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ABSTRACT

Digital images can be captured or generated by a variety of sources including digital cameras and scanners. In
many cases it is important to be able to determine the source of a digital image. Methods exist to authenticate
images generated by digital cameras or scanners, however they rely on prior knowledge of the image source
(camera or scanner). This paper presents methods for determining the class of the image source (camera or
scanner). The method is based on using the differences in pattern noise correlations that exist between digital
cameras and scanners. To improve the classification accuracy a feature vector based approach using an SVM
classifier is used to classify the pattern noise.
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1. INTRODUCTION

Advances in digital imaging technologies have led to the development of low-cost and high-resolution digital
cameras and scanners. Both digital cameras and desktop scanners are becoming ubiquitous. Digital images pro-
duced by various sources are widely used in a number of applications from medical imaging and law enforcement
to banking and daily consumer use. Forensic tools that help establish the origin, authenticity, and the chain
of custody of digital images are essential to a forensic examiner[1]. These tools can prove to be vital whenever
questions of digital image integrity are raised. Therefore, a reliable and objective way to examine digital image
authenticity is needed.

There are various levels at which the image source identification problem can be solved. One may want to
find the particular device (digital camera or scanner) which generated the image or one might be interested in
knowing only the make and model of the device. As summarized in [2], a number of interesting and robust
methods have been proposed for source camera identification [3–6].

One approach for digital camera identification is based on characterizing the imaging sensor used in the
device. In [7], it is shown that defective pixels can be used for reliable camera identification even from lossy
compressed images. In [6], an approach for camera identification using the imaging sensor’s pattern noise was
presented. The identification is based on pixel nonuniformity noise which is a unique stochastic characteristic
for both CCD (Charged Coupled Device) and CMOS (Complementary Metal Oxide Semiconductor) sensors.
Reliable identification is possible even from images that are resampled and JPEG compressed. The pattern noise
is caused by several factors such as pixel non-uniformity, dust specks on the optics, optical interference, and
dark currents[8]. The high frequency part of the pattern noise is estimated by subtracting a denoised version of
the image from the original using a wavelet denoising filter [9]. A camera’s reference pattern is determined by
averaging the noise patterns from multiple images obtained from the camera. This reference pattern serves as an
intrinsic signature of the camera. To identify the source camera, the noise pattern from an image is correlated
with known reference patterns from a set of cameras and the camera corresponding to the reference pattern
giving maximum correlation is chosen to be the source camera[6].

In[10] we extended the methods for source camera identification to scanners. A correlation based approach
for authenticating digital cameras [6] was extended for source scanner identification. A SVM (Support Vector
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Machine) classifier was also used to classify the images based on feature vectors obtained from the sensor
pattern noise. We showed that this feature vector based approach gives much better classification accuracy
than correlation based approaches.

The techniques used for both camera and scanner identification are dependent upon having prior knowledge
of the class of devices (cameras or scanners) that the image was generated by. If the image was generated by a
digital camera, then the digital camera identification methods must be used. Similarly if the image was generated
by a scanner, the scanner identification methods must be used to obtain the best identification results.

In this paper we will present methods for determining whether an image was generated by a digital camera
or a scanner. We use differences in the sensor pattern noise correlation that arise between the two classes due
to inherent mechanical differences between their respective sensors. Features extracted from the pattern noise,
similar to those used in [10] are used to determine the source class.

2. IMAGE CAPTURE DEVICES

2.1. Digital Camera Imaging Pipeline
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Figure 1. Image Acquisition Model of a Digital Camera.

The imaging pipeline of most digital cameras are similar, irrespective of manufacturer or model[2]. The basic
structure of a digital camera pipeline is shown in Figure 1. Light from a scene enters the camera through a
lens and passes through a set of filters including an anti-aliasing filter. Next the light is “captured” by a sensor.
The sensors, typically CCD or CMOS imaging sensors, are color blind in the sense that each pixel captures only
intensity information. To capture color information, the light first passes through a color filter array (CFA)
which assigns each pixel on the sensor one of three (or four) colors to be sampled. Shown in Figure 2 are CFA
patterns using RGB and YMCG color spaces, respectively, for a 4×4 block of pixels. The individual color planes
are filled in by interpolation using the sampled pixel values.

