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ABSTRACT 

Robust image-based motion stabilization is developed to enable visual surveillance in the maritime domain. The algorithm 

developed is neither a dense registration method nor a traditional feature-based method, but rather it captures the best 

aspects of each of these approaches.  It avoids feature tracking and so can handle large intra-frame motions, and at the same 

time it is robust to large lighting variations and moving clutter.  It is thus well-suited for challenges in the maritime domain.  

Advantage is taken of the maritime environment including use of the horizon and shoreline, and fused data from an 

inexpensive inertial measurement unit.  Results of real-time operation on an in-water buoy are presented.
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1. INTRODUCTION 

The first step in surveillance is usually stabilization for camera motion [3,4,9,11], and that is the focus of this paper.  

While there has been much work in ground and aerial surveillance, the maritime domain has not yet drawn significant 

attention.  Yet the maritime domain presents a number of unique challenges and opportunities for motion stabilization.  

Floating sensors must deal with constant motion of their own and of the water surface around them.  Waves may generate 

high-texture features, but their motion is non-rigid and their appearance changes rapidly.  Maritime lighting typically has 

greater contrast than on land due to direct sunlight reflections with a resulting loss of detail for cameras with limited 

dynamic range.  Rapid changes in lighting can be countered by an auto-iris, but this leads to changes in object appearance 

and details.   Finally water spray can lead to droplets and salt deposits on the camera protective cover, causing distortions 

and clutter in the imagery. 

Here algorithms are developed for robust image stabilization on a floating buoy.  While it is possible to use a gyro-based 

sensor to do stabilization, this requires a high-precision device which is typically expensive and bulky.  Directly using 

images enables stabilization down to sub-pixel precision, which is precisely the level needed for motion-based detection 

algorithms.  

There are two general approaches to image stabilization: dense techniques and feature-based techniques.  In dense 

techniques images patches are directly warped onto each other or correlated with each other using motion models, for 

example see [8,9].  On the other hand, feature-based techniques rely on tracking features between images and directly 

calculating motion from them, see [2,3,4,10,12].  Advantages of dense methods include more pixels being used and 

requiring explicit feature correspondences is avoided. But these methods are typically not robust to many of the challenges 

in maritime environments such as rapidly moving specular reflections and large changes in gain and contrast due to lighting 

changes.  Feature-based methods can be quite robust to lighting variations as well as to moving clutter in the scene, however 

they face the challenge of maintaining feature tracks especially when motion is large.  They also have difficulties if the 

scene does not have stable corner features. 

Here a hybrid technique for motion stabilization is presented.  It achieves robustness to lighting variations and moving 

clutter in a similar way as feature techniques, but at the same time, like the dense techniques, it does not require finding 

corner features or tracking features between frames.  It can thus work with very large intra-frame motion and with large 

lighting variations and moving clutter.  The geometry of the maritime domain is leveraged including use of the horizon and 

shoreline as well as an inertial measurement unit (IMU) if available.  Stabilization was implemented in a real-time system 

onboard a buoy.  Sample results are illustrated. 

                                                 
* Work was performed in part at Northrop Grumman Corp, 1501 Ardmore Blvd, Pittsburgh PA 15221. 
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The paper is organized as follows.  First our assumptions are stated in Section 2.  Then stabilization of the vertical axis is 

described in Section 3, followed by stabilization of heading in Section 4.  Filtering to combine inertial and image 

measurements is described in Section 5. Finally results are given and discussed in the conclusion. 

2. ASSUMPTIONS 

Stabilization is performed using a 360-degree field of view, 5-camera array that has been calibrated such that for each 

pixel in each camera, ( ),
i i

u v  there is a known unit 3-vector, ˆ
i

p , giving the direction of the ray incident on that point, 

namely: 

 ( )ˆ ,
i i i

f u v=p , (1) 

where ( ),
i i

f u v  is the calibration function. 

  Since the cameras are close together compared to the distance to detected objects, their optical centers are approximated 

as being coincident.  By working in spherical coordinates, data from all cameras can be treated uniformly.  It is assumed that 

over short time periods the buoy translation is negligible compared to the objects it observes. 

