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Abstract

MRI at high magnetic fields (> 3.0 T ) is complicated by strong inhomogeneous radio-frequency 

fields, sometimes termed the “bias field”. These lead to nonuniformity of image intensity, greatly 

complicating further analysis such as registration and segmentation. Existing methods for bias 

field correction are effective for 1.5 T or 3.0 T MRI, but are not completely satisfactory for higher 

field data. This paper develops an effective bias field correction for high field MRI based on the 

assumption that the nonuniformity is smoothly varying in space. Also, nonuniformity is quantified 

and unmixed using high order neighborhood statistics of intensity cooccurrences. They are 

computed within spherical windows of limited size over the entire image. The restoration is 

iterative and makes use of a novel stable stopping criterion that depends on the scaled entropy of 

the cooccurrence statistics, which is a non monotonic function of the iterations; the Shannon 

entropy of the cooccurrence statistics normalized to the effective dynamic range of the image. The 

algorithm restores whole head data, is robust to intense nonuniformities present in high field 

acquisitions, and is robust to variations in anatomy. This algorithm significantly improves bias 

field correction in comparison to N3 on phantom 1.5 T head data and high field 4 T human head 

data.
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1. INTRODUCTION

The accurate acquisition of MRI data requires a homogeneous radio-frequency field, which 

is not possible to achieve. The inhomogeneity, sometimes termed the “bias field”, is more 

pronounced at MRI of high fields (> 3.0 T ), where the radio-frequency wavelength gets 

shorter, approaching the dimension of the human head or body. The local dielectric 

properties of these regions lead to nonuniformity of image intensity, greatly complicating 

further analysis such as registration and segmentation. Existing methods for bias field 
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correction have been reasonably effective for 1.5 T or 3.0 T MRI, but are not completely 

satisfactory for higher field data. This paper develops an effective bias field correction for 

high field MRI especially for quantitative brain imaging at 4 T .

There have been several attempts to correct for nonuniformity during acquisition based on 

its physical properties. The nonuniformity of the transmission coil has been estimated from 

its frequency response to parameterized acquisition sequences.1,2 In addition, the 

nonuniformity of transmission and receiver coil(s) combined has been approximated using 

phantoms.3 However, the physical correction methods are valid only for a particular MRI 

sequence, but do not account for the complicated interaction between the radio-frequency 

fields and the human body. It is not obvious how the combined nonuniformities can be 

accounted for during acquisition, especially for higher magnetic fields. Thus, existing 

methods for correction of the nonuniformities during acquisition are incomplete, time 

consuming, and clinically impractical.

As an alternative to physical corrections, several post-acquisition restoration methods have 

been proposed to account for the effect of nonuniformities that do not require additional 

acquisitions and are applicable to a range of MRI sequences. They make regularity 

assumptions about the field nonuniformity as well as anatomy and treat the nonuniformities 

in the same way irrespective of their sources. Typically, they operate on the logarithm of 

image intensities of the data4–6 and assume that the bias field can be approximated by basis 

functions such as Gaussians, splines, polynomials, or sinusoids. The simplest approach to 

address this problem has been homomorphic filtering.7,8 This is based on the assumption 

that the bias field corresponds to spatial frequencies lower than those of the anatomy. Thus, 

smoothing an image in the spatial or frequency domain gives the nonuniformity. Smoothing 

has also been applied to statistics of local histograms computed over image tiles.7,9 The 

basic assumption of homomorphic filtering, that the spatial frequencies of the bias field are 

lower than those of the anatomy can be problematic for high field MR images. In such 

images the nonuniformity can extend from the low frequency part of their spectrum until the 

intermediate frequency range.

Another class of approaches derives bias field estimations by registering the data to a tissue 

template or atlas of expected intensity distribution and by computing either directly10 the 

difference between actual and expected values or using the templates as a prior for 

subsequent processing.5,11 Bias field estimation has also been combined with tissue 

classification. Many of these approaches require initialization with manual 

presegmentation12–15 while others are fully automatic. Some of these approaches estimate 

tissue classification based on expectation maximization16 over the histogram,13–15,17 and 

fuzzy c-means classification.18,19 Intensity tissue classification has also been combined 

with spatial Markov random fields.4–6,13–15 Estimating the bias field with registration and 

segmentation depends extensively on the prior assumptions. The accuracy of registration is 

affected when the image has an intense bias field such as that present in > 3 T images. This 

poses a problem when registration is used to extract the brain region from a head image. 

