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ABSTRACT

In this Keynote Address paper, we review early wanmkmage and Video Quality Assessment againsbauoidrop of

an interpretation of image perception as a visoatrmunication problem. As a way of explaining outemrgt work on

Video Quality Assessment, we first describe ouremécsuccessful advances on QA algorithms for gtilhges,

specifically, the Structural SIMilarity (SSIM) Indeand the Visual Information Fidelity (VIF) IndeWe then describe
our efforts towards extending these Image Qualigsessment frameworks to the much more complex gmolaf

Video Quality Assessment. We also discuss our ntireéforts towards the design and construction geaeric and
publicly-available Video Quality Assessment data&bas

1. INTRODUCTION

The past several years have seen a resurgenceiasninPerceptual Image Processinghere algorithms for image
processing are designed with human visual peragetionind. This is, of course, a very natural ideat, one that has
met with limited success owing to our imperfect Wedge of the intended receiver, and indeed, otrdugsmitter. The

receiver in this context, of course, is the remblka&omplex human eye and visual cortex, while tiamsmitter we

may take to be the environment, which casts imafjestraordinary variability onto camera and refisensors.

The central idea behind perceptual image processitm create, correct, or enhance images so liegthave a visual
appearance that is of highessual qualityto an average human observer. Of course, thierstatt is wrought with
vagueness, since what does quality mean? Is hetesappearance? Or is faithful rendering of tinecture objects in a
scene? Or is it maximization of scene information?

In any case, central to these pursuits is the guestf image and video quality assessmé®@A and VQA), and
whether algorithms can be developed that can ssiudlys measure “quality” in an objective and peraeglly

meaningful manner. Certainly, applications exisevehimage quality is necessary for non-human inéagon, e.g.,
machine vision, but currently the end user in therawhelming majority of image and video applicatids a human
observer. Moreover, following the notion that mothe great strides in machine vision researctetdearived from
observations on biological vision, it is likely thquality assessment for the broad range of appits will benefit
most greatly from studies that are relevant to huperception.

Thus, we are concerned with IQA and VQA algorithiimat attempt to assepgrceptual degradationsm images and
video signals. It is expected that success inateéa will impact a wide variety of applications)e@ considerable gains
in resource allocation should be achievable bygigierceptual metrics for quality control. Indeeddding by the
authors’ current interactions with industry, thésenow an amazing interest in image and video tudlf course, the
tremendous proliferation in digital video produetmging from wireline HDTV devices to portable sa@cell phones is
driving this intense effort. Sophistications in image and videocessing acquisition, compression, bandwidth
enhancement for transmission over wired and wiselegtworks, the Internet, fast processing and alspl
miniaturization have made possible the flood ofrent and promised video-based products. Such classblems as
de-noising, enhancement, restoration, error conea@l and so on, are finding new applications in rif@ss-market
consumer mainstream.

It is instructive to consider the following broadssification of the applications of quality assesat algorithms. In our
view, IQA and VQA algorithms can be used:

* To monitor video quality for real-time applications. IQA and VQA algorithms can, in principle, be uged
dynamically monitor and adjust the quality of vidggnals. For example, in video teleconferencing dideo



on Demand applications, video quality is affectgdsbch factors such as errors, congestion anddatenthe
network, the number of participants in the multimaestream, and so on. On-line quality monitoring feeat
potential to allow service providers to meet th@uality of Service (QoS) requirements by dynamicall
changing the resource allocation strategies.

» To evaluation competing image and video processing algorithms. A long-time bugaboo in the field of
image processing has been the lack of any reasomadhns for comparing algorithms. Indeed, for desad
the standard approach to assessing the relativiésnoéimage processing algorithms has been teeeitiny
them on Lena and see how they look,” or to deplajaadard distance metric (relative to an idealireage)
such as the Mean-Squared Error (MSE) or Peak Stgrdbise Ratio (PSNR). The first of these appresch
has the virtue of using the ultimate judge — thenan observer, but suffers from a lack of statitica
significance in the face of subjective variabilitynless a massive and cumbersome human study & don
encompassing adequate variety and numbers of in@gk®bservers, under controlled conditions, artth wi
statistical validation of the results. Needlessdg, such studies are very rare. The second agpitwsthe
virtues of implied automation and complete objattivbut unfortunately, the objective measures U$48E,
PSNR, and so on) are acknowledged to have pooepiera relevance, except, perhaps, at very lowvang
high error levels. Obviously, the emergence ofytraliccessful IQA and VQA algorithms implies the
possibility of changing this situation, and it isrochope that IQA/VQA algorithms will become stardiar
impartial arbiters to measure and compare theaf§iof competing image and video processing algost

e To optimization the design of image and video processing algorithms. A dual problem to testing the
success of an image processing system using anolfQ QA algorithm, is to design the system, or atste
adjust its parameters, using a QA measure as ttialjly criteria. Such systems could then be déscr as
Perceptually Optimaif the IQA/VQA algorithms being used correlatefmiéntly well with human judgment.
Such an approach could revolutionize the designnafge and video compression, filtering, acquisition
display (and so on) systems.