Furthermore it is assumed that the horizon or distant shoreline is visible for vertical stabilization, and that shoreline 

features are available for heading estimation. 

3. VERTICAL STABILIZATION 

Image motion can be explained as a rotation of the platform, and hence stabilization is achieved by estimating the 

platform rotation.  The approach here is to divide rotation estimation is into two sequential steps: first vertical axis 

estimation and then heading estimation.  Vertical axis estimation is described in this section.         

The key property of the maritime domain that aids stabilization is that the visible horizon or distant shoreline defines a 

horizontal plane.  Figure 1 illustrates a buoy rotated by W

B
R  in world coordinates with respect to a reference frame on the 

horizontal plane, H.  The third row of W

B
R , is B T

W
z , the transpose of the vertical axis in the buoy reference frame.  In Euler 

coordinates this is [ ]sin( ),cos( )sin( ),cos( ) cos( )p p r p r− , see 5 pg. 46, where r and p are the roll and pitch around the world 

x and y axes respectively.  Thus finding the vertical vector, B

W
z , or equivalently the horizontal plane, in buoy coordinates is 

sufficient to determine the buoy roll and pitch.   
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Figure 1 The world coordinate system is defined such that 
W

z  

is perpendicular to the horizontal plane H.  The buoy 

coordinate system is rotated with respect to this by 
W

B
R . 

 

It is assumed that the horizon (or a sufficiently distant shoreline) is visible as a contrast change in part of the 360-degree 

image.  However the images will typically be highly textured with waves, clouds and shoreline providing clutter from which 

the horizon must be extracted.  The following robust technique was used to determine the horizontal plane. 
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Figure 2 Peaks and troughs of the vertical gradients are found in each image column 

in the region around the horizon.  These points include the horizon, distant shoreline 

and other clutter.  The horizon is found by determining the plane that explains the 

most peaks in all simultaneous images. 

 

For each column of the smoothed vertical gradient images of all the cameras, all the local maxima and minima in the 

region around the predicted horizon and above a small threshold are found.  A subset of these will correspond to the horizon.  

Each of the maxima and minima is mapped to a point on the unit sphere, ˆ
k

p , using Eq. (1).  Now the horizon points will all 

lie on the plane H, and at the same time it is unlikely that there will be any other plane through the origin generating a large 

number of points ˆ
k

p .  Thus a robust technique, such as RANSAC 6, is used to find the best plane fitting these points.  Pairs 

of points are sufficient to define the perpendicular to a plane through their cross product: 

 ˆ ˆ
j k

= ×v p p  (2) 

The vector v with the most inliers is the initial estimate for B

W
z , and a least squares estimate using the inliers can be 

obtained as the eigenvector corresponding to the minimum eigenvalue of: 

 
T

i i

i inliers

A
∈

= ∑ p p . (3) 

Examples of stabilization are shown in Figures 8 and 9.  

4. HEADING STABILIZATION 

The next step is to determine the change in heading.  Our approach to achieving this is to temporally align vertical 

features on the visible shoreline.  We want these features to be robust to lighting variation and we want to avoid tracking 

individual features.  A technique that achieves this is based on vertical curves. 

Vertical curves trace the vertical edges of objects and landmarks on the shoreline, see Figure 3.  They are obtained with 

sub-pixel accuracy and are invariant to brightness and contrast changes.  First the horizontal gradients of all the images are 

found.  The maxima and minima of the gradient for each row are parabolically fit to sub-pixel accuracy, and roughly vertical 

contour-based curves are created by connecting close-by maxima and minima between adjacent horizontal rows as 

illustrated in Figure 3. 
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(a)  

  
(b) 

Figure 3 (a) Curves found on objects on the shoreline.  (b) Close-up showing the peaks and 

troughs of the horizontal gradient (red and blue dots), and the curves traced through them. 