Also the priors of an algorithm may be unable to represent the intensity variations of 

anatomy or pathology in the data. Moreover, there may not be adequate contrast between the 

assumed tissue classes.
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Several non-parametric approaches have been suggested that are more robust to inter and 

intra subject variability as well as pathology. One such class of non-parametric techniques is 

based on the retinex algorithm.20–22 This algorithm uses the logarithm of the intensities 

and normalizes them to the geometric mean of the intensities within a neighborhood. Thus it 

enhances the components of the nonuniformity whose wavelength is close to the size of the 

neighborhood considered and hence introduces overshooting contours at the borders 

between different tissue regions.21 This problem can be alleviated but not resolved by using 

the multiresolution of an image in terms of a Gaussian or a more general wavelet 

representation.22,23 Another class of non-parametric approaches assume that the image is a 

piecewise union of extensive regions of constant intensity. These methods compute image 

derivatives such as the gradient or Laplacian and threshold their low values assumed to be 

due to nonuniformities exclusively. The remaining derivatives are incorporated into a 

regularized cost functional whose minimization estimates the nonuniformity.24,25 The 

assumption of extensive homogeneous regions may not hold as in the brain cortex in head 

imaging. Both retinex and variational methods operate locally and may not restore global 

image statistics. They also assume a distinction between a low frequency nonuniformity and 

a high frequency anatomy. More generally, corrections that use differential image properties 

may lead to different restorations for different image regions.26

Another class of non-parametric techniques uses the global image intensity histogram.27,28 

These methods can capture global image properties. They assume that the bias field widens 

the intensity distributions of the various tissues. Thus, the inverse is assumed to provide a 

deconvolution for sharpening the histogram and restoring image uniformity. This is 

achieved by estimating a smooth estimate of the nonuniformity. A commonly used 

technique, N3,28 was found to have a performance superior to those based on homomorphic 

filtering.29 The ability of the intensity histogram to discriminate between different 

distributions affected by high fields is limited due to the corruption of the distributions 

caused by the spatial nonuniformity. A common sharpness optimality criterion for histogram 

based methods is minimum entropy, which corresponds to single peak histograms resulting 

from a flat image.27,30,31 Thus, the entropy criterion can be problematic in terminating an 

iterative numerical algorithm.

To address the problem of uniformity restoration we use a nonparametric approach. In this 

study that is based on high order intensity coincidence or cooccurrence statistics. Since it is 

a nonparametric approach it is robust to subject anatomy, pathology, and intensity variations 

within a tissue. The cooccurrence statistics represent the intensities of different tissues as 

well as the joint intensities of adjacent tissues. The high order of coincidences favor 

dominant distributions and selectively decrease the contribution of noise to their variance. 

The unmixing of the bias field from these statistics is done by considering its physical effect 

on the original intensities, rather than their logarithm. The restoration is iterative with a 

robust stopping criterion based on the entropy of the distribution normalized with respect to 

the dynamic range, namely, the scaled entropy. Our algorithm was able to perform bias field 

restoration for human head data acquired under high field with an emphasis on the brain 

region that gives rise to the dominant distributions of the white matter and of the region 

around the interface between white matter and gray matter. It was found to have a better 

performance than N3 over the same data.28
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2. INTENSITY NONUNIFORMITY MODEL

We assume that the measured image I and intrinsic anatomic image IA are related according 

to:

(1)

where matrix B contains the unknown nonuniform field and the noise N is additive. The 

statistics of IA are assumed to consist of distributions that can be discriminated.

The Taylor series expansion of the bias field around a voxel x0 gives:

(2)

Approximation up to the first order term leads to a bias field which is locally linear within a 

sphere of radius ρ = x − x0 around x0. Thus, quadratic and higher order terms are assumed to 

be negligible within distance ρ from x0. The nonuniformity is recovered within a scale factor 

which does not affect the discriminability between tissues. We also assume that the noise N 

is stationary, Gaussian, and white.32 In addition to the spatially smooth variations the 

nonuniformity also has abrupt variations at the borders between different tissues. However, 

we assume that these can be absorbed into the tissue statistics.