Regardless of how well we design IQA/VQA algorithntentrolled studies of the human subjective judgmef

quality must remain the ultimate standard of perfance for any image/video processing algorithmepki machine
vision, which is a much smaller market). Indeedjsctive judgment is the means by which IQA and V@gorithms
must be assessed. Subjective judgment involveshppyysical studies where image/video signals aesvedl by
human observers under controlled conditions. THhests indicate a quality score on a numerical walitptive scale.
To account for human variability and to assertisiaal confidence, multiple subjects are requitedview each
image/video, and a Mean Opinion Score (MOS) is aamrh While subjective studies are the only congbyjeteliable
method of quality assessment, they are cumbersexpensive, and complex [5]. Indeed, subjective ®Aripractical
for nearly every application — other than benchrmaylautomatic QA algorithms, for which it is an ahge necessity.

Objective image and video quality assessment dlgus are commonly categorized roughly into thrgeesy— namely
full reference, reduced reference and no referafgerithms. We’'ll review these briefly, making sorm@mments on
their definitions.

Full ReferencgFR) IQA/VQA algorithms make use of an ideal “neflece” image that is assumed to be available for
comparison. Naturally, this makes the problem ebsieleed, nearly all of the work on IQA/NVQA ovdre past few
decades is FR, because of the relative simplidityaking quality judgments relative to a standaFdR algorithms are
quite valuable, for all of the bulleted purposesteld above; yet, naturally, we'd like to do awayhwihe need for
reference data to achieve greater freedom of aijit, to develop insights into the meaning of alsguality, and
simply because it has not yet been done.

Reduced Referend®R) IQA/VQA algorithms do operate without the uxfea pristine reference image or video, but
they do make use of additional (side) informatidong with the distorted image or video signal. RBodathms use
typically use information or featuresxtracted features from an original reference as supplerherdaparison
information, such as localized spatio-temporahdtgtinformation, detected edge locations, or ent@edmarker bits to
estimate the distortion of the channel [1], [2R]-30ther algorithms use knowledge that has bedeagandently derived
regarding the distortion process (such as forekedge¢ of the nature of the distortion introducedabgompression



algorithm, e.g., blocking, blurring, or ringing) &ssist in the quality assessment process [3]. Sanors refer to this
type of RR algorithm as “blind,” but in our viewrgsuming knowledge of the distortion process i®mnfof side

information. RR techniques have attracted a lageoént interest, since requiring the reference @hageo may impose
too much of a bandwidth limitation [4].

No ReferencgNR) or Blind IQA/VQA algorithms attempt to assess image/vide@lify without access to any
information than the distorted signal. In our viealgorithms that presume the distortion to be, drample, JPEG
blocking, do not belong in this category. True NRAIVQA remains an exceedingly difficult, and indeddunting
proposition, and there is very little substantiverkvon this topic. Yet, it is certainly one of thidoly Grails” of the
image processing field, and the fact that humandsecan perform the task almost instantaneoushepolly suggests
that there is hope in this direction. Moreover, ctiteoners in industry are most interested in thi®mblem, since
evaluation of unknown video streams in a wireledBitar network undergoing a wide variety of congsien, channel,
and processing distortions affords little hope dising FR VQA algorithms in real-time, since the iallity of a
reference image is out of the question, while Ri@rmation is likely unreliable. Clearly, much remsito be learned
regarding FR and RR QA and human perception ofityudo doubt, what is learned will eventually letalfeasible
blind QA algorithms; while the problem at times ®senearly hopeless, and research on it remainsbomat we
believe that the groundwork for eventual resudoitedf the area is being laid.

In the following Sections, we’ll start by brieflyeviewing early work on IQA and continue with somnfeoar recent
advances in IQA, specifically, the Structural Sidity (SSIM) Index and the Visual Information Fiitel(VIF) Index,
which take two very different approaches to thebfgm. Both SSIM and VIF exhibit a remarkable lewsl
performance relative to prior approaches to IQA. Wilkalso describe recent successes we have hagté@mding both
of these IQA frameworks to the much more compleobfam of VQA. Our early work on VQA, while promigjnstill
requires further algorithm development as well asarextensive testing resources. In later Sectidhi® paper and the
associated Talk, we discuss the our current eftortsrds the design and construction of a VQA dagabincluding
details of the subjective study that needs to bedaoted to complete the database. We plan to ntakedatabase
available to the research community, as we havie aur IQA database, which has become a standaittkinesearch
community. It is our hope that such a service élp us and others significantly advance the fidldf QA.

2. BACKGROUND

It is useful in our discussion to broadly consittex process of a human observer viewing a displayaede using the
philosophy of communication theory. Although we Iwigfer to images in this context, the ideas ined\extend
directly to moving images, or video. In his framelyove may view the formation of images, which foe purpose of
discussion we may regard as optical images of #&taral or man-made environment under natural ardstal man-
made lighting, amatural image transmissio.hat is, the objects in the environment, alondhwiite light sources, are
the transmitters, and the lighted emitted fromdhgects (reflected or otherwise) is thatural image signalWe note in
passing, as others have, that as with any engisi@emmunication system, this signal has associatédit statistical
properties that are a function of the source amdtthnsmitter. These are commonly referred tanasiral scene
statistics,which have found utility in many image processiagks.