 

Curves are built in image space, but then transformed onto the unit sphere using Eq. (1).  They are then stabilized with 

respect to roll and pitch by rotating by 
W

B

T
R  with zero heading.  After this the elevation and azimuth angles, ( ),

i i
ϕ θ , for 

each transformed point, ˆ
i

p , on each curve can be calculated up to an unknown overall heading: 

 ( )2 2
arctan ,

i xi yi zi
p p pϕ = +  (4) 

 ( )arctan ,i y xp pθ =  (5) 

It is assumed that a portion of shoreline is visible above the horizon, and this is used for finding heading change as 

follows.  A series of horizontal slices, ( );
t k

s ϕ θ , at a set of elevations 
k

ϕ  and time t of the transformed curves are made, 

and for each slice the locations, θ , of all curve intersections are recorded with a 1±  pixels depending on the sign of the 

curve at that point, see Figure 4. Corresponding slices are made through subsequent images, and the relative heading found 

by a circular convolution of these slices with the slices at previous times.  Circular convolutions can be efficiently calculated 

with the use of fast Fourier transforms and their inverses: FFTs and IFFTs respectively.  If ( );
t k

S ϕ θ  is the FFT of 

( );
t k

s ϕ θ  and ( );
t k

S ϕ θ� the complex conjugate, then the sum of the circular convolutions with slices at time tm is given by: 

 ( ) { }0IFFT ( ; ) ( ) ( ; )tm tm k t k
slices

w S G Sθ ϕ θ θ ϕ θ= ⋅ ⋅∑ �  (6) 

where ( )G θ  is the FFT of a Gaussian added for smoothing and to reduce sensitivity to calibration imprecision.  There is no 

need for zero padding as the convolution is circular.  The location of the peak of ( )tm
w θ  gives the heading with respect to 

time t0.  This is robust to moving objects and spurious curves, since curves that do not have a match do not contribute to the 

result.  Hence a robust and precise heading is obtained. 
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Figure 4 (a) Using the roll and pitch estimated previously, vertical curves are 

transformed into the ( , )ϕ θ  space.  A series of horizontal slices cut through these at 

various elevations above the horizon.  The interpolated location of these curves on one 

of these slices is shown in (b). 
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Figure 5 (a) Convolution ( )
tm

w θ  from Eq. (6) of the slices in Figure 4.  The lower chart 

is a close-up showing a small change in heading at the maximum in degrees. 

 

5. FILTERING 

Rotation estimates can be improved by filtering.  This enables the inclusion of a buoy dynamic model and motion 

estimates from the IMU.  A standard Kalman filter was implemented to achieve this with the following particular properties.  

The buoy dynamics were modeled as independent damped harmonic oscillators in roll and pitch, and damped angular speed 

model in heading.  With state vector, [ , , , , , ]Tr r p p h h=x �� � , containing roll, pitch, heading and their time derivatives, the 

equation of motion is: 

 ( )t= +x Fx u� . (7) 

The component of x for roll is [ ]
T

r r�  and its dynamics are described by:  
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2

0 1
roll

ω γ

 
=  

− − 
F  (8) 

where ω  and γ  are the characteristic buoy angular speeds and damping respectively.  Analogous expressions apply to pitch 

and heading (with 0ω =  for the latter). Together they form a block-diagonal F, and state transfer function: 

 ( )exp t= ∆Φ F . (9) 

The driving term, ( )tu , is the action of the waves and is unknown, and so is modeled as system noise, Q.  It acts as a 

continuous acceleration term and so to integrate it into our discrete formulation the following equation was used for roll 

noise (and similar equations for pitch and heading): 

 
2

0 0

0

T

roll roll roll roll roll
σ

 
= + +  

 
Q F Q Q F� , (10) 

where 2σ  is the measure of the acceleration from wave motion.  This can be re-written in the form: 

 
2

0

0

σ

 
 

= +  
  

q Mq�  (11) 

 

where  

 

11
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q
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q
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q

ω γ

ω γ

   
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= = = − −    
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q Q M . 

The solution is given by:  

 ( )( )1

2

0

exp 0t

σ

−

 
 

= ∆ −  
  

q M M I , (12) 

from which Qroll is obtained.  Qpitch and Qheading are obtained in a similar manner and together form the block-diagonal Q. 