3. METHODS

The objective of this work is to decompose the product in equation (1) to estimate IA and a 

smooth B. We unmix the effect that nonuniformity B has on the statistics of I. This provides 

a rough estimate of the nonuniformity. We also assume that the nonuniformity B is spatially 

smooth, which is imposed directly by Gaussian smoothing. Thus, we do not consider noise 

in equation (1), which has high spatial frequencies. The restoration is iterative with a stable 

stopping criterion. An overview of the algorithm is sketched in figure 3.

3.1. Determining the Valid Dynamic Range of the Image

The valid dynamic range of the MR contrast mechanism is detected and very bright artifacts 

due to instrumental imperfections or blood flow are removed. Such artifacts do not follow 

the nonuniformity assumption of equation (1). To this end we compute the histogram h of 

the original image I and the cumulative histogram . The latter is normalized to 

unit L1 norm . We compute the intensity value u0.9 that corresponds to the upper 0.9 

percentile of . The intensity range up to 1.5 × u0.9 is preserved, 

whereas the intensity range beyond that value is linearly compressed to the range (1.5 × u0.9, 

3.0 × u0.9] with maximum intensity umax = 3.0 × u0.9 to provide an initial estimate of image 

I0. The same intensity range [0, umax] is maintained during the iterations t. The image is a 

map to this intensity range from its domain D, It : D → [0, umax].
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3.2. High Order Intensity Cooccurrence Statistics and their Properties

The statistics used in this work are the nth-order cooccurrences of pairs of intensities within 

a spherical neighborhood in the image It with radius ρ, assuming that the field in windows of 

this size is linear. The count of intensities in range u ∈ [0, umax] in a sphere of radius ρ 

around voxel x0 is given by:

(3)

In an nth-order cooccurrence of intensity range u1 and intensity range u2 the center of the 

spherical neighborhood has intensity within u1 and the remaining window contains at least n 

− 1 voxels of the same intensity and at least n voxels of intensity u2. Additional voxels of 

any of the two intensities within the spherical window ρ give the cooccurrence:

(4)

where ct(x0, u1, u2) is the cooccurrence at x0 for iteration t. The image cooccurrences are 

given by integrating the voxel cooccurrences over the entire image domain. The 

cooccurrence statistics are computed with a two dimensional Gaussian Parzen window G(σc) 

to give a 2D matrix:

(5)

This is the joint intensity distribution of nth-order of an image with itself computed within 

spheres of radius ρ. The resulting matrix Ct is not necessarily symmetric. The cooccurrences 

of a region with a contiguous tissue lie close to the diagonal of matrix Ct. The joint 

cooccurrences of tissues around an interface of different tissues lie farther from the diagonal. 

To examine the properties of the cooccurrence matrix we assume that the distributions of IA 

in the cooccurrence statistics CA are Gaussian. The noise variance of the dominant 

distributions in the cooccurrence matrix is decreased with increasing cooccurrence order. 

Thus, the discriminability between the dominant distributions in CA is increased.

The effect of the presence of additive zero mean Gaussian noise N in an image is an increase 

of the variance of the distributions in Ct. The effect of image intensity nonuniformity on an 

intensity cooccurrence between u1 and u2 where u1 is the intensity of the central voxel at x1 

in a hypothetical anatomic image IA is to scale and rotate it about the origin of Ct. The zero 

order term Bt(x1) in equation (2) scales cooccurrences around the origin and the first order 

term ∇Bt(x1) in equation (2) rotates them around the origin. Thus, the effect of the 

nonuniformity on Ct is easier to examine in polar coordinates (r, ϕ), where  and 

tan ϕ = u2/u1. We assume that the variation of the cooccurrence statistics of the 

nonuniformity Bt in the cooccurrence statistics CBt along the radial axis, r, is given by a 

Gaussian distribution for Δr, G(σr). It follows from33 that the effect of the nonuniformity on 

σr is given by:
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(6)

The rotation angle Δϕ of the nonuniformity in its cooccurrence statistics CBt is given by:

(7)

where α = ∇B. This relation can be derived from figure 1 (a) and is plotted in figure 1 (b). 

We also assume that the variation of a distribution in the azimuthal axis Δϕ gives rise to a 

unimodal Gaussian distribution G(σϕ), where σϕ corresponds to a certain value of α.

