show how the performance is affected by the payload size, up to proportionate payload p = 0.25.
The WLSM estimators include bias correction.



Table 1. The lowest embedding rate (secret bits per cover pixel, which equals proportion of maximum payload) for which
“reliable” discrimination from p = 0 is achieved. Here, “reliable” is taken to mean a false positive rate of 5% and a false
negative rate of 50%. Results computed for seven methods, four sets of 3000 cover images, and accurate to 0.001. WLSM
discriminators do not include bias correction.

Never-Compressed Bitmaps Previously JPEG Compressed

Grayscale Colour Grayscale Colour

RS 0.036 0.054 0.023 0.283

Couples 0.036 0.052 0.018 0.220

Couples/LSM 0.045 0.060 0.022 0.068

Couples/WLSM 0.040 0.056 0.016 0.063

Standardized Couples/WLSM 0.060 0.037 0.080 0.156

Triples/LSM 0.033 0.041 0.014 0.026

Triples/WLSM 0.028 0.035 0.011 0.025

detectors. It is clear that weighting the LSM calculation always leads to improved discrimination, and the
Triples/WLSM detector is the best performing. The improvement due to weighting is modest but at its greatest
in the case of uncompressed covers (this should not surprise us, since the weighting factors are derived from a
cover model which is not accurate for JPEG images).

The standardized version of Couples/WLSM is a poor performer with respect to this metric (except, curiously,
for the case of colour never-compressed covers where its performance is second-best of all the discriminators).
Again, this should not surprise us: the intended application of the standardized statistic is to high-reliability
steganalysis, i.e. a very low rate of false positives. So to measure the detectors’ ability to discriminate with very
high reliability, we repeated the same experiments with alternative critical values of 0.1% false positives and 50%
false negatives; these results are displayed in Table 2.

It is notable that the payloads necessary for detection at these levels are much higher than if we allow
a rate of 5% false positives. This time we see the advantage conferred by the standardized Couples/WLSM
discriminator. In the case of grayscale never-compressed covers it is comfortably the most sensitive detector. In
the case of colour never-compressed covers it ties the Triples/WLSM estimator. But it remains a weak performer
on previously JPEG-compressed covers. Again no surprise, because the cover model that the theory is based on
is not accurate for JPEGs.

With so many experiments coming from a single parent set of 3000 covers, we thought it was important to
perform one final additional set of experiments. For these we used a completely independent set of cover images:
1000 never-compressed bitmap images taken directly from a variety of digital cameras in raw format, all sized
1504× 1000 (so substantially larger images than the 3000 used in the previous experiments). These images were
not used for any tuning or selection of detectors, and indeed these experiments were conducted at the very end of
the preparation of this paper. We advocate that to perform a set of experiments on an independent set of covers,
on which the detectors have not been tuned, is good experimental practice. It verifies that any improvements in
performance are not due to the detectors becoming too adapted to a particular cover set.

We repeated the experiment of finding the minimum payload at which 5% false positives and 50% false
negatives could be observed (with only 1000 image it is not sensible to test lower false positive rates, as they
depend on extreme order statistics). Table 3 shows the results. The first thing to note is that, although these
images are much noisier than the original set of 3000 covers, their larger size means that substantially more
sensitive detection is possible (dependence on cover size, if all other features remain the same, can be deduced
from the theoretical distributions (10) and (18)). These results confirm those seen in Table 1: the Couples/LSM



Table 2. The lowest embedding rate (secret bits per cover pixel) for which “highly reliable” discrimination from p = 0
is achieved. “Highly reliable” is taken to mean a false positive rate of 0.1% and a false negative rate of 50%. Results
computed for seven methods, four sets of 3000 cover images, and accurate to 0.001. WLSM discriminators do not include
bias correction.

Never-Compressed Bitmaps Previously JPEG Compressed

Grayscale Colour Grayscale Colour

RS 0.159 0.179 0.100 0.811

Couples 0.195 0.185 0.109 0.627

Couples/LSM 0.255 0.180 0.099 0.227

Couples/WLSM 0.249 0.168 0.065 0.176

Standardized Couples/WLSM 0.117 0.110 0.158 0.433

Triples/LSM 0.232 0.119 0.072 0.070

Triples/WLSM 0.216 0.110 0.058 0.070

method is not very good, and weighting only brings its performance back into line with traditional non-LSM
steganalysis methods, but Triples/WLSM is comfortably the most sensitive detector of payload.

6. CONCLUSIONS AND DIRECTIONS FOR FURTHER WORK

A theoretical model of estimation error is very valuable. Even when, as here and in Ref. 5, we only know
the error distribution in the case of zero payload, the theory has an immediate application in the development
of better steganalysis. Here we have shown that weighted least-squares steganalysis outperforms traditional
unweighted least-squares steganalysis, particularly in the difficult case of never-compressed covers. We have also
extended the theory of between-image error to Triples/LSM steganalysis, and the new Triples/WLSM estimator
and discriminator are the most accurate detectors of LSB replacement steganography yet known.

The most obvious direction for further work is to refine the models for cover deviation, (5) and (15). Table 2
shows the potential that standardized outputs have in the pursuit of very low false positive rates, but at present
the standardized discriminators only work for Couples/WLSM and require some components to be excluded.
Perhaps better models can be derived from those for pixel difference in natural images, but the great advantage
of the models leading to (5) and (15) is that they are not parametric – it might be difficult to estimate the
parameters needed for more complex models, from a single image. If the cover models can be improved to work
for all components as well as they work for most then we confidently expect to produce even better steganalysis.

Another way to improve the theoretical results is to extend them to work with images containing a payload.
We can see, in Fig. 2, that bias correction with the improperly-computed bias is causing poor performance for
moderate payloads. But it was noted in Ref. 5 that analysis of error distributions in the case of general payloads
has certain technical difficulties.

More generally, we hope to use knowledge of factors influencing the errors further to refine the structural
detectors. At present, structural steganalysis has an “all or nothing” character: a cover model which (until
Ref. 5) was assumed to hold precisely, and also an application of the Law of Large Numbers (suppressed here
only because we assume no payload) to assume that the realisation of the random variables e′m, o′m equal their
expectations. We are moving towards a more subtle approach, in which deviations from these assumptions are
permitted and can be quantified, which may eventually lead to a maximum likelihood estimator.



Table 3. The lowest embedding rate (secret bits per cover pixel) for which “reliable” discrimination from p = 0 is
achieved, again taken to mean a false positive rate of 5% and a false negative rate of 50%. These results are from a set of
1000 large (1.5 megapixel) never-compressed images taken directly from digital cameras with no postprocessing. Results
accurate to 0.0001. WLSM discriminators do not include bias correction.

Never-Compressed Bitmaps

Grayscale Colour

RS 0.0073 0.0082

Couples 0.0068 0.0072

Couples/LSM 0.0107 0.0087

Couples/WLSM 0.0079 0.0076

Standardized Couples/WLSM 0.0120 0.0083

Triples/LSM 0.0051 0.0034

Triples/WLSM 0.0040 0.0024
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