The measurement matrix, H, defined by =Hx z  where z contains the measured quantities, is simple to calculate. The 

measurements include , , , , ,r r p p h h�� �  directly from the IMU, and , ,r p h∆  from the images, where h∆  is the heading relative 

to the previous image.  The covariance, R, on the measurements was chosen to have much larger terms on the IMU 

components than the image components.  All these terms are plugged into standard discrete Kalman filter equations and 

produce a fused image and inertial stabilization system.  For completeness these equations are summarized as follows: 

 

 ( )

( )

( ) ( )

1

( ) ( )

1 1

1
( ) ( )

( ) ( ) ( )

( ) ( ) ( )

t t t

T

t t t t t

T T

t t t t t t t

t t t t t t

t t t t t

− +

−

− +

− −

−
− −

+ − −

+ − −

=

= +

= +

= + −

= −

x Φ x

P Φ P Φ Q

K P H H P H R

x x K z H x

P P K H P

 (13) 

 

6. RESULTS 

Stabilization through horizon-finding in five cameras turned out to be very robust.  Examples are shown in Figures 7, 8 

and 9.  Using an inexpensive inertial measurement device significantly sped up the computation by reducing the search 

space as well as the percentage of outliers to be dealt with by the RANSAC operation.  Relative heading estimation was fast, 

requiring only 1D FFTs and gave pixel-level precision, see Figure 5.  A comparison of IMU and image-stabilization as well 

as fused results is given in Figure 6.  Distant ships can help in short-term stabilization, although over longer term their 
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motion relative to the shoreline can be detected.  Stabilization was easily calculated with a Pentium III processor with data 

from 5 1024x768 cameras at 7 frames per second. 
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Figure 6   Comparison rotation estimates from IMU and the image-based algorithm and a filtered approach that 

fuses these.  The IMU is rated to accurate to a RMS accuracy of 2°  whereas the image-based heading is 

accurate down to at least pixel resolution, which for these cameras is 0.2± ° . In this example of low 

acceleration, the IMU accuracy is much higher than its rated value and comparable to the image technique.  For 

larger motions, however, the IMU accuracy degrades as can be seen in Figure 9, whereas the image-based 

technique maintains high accuracy. 

7. CONCLUSION 

An efficient and robust image-based motion stabilization technique was developed for the maritime domain.  The use of 

features based on local maxima and minima of the gradient images gave robustness to rapid lighting changes.  The use of 

curves rather than corners is more appropriate to maritime environments where corner features may be rare.  Avoiding the 

need to track features makes the technique robust to large intra-frame motion.  Using spherical coordinates enables 

measurements from cameras pointing in all directions to be used, greatly reducing ambiguities in horizon-finding that occur 

in single-camera solutions.  The next step is to use the motion stabilization to achieve moving object detection.  The curved 

features developed here can be used for this.  Obtaining the absolute vertical, as this does, rather than simply an incremental 

change in rotation, enables precise surveillance applications that search for objects close to the horizon.     

A limitation of image-based techniques is that they depend on environmental conditions.  Fog or haze can obstruct the 

view of the horizon or shoreline.  In these cases it may be necessary to rely on inertial measurements which can easily be 

done with our filtering approach.  A useful advantage of the image-based approach is that accuracy can increased simply by 

adding more cameras with higher resolution. 
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(c) 

Figure 7 (a) A portion of the field of view of the camera array including shoreline and 

watercraft.  (b)  Horizon and curves are shown overlaid. (c) Curves are transformed into 

stabilized, spherical coordinates. 
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Figure 8 Horizon stabilization shown on 3 of 5 images.  Top row shows original images.  The vertical offsets and radial 

distortions are unimportant as they are accounted for in the calibration, Eq (1).  Blue lines in center row show region 

bounded by uncertainty of the IMU.  In this region the yellow dots show all the vertical gradient peaks.  Using RANSAC a 

subset of these are determined to be inliers to the horizon and these are plotted in the bottom row with the blue lines being 

the bounds on the inliers.  The final estimate of the horizon is shown by the orange line and is obtained as a least squares fit 

to the inliers, see Eq. (3). 

 

 

Figure 9 Another example of horizon fitting with very large roll and pitch shown in 3 of the 5 cameras.  The two blue curves 

are bounds of the search region given by the IMU and centered around its estimate which shows significant error compared 

to the final image-estimate.  Gradient peaks are highlighted in this region.  Application of RANSAC finds inliers to the 

horizontal plane, here marked as white. 

 

 