These natural image signals radiate in all diresti@and in so doing are modified by the ambientnadtenvironment,
which we might refer to as comprising thatural image channelA small portion of this modified image signal is
captured by image sensors, transduced into anetketrical or optical form, then subsequently sotgd to a series of
intense processing steps which may include diditima compression, modulation, channel codingeffitig, digital
transmission, decompression, additional filteriagg subsequent display, the aggregate of all s@igehich we may
collectively refer to as theynthetic image channelt is the overall natural-synthetic image chanmwath all of its
infinite complexities, that introduces distortiontad the image signal. The great complexity of thierall channel, and
the difficulty in generically modelling it, is orreason why blind IQA is such a difficult problem.

Finally, the displayed image signal is incidenttbe@ human eye, which along with the neurons albegitsual pathway
and the visual cortex, comprise what we may refead thenatural image receivenn the IQA literature, and indeed
more broadly, the natural image receiver is retktoeas the Human Vision System, or HVS.



Continuing with our analogy of imaging as a comneatibn system in the classical sense, then we fsaycanclude
that the more information that we have availablgarding the nature of the transmitter, the charead, the receiver,
then the better job of image communication we Wil able do, meaning the better quality images webwiable to
efficiently deliver to the receiveprovided that our models of transmitter, channeld aeceiver are accurategnd

provided that we are able to effectively utilizéstmformation in the design of the overall commaation system. Key
to this goal are the design of accurate and usablels of the natural image transmitters, the dvaedural/synthetic
image channel, and the natural image receiver.

Early successfumodeling efforts focused on developing FR 1QA afQA algorithms using models of the natural
image receiver - the HVS - to predict quality. Tiremise behind such HVS-based metrics is to simula visual
pathway of the eye-brain system. In this framewtink, error between a reference and test visuaabkigrcomputed in
aperceptual spagen contrast to classical pure-math error metcimsputed in the pixel domain, such as the MSE, the
PSNR, and other similar distance metrics. As depiéh Fig. 1, HVS-based systems typically begirpbgprocessing
the signal to correct for non-linearities, sinaghthess perception is a non-linear function of heamice. A filterbank
decomposes the reference and distorted (‘test’gémsignals into multiple spatial frequency- andeotation-tuned
channels in an attempt to model similar procesbiynghe cortical neurons [6]. If the image signabimamic video,
then a “temporal filtering block” as illustrated kig. 1 (using dashed lines) is typically deploysdHVS-based VQA
algorithms, where the reference and test videoesszps are also decomposed into temporal frequemaynels. The
luminance and contrast masking features of the ldxSthen modeled to account for perceptual errsibiity as a
function of luminance and contrast. A space-varyimgshold map is created for each channel desagribical spatio-
spectral error sensitivity, and is used to norneatize differences between reference and test imag®dting in what
are referred to atust Noticeable Differenc€dND's). In the final stage, the JND values fochhnnels are pooled via a
suitable metric such as a weighted MSE to generafmce-varying quality map.

This approach to quality assessment is intuitiwe lzais met with considerable success. Indeed, wédveauee that
the idea of utilizing receiver models is the moastunal approach to the problem of IQA/VQA. Popul@A algorithms
that followed the above paradigm include the pioimgework by Mannos and Sakrison [7], Lubin’s lagn-pyramid-
based approach [8], Daly’s Visible Differences ket [9], Teo and Heeger's steerable pyramid appho[10], and
the Emmy Award-winning Sarnoff JNDMetrix metric [[LIPopular VQA algorithms following the HVS paradig
include the Perceptual Distortion Metric (PDM) [12He Digital Video Quality (DVQ) metric [13], anidhe Sarnoff
metric for video [11].
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Figure 1. Block diagram of HVS-based metrics.

HVS-based metrics have several drawbacks that alledacumented [16]. However, the main drawbackoun view,
lies in the fact that our knowledge of the naturadeiver, the HVS, while improving, still remainery limited. We
have little idea, really, what the tentsual qualityreally means. By contrast, we have a very good @fewvhatvisual
fidelity means, provided that we have an effective objeatieasure of fidelity. The hope is that HVS-basetybrid
image fidelity metrics will eventually be developedhich correlate very highly with subjective IQAdeed, as our
knowledge of human visual function increases, wiebe this will very likely be the case.

While our incomplete knowledge of the natural reeeihas apparently put limits on the performancewtly HVS-
based IQA algorithms, the introduction of betterfpening IQA algorithms has cast a strong lighttbase limits. One
non-HVS-based algorithm that immediately attraatedsiderable attention is the Structural Similahitgex, or SIMM
[16], which in an early form was called the UnivgrsQuality Index, or UQI [17]. SSIM, which was or# the
algorithms developed by our group, has found atgdeal of popularity and visibility owing to itsmaplicity of
definition, its ease of computation, its analytitractability, and most of all, its excellent perfance relative to human
subjective scores (see Table 1). Interestinglyjdba behind UQI/SSIM arose not from systematidisior modeling

of the natural transmitter, channel, or receiver, tather, from simple, intuitive ideas regardingwhdistortions in
image structuremight be measured. Indeed, the original UQI, om@/Bovik Index, arose in a back-and-forth Eureka



email exchange between the two inventors, both lbébrav were amazed by the excellent IQA performanceéhef
algorithm.