Finally, a number of operations are performed by the camera which include, but are not limited to, color
interpolation, white point correction, and gamma correction. The image is then written into the camera memory
in a user-specified image format (e.g. RAW, TIFF or JPEG). Although the operations and stages described
in this section are standard in a digital camera pipeline, the exact processing details in each stage vary from
one manufacturer to another, and between different camera models from the same manufacturer. This variation
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Figure 2. CFA Patterns.
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from one camera model to another can be used to determine the type of camera from which specific image was
obtained. The features which remain same from camera to camera can be used to distinguish images generated
by digital cameras from those generated by flat-bed scanners.

2.2. Flatbed Scanner Imaging Pipeline
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Document

Light Source
Mirror- Lens  & 
Imaging Sensor

Digital Image

Figure 3. Flatbed Scanner Imaging Pipeline.

Figure 3 shows the basic structure of a flatbed scanner’s imaging pipeline[11, 12]. The document is placed
in the scanner and the acquisition process starts. The lamp used to illuminate the document is either a cold
cathode fluorescent lamp (CCFL) or a xenon lamp, older scanners may have a standard fluorescent lamp. Using
a stabilizer bar, a belt, and a stepper motor, the scan head slowly translates linearly to capture the image. The
purpose of the stabilizer bar is to ensure that there is no wobble or deviation in the scan head with respect to the
document. The scan head includes a set of lenses, mirrors, a set of filters, and the imaging sensor. Most desktop
scanners use charge-coupled device (CCD) imaging sensors. Other scanners use CMOS (complementary metal
oxide semiconductor) imaging sensors, Contact Image Sensors (CIS), or PMTs (photomultiplier tube) [11, 12].
The maximum resolution of the scanner is determined by the horizontal and vertical resolution. The number
of elements in the linear CCD sensor determines the horizontal optical resolution. The step size of the motor
controlling the scan head dictates the vertical resolution.

There are two basic methods for scanning an image at a resolution lower than the hardware resolution of the
scanner. One approach is to sub-sample the output of the sensor. Another approach involves scanning at the
full resolution of the sensor and then down-sampling the results in the scanner’s memory. Most good quality
scanners adopt the second method since it yields far more accurate results.

2.3. Sensor Noise

The manufacturing process of imaging sensors introduces various defects which create noise in the pixel values
[8, 13]. There are two types of noise which are important. The first type of noise is caused by array defects.
These include point defects, hot point defects, dead pixels, pixel traps, column defects and cluster defects. These
defects cause pixel values in the image to deviate greatly. For example, dead pixels show up as black in the image
and hot point defects show up as very bright pixels in the image, regardless of image content. Pattern noise refers
to any spatial pattern that does not change significantly from image to image and is caused by dark current
and photoresponse nonuniformity (PRNU). Dark currents are stray currents from the sensor substrate into the
individual pixels. This varies from pixel to pixel and the variation is known as fixed pattern noise (FPN). FPN is
due to differences in detector size, doping density, and foreign matter trapped during fabrication. PRNU is the
variation in pixel responsivity and is seen when the device is illuminated. This noise is due to variations between
pixels such as detector size, spectral response, thickness in coatings and other imperfections created during the
manufacturing process. Frame averaging will reduce the noise sources except FPN and PRNU. Although FPN
and PRNU are different, they are sometimes collectively called scene noise, pixel noise, pixel nonuniformity, or
simply pattern noise. In [14] a method of estimating sensor pattern noise is successfully used for source camera
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identification. The method uses a wavelet filter in combination with frame averaging to estimate the pattern
noise in an image. We developed an extension of that method for scanners in[10] using LPA-ICI[15] to estimate
the noise and a feature vector based classification that we believe is more robust than correlation methods.