3.3. Unmixing the effect of the Nonuniformity from the Cooccurrence Statistics

To decompose the product in equation (1) and estimate It and a smooth Bt we use the 

cooccurrence statistics to unmix the effect that the nonuniformity Bt has on Ct,where Bt is 

the estimate of B at iteration t. To unmix the effect of the nonuniformity we compute the 

inverse of the Gaussian nonuniformity distributions for Δr and Δϕ. The inverses of these 

distributions give the restoration filters of the cooccurrence matrix. The radial restoration 

filter is  and the angular restoration filter is , where ∊ is very 

small nonzero constant. In equation (6) the radial distortion is proportional to r. Thus, the 

size of the radial deconvolution filter has the same linear dependence, σr ∝ r. The size of the 

radial restoration filter in the algorithm is its standard deviation normalized with respect to 

the dynamic range to give its normalized standard deviation:

(8)

The azimuthal restoration filter is represented in terms of angle in radians and hence it is 

inherently normalized to the radius r in Ct, which is the dynamic range. The standard 

deviation of the angular restoration filter, σϕ, can be determined from equation (7). The 2D 

restoration filter fq = fr * fϕ is applied to the cooccurrence matrix Ct. This will map every 

cooccurrence (u1, u2) to the expected one  to give the expected restored cooccurrence 

matrix . The restoration of the cooccurrence matrix gives a restoration matrix Rt with a 

gain factor for each intensity cooccurrence. The gain is the ratio of the new position  of 

the intensity of the central pixel over the initial position u1 of the same intensity. Thus, the 

restoration factor or gain is .

3.4. Estimation of the Spatial Nonuniformity

The restoration matrix Rt is backprojected to the image. We consider a sphere of radius ρ 

around a voxel x1. The size of this neighborhood is the same as the size of the neighborhood 

that was used to compute the cooccurrence statistics Ct. This sphere gives 

intensity cooccurrences with the intensity of voxel x1. These intensity cooccurrences index 
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the restoration matrix Rt to get an equal number of gain factors. Their expected value gives a 

rough estimate of the restoration image  at x1:

(9)

This is the inverse of the rough estimate of the nonuniformity . 

The nonuniformity field is assumed to be smooth. Thus, the restoration image  is 

filtered with a spatial Gaussian filter G(σw) to give .

In practice the Gaussian distributions of the nonuniformity statistics can only be 

approximately inverted to give the deconvolution filters. As a result they contain a low 

frequency component that tends to contract the dynamic range of the image with iterations t. 

It is necessary to normalize the effective dynamic range since the standard deviation of the 

radial deconvolution filter is a function of umax. The normalization is done with the 

cumulative histogram of the image It by rescaling the intensity range to ensure that the upper 

0.9 percentile, u0.9,t, of the cumulative histogram  remains constant 

with iterations t. That is:

(10)

The restoration from equation (10) is applied to the restored image pixelwise 

 to improve its estimate.

3.5. Condition for End of Iterations

The Shannon entropy of the cooccurrence statistics of an image monotonically increases as 

it is corrupted with a smooth nonuniformity from which it follows that the Shannon entropy 

of the cooccurrence statistics of an image is larger than the one of the assumed intrinsic 

anatomic image, S(C0) > S(CA). However, the Shannon entropy of the cooccurrence 

statistics of an image with the normalized effective dynamic range, namely, the scaled 

entropy of the cooccurrence matrix is a non-monotonic function of the iterations t. The 

scaled entropy is used as a stopping condition of the iterations. When the scaled entropy 

increases S(Ct+1) > S(Ct) the size of the deconvolution filter is halved σq,t+1 = σq,t/2. The 

iterations end when the size of the deconvolution filter becomes unity, σq,tend = 1. The 

restored image is the one whose cooccurrence matrix has minimum scaled entropy tq = 

mint∈[0,tmax] S(Ct), where tmax is the maximum allowed number of iterations.

3.6. Implementation Issues of the Algorithm

The computational cost of the algorithm can be accelerated with minimal loss of accuracy. 

The deconvolution of Ct to get Rt can be accelerated by considering that the deconvolution 

filter fq is separable. The size of the deconvolution filter is bounded in the implementation. 