Our group at UT-Austin had been studying IQA fomsotime prior to the development of UQI/SSIM, buthathe

unexpected success of UQI/SSIM, this work inteaedifand accelerated. In an effort to place IQA @olal, and new
theoretical footing, we chose to utilize recentbrdloped models of natural scene statistics toopypé the natural
transmitter in our communication system analogy@4, which made possible the measurement of imatgdity in a

natural information-theoretic setting. The resgtiparadigm, known as the Visual Information Figeli/IF) Index

[20], though more complex than SSIM in both cordinn and in computation, proved to be extremelcieit in

terms of performance relative to subjective judgetsigTable 1). VIF, like SSIM, had a prior simplermulation

which encapsulated the basic concepts of the ngnoaph. The earlier algorithm, known as the InfaioraFidelity

Criterion, or IFC [21], succeeded quite well butswenproved upon in the later VIF formulation thrbuthe use of
perceptual noise modeling and a form of divisivenmalization [1], [21], [32].

Video Quality Assessment, or VQA, has followed a simidawvelopmental trajectory as IQA. HVS-based metfics
video enjoyed considerable apparent success, aniQEG study cast doubt the merits of the appraatdtive to

simpler measures (such as the PSNR). All threeovifimlity metrics mentioned above (PDM, DVQ, andn&#) were

proponents in a VQEG evaluation conducted as gdhteoPhase | FR-TV study in 2000 [14]. This studycluded that
the performance of all proponents were, essentiathtistically equivalent to one another and ttNR5The VQEG

conducted another study in 2003, labeled PhasBdT¥ study, to obtain finer discrimination betwemodels than the
Phase-I study [15]. Although the proponent modeldfgymed better in this study than in Phase-I,Rhase-II study
emphasized a specific, and hence limited applinadimmain, focusing on digitally encoded televisibmthis study, no
single model emerged as a leading candidate. Iview, VQA remains an open area of inquiry whereexpect that
considerable strides might be made by exploitingagigms, such as those motivating SSIM and VIF} toa

complementary to those that only seek to modelndiiral receiver. New approaches to tackling theblem (we
describe our own ideas in Section 4) will hopefuhad to viable alternatives that demonstrate gdizable VQA

across a wide array of video distortions, withistatally superior performance relative to PSNR atler existing
objective VQA algorithms.

3. IMAGE QUALITY ASSESSMENT

We briefly review the construction and performarafethe SSIM and VIF Indices for still images as aywof
introducing the concepts that will be extended th®video domain.

3.1 Structural Similarity Index

The UQI/SSIM Index tacitly assumes that the HVS kaslved to extracstructural informationfrom an image
[16],[17]. Thus, the approach is, at least concalptuadual approachto HVS-based methods. The perceptual quality
of a given image is predicted by quantifying thesl@f structural image information, which is measiuusing simple
sample statistics of image patches. Figure 2 ithtiss the SSIM quality assessment system for imageé = {f;, i = 1
,...,N}andg=1{g,i=1,...,N} denote vectors from corresponding patches inréfierence and test imageésandG,
respectively. From each patch, define weighted nhgaanances and Root Mean Square (RMS) contrasb,Alefine
the covariance between the reference and testgmtding:

p=SNwt o= SN w () g (- ) (@ - 4).

with similar definitions fony andog, and where the unit-sum weighting functieyhas a gaussian-like fall-off from the
patch center. The SSIM Index between the correspgrmhtches is then
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whereC,, C,, C; are small positive constants that stabilize eacimt Thus, SSIM measures differences between patch
luminanced, contrast, and structure expressed as simple, easily-computed image stati®ty computindgsSIMf, g)

over the entire image, a quality map is obtainedcélar quantifying the overall quality of the téetgeG is obtained

by computing the overall mean value ®8IMf, g), or by using some other pooling procedure [11]][332]. The
original UQI is the special case of SSIM whé&e=C, =C; = 0.

Despite its simplicity, SSIM correlates extraordilyawell with perceptual image quality, and hawyddutperforms
prior state-of-the-art HVS-based metrics such asSarnoff model, as demonstrated in extensive psyelric studies
[1], [16], [22]. Table 1 shows the Spearman RanklédrCorrelation Coefficient (SROCC) computed betwéae
results of several metrics and the MOS images méxtoby a wide variety of processes (the entire E.I¥atabase)
including JPEG and JPEG2000 compression, addithieevgaussian noise, gaussian blur and fast-faiingrrors in a
Rayleigh communication channel [16], [22]. The amgrof improvement obtained by SSIM relative to réor
standard-bearer is nearly equal to the progrese el the previous thirty years of research! ¢ttt be noted that an
improvement of 2-3%, while numerically small, isitgusubstantial from a perceptual standpoint. Bangle, the
LIVE database contains distorted images with a wadeye of degrees of each type of distortion, regdiom images
in which the visual content is almost completelys@lred, to images where the distortion is nearthiheshold of
visibility. At these extremes, all of the algoriteroorrelate well with subjective judgment as migbtexpected (they'd
better!). If the extreme distortions are left dffe disparity in performance between the algoritiy@somes even more
pronounced.
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Figure 2. Block diagram of SSIM.
\ [ JPOKFI [ JP2K#2 | IPEGAI | IPEGF2 | WN_ [ GBlur | TT [ All dafa |
PSNR 0.9263 0.8549 0.8779 0.7708 0.9854 | 0.7823 | 0.8907 0.8755
IND 0.9646 0.9608 0.9599 0.9150 0.9487 0.9389 0.9045 0.9291
DCTune 0.8335 0.7209 0.8702 0.8200 0.9324 0.6721 0.7675 0.8032
PQS 0.9372 0.9147 0.9387 0.8987 0.9535 0.9291 0.9388 0.9304
NQM 0.9465 0.9393 0.9360 (.8988 0.9854 0.8467 0.8171 0.9049
Fuzzy S7 0.9316 0.9000 0.9077 0.8012 0.9199 0.6056 0.9074 0.8291
BSDM (S4) 0.9130 0.9378 09128 0.9231 0.9327 0.9600 | 0.9372 0.9271
SSIM(MS) 0.9645 0.9648 0.9702 0.9454 0.9805 0.9519 | 0.9395 0.9527
IFC 0.9386 0.9534 09107 0.9005 0.9625 0.9637 | 0.9550 0.9459
VIF 0.9721 0.9719 0.9699 0.9439 0.9828 0.9706 | 0.9649 0.9584