Both digital cameras and scanners work on similar principles in terms of their imaging pipeline. However,
digital cameras use a two dimensional sensor array while most scanners use a one dimensional linear sensor array.
This difference can be used to distinguish between the two image sources. In a digital camera all the sensor
elements are used to generate an image, while in scanners, only a portion of the sensor generates the complete
image. In the case of flatbed scanners, the same linear array is translated to generate the entire image. It is
expected to find periodicity between rows of the fixed component of the sensor noise of a scanned image. There
is no reason to find a similar periodicity between columns of the sensor noise of the scanned image. Neither the
rows nor the columns of the fixed component of the sensor noise of an image generated by a digital camera are
expected to exhibit such periodicity. This difference can be used as a basis for discriminating between the two
image source classes.

3. STATISTICAL FEATURES FOR IMAGING SENSOR CLASSIFICATION

First we will describe the feature vector used to discriminate between scanned and non-scanned classes. We will
then, describe details of using a SVM to classify the images as scanned or non-scanned (taken from a camera).

3.1. Feature Vector Selection

The fixed component of the sensor noise can be used to discriminate between the two classes of images, scanned
and non-scanned.

Let I denote the input image of size M ∗ N pixels, that is with M rows and N columns. Let Inoise be the
noise corresponding to the original input image I and let Idenoised be the result of denoising I using LPA-ICI[15].
Then,

Inoise = I − Idenoised

The noise, Inoise, can be modeled as a sum of two components, a random component Irandom
noise , and a constant

component Iconstant
noise . For scanners, Iconstant

noise will depend only on the column index because the same linear
sensor array is translated to generate the complete image.

The average of Inoise over all the rows can be used as the row reference pattern, ˜Iconstant
noise (1, j), of a scanner

because the random components of Inoise will cancel each other while at the same time enhancing the constant
part.

˜Iconstant
noise (1, j) =

∑M
i=1 Inoise(i, j)

M
; 1 ≤ j ≤ N

To detect the similarity between different rows of the noise, we find the correlation of each of the M rows with
the estimated row reference pattern ˜Iconstant

noise (1, j). Let row corr(i), 1 ≤ i ≤ M denote the correlation between
ith row of Inoise and the row reference pattern. Correlation between two vectors X,Y ∈ RN is defined as

correlation(X,Y ) =
(X − X̄).(Y − Ȳ )
||X − X̄||.||Y − Ȳ ||

Similarly, we obtain col corr(j), 1 ≤ j ≤ N , as a measure of similarity between different columns of Inoise.
The first order statistics mean, median, mode, maximum and minimum and the higher order statistics variance,
kurtosis and skewness of the row corr and col corr are used to generate the feature vector for every image. Ratio
of the averages of row corr and col corr, which indicates the relative similarity among the rows or columns of
the pattern noise, is used as another feature. Thus eleven first order and six higher order statistical features form
the complete feature space. Two sets of experiments are performed. First set of experiments used only mean,
median, mode and ratio of the averages of row corr and col corr (total seven). For the second set of experiments
all the seventeen features are used to generate feature vector for every image.
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Since cameras have a 2-D image sensor, no correlations are expected to be present between the rows or
columns of the sensor noise. On the other hand, the fixed component of the noise should be nearly identical
for all the rows of a scanned image. Thus, for cameras, the statistics of row corr and col corr will be similar;
whereas for scanners the statistics of row corr will differ from those of col corr.

3.2. Support Vector Machine

Suppose we are given training data (x1, y1), ..., (xn, yn) where yi ∈ {1,−1}. The vectors xi,∀i represent the
feature vectors input to the SVM classifier and yi represent the corresponding class labels. Assuming that the
class represented by the subset yi = 1 and the class represented by yi = −1 are “linearly separable”, the equation
of a decision surface in the form of a hyperplane that does the separation is wT x + b = 0; where, x is an input
vector, w is an adjustable weight vector, and b is a bias.

For a given weight vector w and bias b, the separation between the hyperplane and the closest data point is
known as the margin of separation, denoted by M . The goal of a support vector machine is to find the particular
hyperplane for which the margin of separation M is maximized[16]. Under this condition the decision surface is
referred to as the optimum separating hyperplane (OSH) (wT

o x + bo = 0).