This improves the robustness of the deconvolution with respect to noise and flow artifacts 

that can produce very high intensities. A bound on the size also avoids an unnecessary 
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increase of the computational cost. Its maximum size  corresponds to radial distance 

in Ct equal to u0.9,0 of the histogram of the original image I0. That is, the maximum radial 

size of the filter is . In effect  determines the radial size of the 

deconvolution filter. We also set a maximum value for the size of the angular deconvolution 

filter σϕ,max for similar reasons. It is obtained for u0.9,0 as well as ϕ = 45° in Ct and a certain 

value of α in equation (7). The small value of the spatial window of radius ρ for the 

computation of the cooccurrence statistics makes the significance of the radial standard 

deviation σr greater than that of the angular standard deviation σϕ.

The computation of the cooccurrence matrix Ct with the discretized version of equation (5) 

can be accelerated by spatially subsampling the voxels in a sphere of radius ρ with a factor 

of Δρ. The same subsampling Δρ can be used to compute the rough nonuniformity 

correction  in the discretized version of equation (9). The Gaussian filter applied to 

 is separable. The algorithm can be further accelerated by using a multiplicative 

factor for the smooth nonuniformity correction  prior to applying it to the image. 

The computations can be limited by bounding the maximum allowed number of iterations 

tmax. The speed of the algorithm can also be increased without loss of accuracy by taking 

advantage of the fact that all the steps of the algorithm are fully parallelizable.

4. EVALUATION OF THE ALGORITHM

Our algorithm has been implemented in the C++ programming language. The algorithm was 

applied to whole head imaging data. A preprocessing step was used to remove the low signal 

regions with background or noise. To this end a Rayleigh distribution was fit to the diagonal 

self-cooccurrence statistics. The nonuniformity was computed over the foreground region 

and subsequently extrapolated over the low signal regions. The cooccurrence algorithm has 

been evaluated on phantom as well as real data. It was compared with N3,28 a commonly 

used algorithm for bias field correction.29 The parameters of N3 are the FWHM of the 

deconvolution kernel and the distance between the knots of the spline bases. The values used 

for these parameters are listed in table 1 and were combined with the least spatial decimation 

factor of two. The algorithm was evaluated for phantom images with the noise free and bias 

free MNI head phantom. The algorithm was also evaluated with human head images using 

the sharpness of the histograms of the restored images that was measured with the Shannon 

entropy. The nonuniformity was initialized to unity everywhere B0(x) = 1, ∀x. The standard 

deviation of the Parzen window in equation (5) was σc = 1.5. The cooccurrence statistics in 

equation (4) were computed in a sphere of ρ = 9 mm with a subsampling factor of Δρ = 3 mm 

and the order of the statistics in the same equation was n = 3. The size of the deconvolution 

kernel was  and α = 0.3 in equation (7). The maximum number of iterations was set to 

tmax = 36.

4.1. Phantom Data

We used the 1.5 T phantom brain and the phantom nonuniformities provided by MNI.34,35 

The spatial smoothing of the nonuniformity in the cooccurrence algorithm was σw = 77 mm. 

N3 was run with the parameters suggested for this dataset28 given in the first column of 
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table 1. We also computed the error maps for that data compared to the uncorrupted original 

phantom. The original as well as the restored images were normalized to zero mean and unit 

L1 norm. They were subsequently subtracted to give the error image. The L1 norm of the 

error image was used as a measure of the error.

The error value was lower in all cases with our algorithm compared to N3. This is 

summarized in table 2. The lower error demonstrates the improved performance of the 

algorithm as well as the improved stability of its stopping criterion. This is an indication that 

subsequent applications of the algorithm to an image will have a limited or no effect. Two 

example corrections with the highest level of simulated nonuniformity used, 40%, and noise 

levels of 3% and 5% are shown in figures 4(a) and (b), respectively. In each example the 

first row shows the original corrupted phantom with bias field and noise, the second row 

shows the restoration with N3, and the last row shows the restoration with the cooccurrence 

algorithm. The images are shown with the dynamic range windowed to that of the white 

matter. The N3 restoration contains a considerable residual of the bias. The white matter 

intensity in the image restored with the cooccurrence algorithm is more uniform. The 

average time duration of the cooccurrence algorithm is 37 min whereas that of N3 is 31 min.