Table 1: Performance of image quality metrics

3.2 Visual Information Fidelity Criterion:

The Visual Information Fidelity (VIF) Index viewsnage quality assessment asiafiormation fidelityproblem. The
philosophy of the approach is based on the hypithieat visual quality is related to the amounindérmation that the
HVS can extract from an image. In this sense, €I&l$o a dual approach to IQA relative to HVS-basethods.

Figure 3 summarizes the VIF approach. Referencgiésare assumed to be the output of a natural ireagece
represented using a powerful, yet simple naturahscstatistic (NSS) model known as the Gaussiafe 3diture
(GSM) model [19]. In this model, the wavelet coeiffints of the natural sourédave a GSM distribution: the elements
f of a patch of spatially adjacent locations, scaled orientations are distributed as a zero-meams$an random
vector, conditioned on a multiplier field:~ zu, wherez is a scalar multiplier field, and is a zero-mean Gaussian
random vector with covariance mati©,. The multiplier field is estimated from the refece image, while the test



imageg is assumed to be the output of a distortion chlathmeugh which the reference image passes. A plus
additive noise distortion model in the wavelet doma used as the channel model.

If g are the corresponding coefficients from the tesige, therg =bf +n whereb is a scalar gain field that models
modification of signal energy due to compressidny,badditive noise, contrast enhancement and/oerodistortion,
andn is zero-mean AWGN. Further, the HVS is modelecaazero-mean AWGN communication chanmelsince
neural noise and other factors limit the informatibcan extract from an image. Thus, the “peradfiveference and
test images are (respectively¥ f+v andd = g+v.

- HVS - Recaiver
e
Reference
MNatural | Channel Test
atural Image = anne - o
Source f | (Distortion) g . HvS d. Receiver

Figure 3: Block diagram of the VIF quality assesstsystem

The mutual information | betwednandd (conditioned org) measures the information that the HVS can extirach
the test imagg and likewise for the reference imafyeThe ratio of these information measures defihedadcal VIF
Index of the distorted image:

_I(f;d|2
I(f;e2)

VIF(f, g)

As with SSIM, a global VIF quality metric can betaimed by summing both numerator and denominater e\l
patches and all wavelet subbands, then formingatie. A detailed discussion of VIF, including parater and wavelet
basis selection can be found in [20]. The precutsdfIF, known as thénformation Fidelity Criterion,is described in
[21]. This metric is similar to VIF, but does notlude normalization with respect to the informat@mntent (and does
not perform as well).

The performance of VIF has been tested extensa@lyss widely varying distortion types and founaxaibit superior
performance relative to all known algorithms (irdihg SSIM) as indicated, for example, using SROE{tive to
MOS as a performance metric (Table 1). An extensliescription of this study, which included over ®H) value
judgments on nearly 800 distorted images, and whieployed a wide variety of statistical measureslgbrithm
performance, is available in [22].

4. VIDEO QUALITY ASSSESSMENT

Most of the video quality metrics proposed in therhture have been simple extensions of still ienggality metrics,
or IQA algorithms. Thus, most of the leading VQA@lithms are based on models of the natural receive HVS, as
discussed in Section 2. In fact, seven of the t@pent models evaluated by the VQEG in its Phassting used
models of the HVS in their algorithms [14]. Moreceatly, there has been a shift in trend toward aled top-down
approachego quality assessment, which we can equate to lingdef either the natural image transmitter, andfe
natural/synthetic image channel, using our priatgpee. As we mentioned before, part of the redsorthis shift in
paradigm has been the realization that we arelistited in our understanding of the complexitytbé HVS, which
means that our current HVS models contain inacéesathat may degrade the performance of HVS-bas@d V
algorithms.