The pair (wo, bo) with appropriate scaling, must satisfy the constraint:

wT
o x + bo ≥ 1 ∀yi = +1 (1)

wT
o x + bo ≤ −1 ∀yi = −1 (2)

The particular data points (xi, yi) for which yi[wT xi + b] = 1 are known as support vectors, hence the name
“Support Vector Machine.” The support vectors are the data points that lie closest to the decision surface and
are therefore the most difficult to classify. As such they have the direct bearing on the optimum location of the
decision surface. Since the distance to the closest point is 1

‖w‖ , finding the OSH amounts to minimizing ‖ w ‖
with the objective function: min φ(w) = 1

2 ‖ w ‖2 subject to the constraints shown in Equations 1 and 2.

If (α1, α2..., αN ) are the N non-negative Lagrange multipliers associated with constraints in Equations 1 and
2, the OSH can be uniquely constructed by solving a constrained quadratic programming problem. The solution
w has an expansion w =

∑

i αiyixi in terms of a subset of training classes, known as support vectors, which lie
on the margin. The classification function can thus be written as

f(x) = sgn(
∑

i

αiyixT
i x + b) (3)

If the data is not linearly separable, SVM introduces slack variables and a penalty factor such that the
objective function can be modified as

φ(w) =
1
2
‖ w ‖2 +C(

N
∑

i=1

ζi) (4)

Additionally, the input data can be mapped through some nonlinear mapping into a higher-dimensional
feature space in which the optimal separating hyperplane is constructed. Thus the dot product required in
Equation 3 can be represented by k(x,y) = (φ(x).φ(y)), when the kernel k satisfy Mercer’s condition[17].
Finally, the classification function is obtained as

f(x) = sgn(
∑

i

αiyik(xi,x) + b) (5)

Because the SVM can be analyzed theoretically using concepts from statistical learning theory, it has partic-
ular advantage in problems with limited training samples in high-dimensional space.
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4. EXPERIMENTAL RESULTS

Table 1 shows the digital cameras and scanners used in our experiments. Approximately 100 images are scanned
for each of the three scanners (2 of which are the same model) at the native resolution of the scanners. The
images are then sliced into blocks (sub-images) of size 1024x768 pixels and sub-images from the first two columns
of the scanned images are used. For the cameras 350 images are captured by each of the three cameras at a
resolution of 1024x768. In total, we have 1800 scanned sub-images and 1050 camera images. Figure 4 shows a
sample of the images used in this study.

Table 1. Image Sources Used in Experiments

Device Model Class Sensor Native Resolution Image Format
Canon PowerShot SD200 Camera 1/2.5 inch CCD 2048 x 1536 JPEG

Nikon Coolpix 4100 Camera 1/2.5 inch CCD 2288 x 1712 JPEG
Nikon Coolpix 7600 Camera 1/1.8 inch CCD 3072 x 2304 JPEG

Epson Perfection 4490 Photo Flatbed Scanner CCD 4800 dpi TIFF
HP ScanJet 6300c-1 Flatbed Scanner CCD 1200 dpi TIFF
HP ScanJet 6300c-2 Flatbed Scanner CCD 1200 dpi TIFF

Figure 4. Sample of Images Used in Experiments

The complete experimental protocol is shown in Figure 5. To check the effectiveness of our proposed scheme
in classifying images based on their sources, a number of experiments are performed by varying the type of
images and the number of features used for classification. The SV M light package[18] is used with a radial basis
function chosen as the kernel function.

4.1. Experiment 1

Out of the 2850 images, half are randomly chosen to train the SVM and rest are used for testing. Initially,
the feature vectors are generated using only mean, median, mode and ratio of average values of row corr and
col corr (total seven features). An average classification accuracy of 98.1% is obtained over multiple runs in this
case, and the confusion matrix is shown in Table 2. To improve the classification accuracy, another SVM model
is generated using feature vectors containing the first as well higher order statistics of row corr and col corr. In
this case, an average classification accuracy of 98.6% is obtained. The corresponding confusion matrix is shown
in Table 3.