4.2. Human Head Data

Human brain MRI data were obtained at 4 T using a T 1-weighted magnetization prepared 

rapid gradient echo (MPRAGE) sequence and an 8-channel array head coil. The size of the 

images is 256 × 256 × 176 voxels with uniform voxel resolution of 1.0 mm × 1.0 mm × 1.0 

mm. The parameters of the sequence are TR/TE = 2300/3.37 ms, TI = 950 ms, and a flip 

angle of 7°. The algorithm was applied to geriatric head data images, which were selected 

randomly from a large database. The 8-channel receiver coil had larger field nonuniformity 

than a conventional birdcage coil but provided better signal to noise, especially at the outer 

brain regions close to the coils. The spatial smoothing of the nonuniformity in the 

cooccurrence algorithm was σw = 25 mm. N3 was run for a variety of parameters in the 

ranges recommended by the authors and given in the third column of table 1. The objective 

of N3 is to sharpen the histogram distributions. We observed the histograms and selected the 

parameters that gave the image that had the histogram with the most compact distributions. 

We also verified our selection by measuring the sharpness with the decrease in the Shannon 

entropy of a histogram and selected the parameter set that minimized it. The best performing 

parameters were FWHM = 0.2 mm and distance of 20 mm between the knots, in the fourth 

column of table 1. The low distance between the knots is consistent with the fact that the 4 T 

magnetic field gives rise to nonuniformities with a small wavelength. The minimal entropy 

values are in table 3. In all test cases the entropy of the histogram of the image restored with 

our algorithm was lower than that of the image restored with N3 indicating that the new 

algorithm provides an improvement over N3.

Representative corrections of four sets of data are shown in figure 5. In each example the 

first row shows the acquired image, the second row shows the restoration with N3, and in 

the last row is the restoration with the cooccurrence algorithm. The images are shown with 

the dynamic range windowed to that of the white matter. The N3 restoration contains a 

considerable residual of the nonuniformity and sometimes even accentuates it. Also N3 
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decreases image contrast by darkening the bright white matter and introducing overshooting 

contours at the borders between different regions such as between gray matter and white 

matter at the cortex. The white matter intensity in the image restored with the cooccurrence 

algorithm is more uniform. It took on average 1 : 23 hrs with the new algorithm to correct 

the volumetric MPRAGE datasets with 256 × 256 × 176 dimensions given in table 1. The 

duration of the restoration depends on the amount of the nonuniformity in an image. It took 

on average 2 : 21 hrs with N3. The cooccurrence algorithm is significantly more efficient.

5. DISCUSSION AND CONCLUSION

Most intensity uniformity restoration algorithms operate on the logarithm of the image 

intensities. Even though this intensity transformation can make the problem additive it warps 

the dynamic range in a non physical way. As a result it can increase noise and decrease the 

contrast to noise ratio. In this work we operate on the original dynamic range with a 

physically motivated deconvolution. It is assumed that the corruption of the cooccurrence 

statistics is caused by a nonuniformity which has a unimodal Gaussian distribution in its 

cooccurrence statistics. This provides the deconvolution filter fq. The assumption for the 

statistics of the nonuniformity corruption may not hold, particularly for high field data. 

However, the deconvolution is robust with respect to the shape of the deconvolution filter 

and is mainly dependent on its overall variance. The deconvolution based on cooccurrence 

statistics takes advantage of the fact that the nonuniformity B is smooth across the borders of 

different tissue regions.

One of the main assumptions of the deconvolution process is that in the intrinsic anatomic 

image IA the variation of intensities within a tissue class is low compared to the distance 

between the means of the distributions of different tissue classes. The deconvolution is 

problematic if this discriminability assumption between the distributions in IA is low or does 

not exist. In these cases the deconvolution introduces an error that tends to decrease the 

contrast to noise ratio. If the spatial frequencies of the error are higher than those of the 

anatomy, the smoothing step can remove them. Otherwise, the restoration will have a lower 

contrast. In effect the algorithm is unable to unmix nonuniformity between two regions with 

very similar statistics that are spatially close. The smoothing of  is done with a 