A more important reason, perhaps, is the factih&s-based models typically modireshold psychophysicgiz., the
sensitivity of the HVS to different features suchlaminance, contrast and contrast masking phenarasn measured
at the threshold of perception [23]. However, gyadissessment usually deals with supra-threshalcepton, where



artifacts in the video sequences are visible agdridhms attempt to quantify the annoyance levélhese distortions.
Thus, in recent years, there has been an incréatsrdst in models that describe the distortionthanvideo sequence
that the human eye is sensitive to and that equiditeloss of quality; for example, blurring, blocdlg artifacts, fidelity
of edge and texture information in the signal, catdormation, contrast and luminance of registepadches in the
spatial and frequency domain, and so on. Theseoappes, in our framework, would be described asgusnplicit
models of the natural image transmitter, and ekptiodels of the natural/synthetic image channadekd, five of the
six proponent models tested by the VQEG in its Bhbtesting utilized feature vectors that contdimgformation such
as those just described in predicting quality [IBjese feature vectors are generally combined reiting linear
weighting measures or non-linear learning mechamigimcompute a quality index for the entire seqaerdthough
these developments are promising, in particularsfuecific video industries, we note that the ral@mn models of
particular distortions is likely to limit the gemiapplication of these methods.

Another problem, in our view, is that the top-dowalgorithms for VQA proposed in the literature hameorporated
features for measuringpatial distortionsin video signals, yet very little effort has beggent on measuringmporal
distortionsor motion artifacts. Several of the algorithms tr@red above utilize rudimentary temporal inforroatby
differencing adjacent frames or by processing titeos using other temporal filters before featurenpatation.
However, to our knowledge, no algorithms in therhture attempt to computeotion informationin video signals to
predict quality. Yet, The HVS is quite sensitiventiotion and can accurately judge the velocity ainelction of moving
objects. These skills are essential to survival plag a huge role in human perception of movinggemaequences.
Considerable resources in the HVS are devoted t@omperception. Most of the neurons in the strizietex respond
best to a stimulus moving in a particular directaord play a role in the perception of movement.ibfoperception is
largely executed in the medial temporal (MT) aré&xira-striate cortex, where 90% of the neuromsdirectionally
sensitive. Motion perception is not modeled weltinrent HVS-based design paradigm either. Allhaf VQA metrics
mentioned above use either one or two temporalr@ianand model the temporal tuning of the neuioraea V1 of
visual cortex only — despite the important roléhaf neurons in area MT of the extra-striate coiriexotion perception.

We believe that the performance of VQA techniquas lbe improved by the introduction of meaningfuldeis that

describe motion in video sequences, as well as hspadio-temporal distortions in the video stredim.date, there has
been very little work done in these directions. N will describe video quality metrics that wevlarery recently

developed that are based on the structural sityiland visual information fidelity concepts. Thevediy in this new

work lies in incorporating one of the chief factdngait affect human perception of moving image sages — namely,
the motion of objects in the scene that is viewed.

4.1 Basic framework for motion modeling

The motion of objects in 3D scenes takes an elegaghtsimple form in the frequency domain that fetis analysis.
We consider the apparent motion of image interssittemely the optical flow, and not the true thd@eensional
velocity of motion. We assume that short segmefitgideo consist of local image patches undergonapdiation,
which is a reasonable approximation as long agthsx no scene changes. This model is lszdly to describe video
sequences, since translation is a linear approiom&b more complex types of motion. Liét,y) denotes an image and
[(u,V) its Fourier transform. Assuming that this image engoes translation with flow vector=(A,, Ay), the Fourier
transform of the resulting video sequence, denbtegy,w), is given by [27]:

Flu,v,w)=T(u,\) (i, + 4V +w) (1)

whered(x) denotes the Dirac delta function. Thus, the spettof a translating video signal lies entirelyraica plane
in the frequency domain whose orientation is defibg the flow vector. Additionally, the magnitudesthe spatial
frequencies do not change, but are simply shear#tkifrequency domain.

Eq. (1) provides an explicit characterization oé tmotion of a video sequence in the frequency demnfaequency
domain approaches are well suited to the studyofdn perception of video signals owing to the preseof bandpass
visual channels in the HVS [5]. Hence, in the VQystems that we describe, the video sequence éditusing a
family of band-pass spatio-temporal filters andligpassessment is performed on the resulting bassighannels in



the spatio-temporal frequency domain. Although diegelopment is generic and applies to any filtenifg we use
Gabor filters in our implementation to achieve imyed spatio-spectral localization [28].

We used the optical flow estimation algorithm désenl in [29] to compute the flow field for the redace video, with
small modifications that are described in [25]. Dipical flow computation on the reference sequgmogides us with
an estimate of the local orientation of the plaometaining the frequency spectrum of the video segeeWe propose to
use this information to achieve motion compensafeaality computation in the following way. We firgtentify the
Gabor filters that overlap significantly with thigane, which is accomplished by requiring thatplene lie within one
standard deviation of the Gabor filter in the freqoy domain. This is illustrated in Fig. 4 for tlgpothetical video
sequences, where one is a static sequence thair®nb motion and the other is a moving sequedote the close
relation between using this rule for filter seleatiand motion compensated filtering of the refeeesequence. If the
video signal exactly satisfies our assumption ahstational motion, then exact motion compensaitegtihg of the
video sequence would require using a filter whaggpert lies entirely along the spectral plane & teference video
signal. This can be achieved using non-separabb®dters, whose major axis is oriented along spectrum of the
video and whose spread along the minor axis is sl or negligible. We, however, use sphericajljnmetric Gabor
filters that are separable. The filtering that wehiave is therefore not exactly motion compensated, can be
considered an approximation to it, provided thatdpread of the Gaussian window in the frequencyado is not too
large.