4.2. Experiment 2

In completely white or completely black images (hence forth referred to as “saturated” images) the sensor noise
is highly suppressed[8, 13]. Because the proposed method of imaging sensor classification utilizes features from
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Figure 5. Image Source Classification

Table 2. Confusion Matrix for Experiment 1 with 7
Dimensional Feature Vector

Predicted
Scanner Camera

Scanner 97.9 2.1
Actual

Camera 1.6 98.4

Table 3. Confusion Matrix for Experiment 1 with 17
Dimensional Feature Vector

Predicted
Scanner Camera

Scanner 98.4 1.6
Actual

Camera 1.2 98.8

the fixed component of the sensor noise, such saturated images are likely to be mis-classified. The images
mis-classified in Experiment 1 show that this is indeed the case. In this experiment, the saturated images are
removed from the dataset, which leaves a total of 2000 scanned and non-scanned images. Many sub-images from
the scanned images come under this excluded category since they are portions of bright areas (sky) and dark
areas (roads) of the full images.

Again, half the images are chosen randomly for training and the other half for testing. Using only the
first order statistics of row corr and col corr, an average classification accuracy of 98.9% is obtained with the
confusion matrix shown in Table 4. Using the first as well higher order statistics of row corr and col corr, an
average classification accuracy of 99.3% is obtained. The corresponding confusion matrix is shown in Table 5.

4.3. Experiment 3

To check the robustness of the proposed scheme when the imaging device to be tested is unavailable for training,
the SVM is trained using features from images captured by the HP ScanJet 6300c-1, HP ScanJet 6300c-2, Canon
Powershot SD200 and Nikon Coolpix 4100, while the testing set includes images from the Epson Perfection

Table 4. Confusion Matrix for Experiment 2 with 7
Dimensional Feature Vector (excluding the “saturated”
images)

Predicted
Scanner Camera

Scanner 98.7 1.3
Actual

Camera 0.9 99.1

Table 5. Confusion Matrix for Experiment 2 with 17
Dimensional Feature Vector (excluding the “saturated”
images)

Predicted
Scanner Camera

Scanner 99.2 0.8
Actual

Camera 0.6 99.5
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Table 6. Confusion Matrix for Experiment 3 with 17
Dimensional Feature Vector, Trained Without the Ep-
son 4490 and the Nikon Coolpix 7600

Predicted
Scanner Camera

Scanner 98.1 1.9
Actual

Camera 10.9 89.1

Table 7. Confusion Matrix for Experiment 3 with 17
Dimensional Feature Vector, Trained Without the HP
Scanjet 6300c-1 and the Canon Powershot SD200

Predicted
Scanner Camera

Scanner 98.5 1.5
Actual

Camera 11.2 88.8

4490 and the Nikon Coolpix 7600. Using the first as well as higher order statistics of row corr and col corr, an
average classification accuracy of 93.5% is obtained with the corresponding confusion matrix shown in Table 6. In
a similar experiment in which the HP Scanjet 6300c-1 and Canon Powershot SD200 are not used for training, an
average classification accuracy of 93.67% is obtained with the corresponding confusion matrix shown in Table 7.

4.4. Experiment 4

The efficacy of the proposed scheme is also tested on images that have been JPEG compressed. An average
classification accuracy of 93.5% is obtained for JPEG images compressed using quality factor 90, as shown by
the confusion matrix in Table 8. Both the training and testing images are JPEG compressed at quality factor
90.

Table 8. Confusion Matrix for Experiment 4 with 17 Dimensional Feature Vector, for JPEG Images at Quality Factor
90

Predicted
Scanner Camera

Scanner 97.6 2.4
Actual

Camera 7.1 92.9

5. CONCLUSION AND FUTURE WORK

In this paper we investigated the use of the sensor pattern noise for classifying digital images based on their
originating device, a scanner or a digital camera. Selection of proper features is the key to achieve accurate
results. The scheme presented here utilizes the difference in the geometry of the imaging sensors and demonstrates
promising results. As shown by our results, the proposed scheme does not need the availability of the actual
source device for training purposes. Thus, even images generated by a completely unknown scanner or digital
camera can be classified properly. Although results demonstrate good performance, we would like to extend this
technique to work with images scanned at resolutions other than the native resolutions of the scanners. The
challenge in working with lower resolution is to somehow address the degradation in sensor noise pattern due to
down sampling. Future work will also include, tests on images that have undergone various filtering operations
such as sharpening, contrast stretching and resampling. We are also looking at extending this approach for
forgery detection.
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