Gaussian which has a local effect. Smoothing with more global bases that are polynomials 

or splines may increase the nonuniformity in . In conclusion, we developed a new 

non-parametric algorithm based on neighborhood intensity cooccurrences for image 

restoration from nonuniform field distortion. The new algorithm performed significantly 

better than the well-known N3 approach on high field, 4 T , phantom, and human brain MRI 

data.
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Figure 1. 
The effect of nonuniformity on the azimuthal size of the deconvolution filter. (a) An 

intensity pair (u1, u2) as a result of the nonuniformity becomes (u1, u2(1 + α)), α = ∇B. The 

angle ϕ of (u1, u2) with the horizontal axis becomes ϕ + Δϕ. (b) The effect of a constant 

nonuniformity α = 0.3 on the rotational angle Δϕ as a function of the angle ϕ. The effect on 

cooccurrences close to the diagonal is the highest.
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Figure 2. 
The radial and azimuthal size of the deconvolution filter change with its position on the 

cooccurrence matrix.
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Figure 3. 
A block summary of the algorithm.
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Figure 4. 
Restorations of two phantom images with nonuniformity of 40% and noise levels 3% and 

5% in (a) and (b), respectively. In the first row is the original corrupted phantom, in the 

second row is the restoration with N3, and in the third row is the restoration with the 

cooccurrence algorithm. The N3 restoration contains a considerable residual of the 

nonuniformity. The improved performance of the cooccurrence algorithm is demonstrated 

by the higher uniformity of the white matter intensity in the image.
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Figure 5. 
Examples of restorations of four human head images. In each example the first row shows 

the acquired image, the second row shows the restoration with N3, and in the third row is the 

restoration with the cooccurrence algorithm. The N3 restoration contains a considerable 

residual of the nonuniformity and sometimes even accentuates it. Also, it darkens the white 

matter and introduces overshooting contours at the borders between different regions such as 

between gray matter and white matter at the cortex. The improved performance of the 

cooccurrence algorithm is demonstrated by the higher uniformity of the white matter 

intensity in these images.
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Table 1

Parameters used for N3 to correct phantom and human brain imaging data.

Suggested phantom28 Tested for brain 4T Used for brain 4T

FWHM of deconvolution 0.15 0.06,0.13,0,20 0.20

Distance of knots in space (mm) 200 20,110,200 20

Decimation in space 2−4 2 2

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2008 January 11.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Hadjidemetriou et al. Page 19

T
ab

le
 2

T
he

 e
rr

or
 is

 th
e 

ab
so

lu
te

 v
al

ue
 o

f 
th

e 
di

ff
er

en
ce

 b
et

w
ee

n 
a 

co
rr

up
te

d 
ph

an
to

m
 im

ag
e 

an
d 

th
e 

no
is

e 
fr

ee
 a

nd
 b

ia
s 

fr
ee

 M
N

I 
ph

an
to

m
. A

 v
ar

ie
ty

 o
f 

sy
nt

he
tic

 

bi
as

 f
ie

ld
s 

B
 a

nd
 n

oi
se

 le
ve

ls
 N

 w
er

e 
us

ed
. I

n 
al

l c
as

es
 th

e 
er

ro
r 

of
 th

e 
co

oc
cu

rr
en

ce
 a

lg
or

ith
m

 is
 lo

w
er

. T
he

 g
re

at
er

 d
if

fe
re

nc
e 

is
 th

at
 f

or
 th

e 
bi

as
 a

nd
 

no
is

e 
fr

ee
 im

ag
e.

N
 =

 0
%

N
 =

 3
%

N
 =

 5
%

N
 =

 5
%

N
 =

 5
%

B
 =

 0
%

B
 =

 4
0%

B
 =

 0
%

B
 =

 2
0%

B
 =

 4
0%

N
3 

(1
0−

2 )
1.

40
8.

17
12

.7
6

12
.5

6
12

.7
7

C
oo

cc
ur

re
nc

e 
(1

0−
2 )

0 
(−

10
0%

)
7.

50
 (

−
8.

21
%

)
12

.4
3 

(−
2.

54
%

)
12

.2
0 

(−
2.

92
%

)
12

.2
7 

(−
3.

92
%

)

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2008 January 11.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Hadjidemetriou et al. Page 20

Table 3

In all cases the entropy of the image processed with the cooccurrence algorithm is lower than that of the 

entropy of the histogram of the image corrected with N3. This demonstrates the higher performance of our 

algorithm.

Image N3 Cooccurrence

1 4.85 4.63

2 4.68 4.50

3 4.46 4.30

4 4.84 4.60

5 4.80 4.53

6 4.62 4.45

7 4.85 4.53

8 5.44 5.33

9 4.92 4.90

10 5.15 4.76
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