Once these filters have been identified, we computdity indices only between the outputs of thiected subset of
filters. This helps us to model both spatial aslaeltemporal distortions in the test video segaedistortions in the
video that argourely spatial meaning intra-frame distortions, will result ihanges in the frequency components along
the plane, which will be captured by the Gaboefiloutputs. Examples of such spatial distortiortduinte blurring,
blocking and ringing caused by compression, erdoring acquisition, transmission through commundcathannels,
and so on. Distortions in the video that preely temporal meaning inter-frame distortions, will result irchange in
the axis along which the plane intersects the Gdiitar. Examples of temporal distortions includeotion
compensation mismatch and mosquito noise due tgEssion, ghosting and temporal aliasing duringuisitipn,
transmission through communication channels etc.dé&eribe a specific instance of this generic fraoré for VQA

in the following.

(a) (b)
Fig. 4: lllustration of a set of filters chosen the case of (a) A static sequence (video consistame
frame repeated throughout the sequence) (b) Aeseguundergoing translation

4.2 Video Structural SIMilarity index (V-SSIM)

Soon after the development of SSIM, a very simptergsion of SSIM was proposed for VQA, whereinrage frame-
by-frame SSIM implementation was described [24thélugh this algorithm proved to be competitive vttt VQEG
proponents from [14], we have been able to dematasthat the SSIM paradigm can yield much betteiopmance by



introducing distortion measurement that incorparateotion information [25]. The development of tkipproach,
which we term Video SSIM, or simply the V-SSIM Indelosely follows the development of the Complexwalat
SSIM (CW-SSIM) Index proposed in [26]. CW-SSIM issanple extension of SSIM, where structural siniijais
measured in the complex wavelet domain, therebjesitty high performance and a degree of translativariance,
which is quite useful if errors in registration acdetween the reference and test video sequences.

V-SSIM is defined as follows. Lef ={f,i= 1, 2,...,N} and § ={g;, i = 1, 2,...,N} denote sets of coefficients from

the reference and distorted video sequences, tdsggcat corresponding spatio-temporal locatifmesn one sub-band
of the Gabor filter family. Then, the V-SSIM Indbrtween these coefficients is given by:

N
Z‘fkgk"i'K

V-ssiM(f,g) = = @)

S P+lo P+K

i=1

whereK is a small positive constant added to preserveenigal stability. Note that we use only the maghési of the
Gabor filter outputs to compute the V-SSIM Indey, dontrast with the CW-SSIM Index [26]. Since th&/€SSIM
Index was designed using the complex wavelet responorder to yield a translation insensitive nueasthe phase of
the complex wavelet response corresponds to snaaslations in the image. However, for applicatiorlVQA, the
phase of the Gabor outputs represenétion informationand the optical flow estimation algorithm in [2&mputes
flow using this phase information. Thus, once motimmpensation is accomplished, then the V-SSIMexnid only
computed between the magnitudes ofsblectedilter outputs, using the selection criterion désed in Section 4.1.

We tested our proposed V-SSIM index on the VQEGukede [14] and the results we report are from [@/.are not
particularly satisfied with the VQEG database imnte of the types of video sequences and distortibas are
represented, but it is the best availablerent VQA database. Nevertheless, as described belowhave plans to
create, in the future, a VQA database to complertfemtexisting popular LIVE IQA Database. The VQE&atase
contains 20 reference video sequences, test seepi@itained by distorting each of these referendeog with 16
different distortion operations and subjective ssofor all test sequences. The current implememtadf our optical
flow estimation uses filters at just one scale.ré&fare, we had to exclude 4 of the reference sexpseim the database
that contained fast moving sequences, where the dltimation algorithm failed due to temporal atigs[29]. All of
the VQEG test sequences are interlaced and fodisitgpand to avoid the degrading effects of applyde-interlacing,
our algorithm operates only on the odd fields ef itterlaced sequences. The results of our sinonlsitire summarized
in Table 2, which shows the Spearman Rank OrdereGdion Coefficient (SROCC) between the subjectel
objective scores for several different VQA algamith SROCC is one of the metrics specified by theE@Qhat tests
the prediction monotonicity of a VQA system. As danseen, and as expected, the PSNR does notaterved|l with
subjective scores. Proponent P8 is the best peirigrmetric amongst the 10 different proponent medested by the
VQEG in terms of SROCC [14]. We also compared esults against the better performing version ofttbe metrics
proposed in [24]. As can be seen, the V-SSIM Indettractively competitive with the leading VQAgalithms.

Prediction Model SROCC

PSNR 0.786

Proponent P8 (Swisscom) in [14]  0.808

Frame-by-frame SSIM in [24] 0.812

V-SSIM using motion [25] 0.835
Table 2

4.3 Video Information Fidelity

We recently proposed a model that describes thistita of natural video sequences, towards theldgwent of an
information theoretic quality metric for video saja [28]. Translational motion of local image pastwas combined



with the GSM model for natural images in the fregue domain to describe the statistics of sub-balftdréd
coefficients of video signals. Assume the videoald is filtered with a family of spatio-spectrally lalized 3-D

subband filtergy(x, y, ) ~ Gi(u, v, W, resulting in wavelet coefficients(x, y, ). A modified version of the GSM
model for natural images is used to capture th@wehof the image undergoing translation, and ssoeiated mixing
density parametez is used as described in [28]. When conditionedhenestimated valug of the mixing density,
the coefficientg(x,y,) are zero-mean Gaussian random variables witlanees:

J§:(2ﬂ)_6j22‘ G( U V= Ay u—/ly\)‘2 dud

whereé(u, v, — Ay u—Ay\a is a 2-D slice of the filter along the plane camitag the spectrum of the translating video

signal. From this it is apparent that large-magtgteoefficients will appear where the energy of vheance field is
large, and where the oriented plane significamttgrisects the filter passbands.

Our work on developing information-theoretic algbms for VQA based on our prior work on IQA is Isthgoing.
Recently, we have developed a video analog of @& Ihdex (VIF without perceptual noise modeling atidisive
normalization), which appears to have performamee is favorably competitive with all prior VQA agthms [30].
However, our perceptual testing of this algorithemains incomplete as of this writing. Further, wgext to soon
incorporate modifications, following the VIF Indexyhich will likely further improve our informatiotheoretic
approach to VQA.

5. TOWARDSA VIDEO QUALITY ASSESSMENT DATABASE

The most important tool assisting our successfuaadement of the field of Image Quality Assessnigrihe LIVE

Quality Assessment Database, which has becod factostandard in the global image processing commuiiite

database contains 779 images - 29 reference indigested by a diversity of processes such as JFEES 2000
compression, blur, AWGN and wireless channel hibrsr[22]. Each image was evaluated by (on averag@ejuman
observers to determine Mean Opinion Scores (MOBg. rfEcent Release 2 of the LIVE Database includ#erBntial

MOS (DMOS) values as well, which is regarded asarsansitive than MOS. Over 200 institutions havermdoaded
the LIVE database for research purposes — dedpiteldta volume of >1GB - and it has already betsddn over 20
technical articles, although it was first was rekxhto the research community less than two yegos lais safe to
claim that the testing of new IQA algorithms byeaschers around the world is conducted on the Ldetabase.

To enable the performance evaluation of VQA al¢pon$ over a suitably diverse dataset, we plan taecxghe LIVE
database by developing a VQA database of gener@paontaining videos affected by a broad var@tymportant
and general distortions. We also plan to providgestive scores (MOS, DMOS) for all of the distarté@deos. There
is a great need for a standardized VQA databadeighfaeely available to the research communityd avhich go
beyond the needs of specific video industries. @otidg subjective studies on many video sequercascumbersome
and daunting task, but we believe that such anrteffdll prove to be a great service to the commynivhich
encourages us to undertake this task.

Currently, VQA algorithms can be tested againseptigorithms on the VQEG Phase-| FR-TV databassvéy¥er, the
VQEG database has significant limitations. Firsgf4he 5 current VQEG projects involve evaluatadivQA metrics

for television systems. As a result, the refereacd distorted videos in the database are interJdeading to visual
artifacts in theeferenceas well as distorted video sequences. Algorithath @s those mentioned in Sections 2 and 4
typically involve multiple processing steps whigtquire adjustment to handle interlaced signalsirberiacing the
sequence prior to processing is not suitable irQgAMramework, since de-interlacing introduces adié in the video.
Additionally, the VQEG database consistdy of compression-related artifacts produced by H.268 MPEG codecs.
This set of distortions is quite limited for theobd spectrum of distortions that generic qualityegasment algorithms
are targeted towards.

Thus, we plan to develop a database of progressbesned videos suitable for a broad range of mattie
applications, such as video teleconferencing, Videddemand, Internet streaming video, mobile mudtiiia, and so



on. We will incorporate a wide range of distortipmscluding MPEG-2 compressignwhich exhibits compression
artifacts such as blur, ringing, motion compensagorors, mosquito noise et¢d;263 compressigrrepresentative of
low-bit rate video compression to be widely dephlbye mobile applications; simulated spatial distors including
additive noiseandblur and temporal distortions such jeskinessand smearing and channel errorsincluding delay-
inducedjitter, visual artifacts fromerror concealmenbdf lost packetsbit errors and burst errorsdue to fading and
multi-path reflections, and so on.

A major difficulty that we (and others) have enctarad is the acquisition of high-quality, progressiscanned,
copyright free source videos, so that we can stigrelata as well as the result of our subjectiudist freely with the
research community. Towards this end we have, tlyobtained 8 videos from a High Definition dadab provided
by the University of Munich and several videos fridme mobile video unit at Texas Instruments, Intede sequences
contain horizontal, vertical, panning, zoom andargptmotions and both fast moving and slow movingnges. Our
eventual goal is about 20 videos.

Finally, we will undertake an extensive psychoneesiudy in consultation with noted visual psychatg and our
frequent collaborators L. Cormack and W. GeisledatAustin’s Center for Perceptual Systems (CPI)BtAustin.
LIVE/CPS possesses ample resources for calibratesb\display. We intend to conduct a Single Stimullontinuous
Quality Evaluation (SSCQE) procedure to computeesdor all sequences in the data sets. Such & &udell suited

to applications such as video monitoring and quadiontrol that are rapidly gaining popularity. Addnally, the
SSCQE procedure allows for the subject to provitiema-dependerindex of quality, as opposed to a single index tha
determines the quality of the entire signal. Weigiom that the resulting database would prove nubra@lenging for
VQA algorithms than the current VQEG database, waodld enable more rigorous performance evaluatioquality
assessment systems.
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