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ABSTRACT 
 
In this Keynote Address paper, we review early work on Image and Video Quality Assessment against the backdrop of 
an interpretation of image perception as a visual communication problem. As a way of explaining our recent work on 
Video Quality Assessment, we first describe our recent successful advances on QA algorithms for still images, 
specifically, the Structural SIMilarity (SSIM) Index and the Visual Information Fidelity (VIF) Index. We then describe 
our efforts towards extending these Image Quality Assessment frameworks to the much more complex problem of 
Video Quality Assessment. We also discuss our current efforts towards the design and construction of a generic and 
publicly-available Video Quality Assessment database. 

 
1. INTRODUCTION 

 
The past several years have seen a resurgence in interest in Perceptual Image Processing, where algorithms for image 
processing are designed with human visual perception in mind. This is, of course, a very natural idea, but one that has 
met with limited success owing to our imperfect knowledge of the intended receiver, and indeed, of the transmitter. The 
receiver in this context, of course, is the remarkably complex human eye and visual cortex, while the transmitter we 
may take to be the environment, which casts images of extraordinary variability onto camera and retinal sensors. 
 
The central idea behind perceptual image processing is to create, correct, or enhance images so that they have a visual 
appearance that is of highest visual quality to an average human observer. Of course, this statement is wrought with 
vagueness, since what does quality mean? Is it aesthetic appearance? Or is faithful rendering of the structure objects in a 
scene? Or is it maximization of scene information? 
 
In any case, central to these pursuits is the question of image and video quality assessment (IQA and VQA), and 
whether algorithms can be developed that can successfully measure “quality” in an objective and perceptually 
meaningful manner. Certainly, applications exist where image quality is necessary for non-human interpretation, e.g., 
machine vision, but currently the end user in the overwhelming majority of image and video applications is a human 
observer. Moreover, following the notion that most of the great strides in machine vision research have derived from 
observations on biological vision, it is likely that quality assessment for the broad range of applications will benefit 
most greatly from studies that are relevant to human perception. 
 
Thus, we are concerned with IQA and VQA algorithms that attempt to assess perceptual degradations in images and 
video signals. It is expected that success in this area will impact a wide variety of applications, since considerable gains 
in resource allocation should be achievable by using perceptual metrics for quality control. Indeed, judging by the 
authors’ current interactions with industry, there is now an amazing interest in image and video quality. Of course, the 
tremendous proliferation in digital video products, ranging from wireline HDTV devices to portable video cell phones is 
driving this intense effort. Sophistications in image and video processing acquisition, compression, bandwidth 
enhancement for transmission over wired and wireless networks, the Internet, fast processing and display 
miniaturization have made possible the flood of current and promised video-based products. Such classic problems as 
de-noising, enhancement, restoration, error concealment and so on, are finding new applications in the mass-market 
consumer mainstream. 
 
It is instructive to consider the following broad classification of the applications of quality assessment algorithms. In our 
view, IQA and VQA algorithms can be used: 
 

• To monitor video quality for real-time applications. IQA and VQA algorithms can, in principle, be used to 
dynamically monitor and adjust the quality of video signals. For example, in video teleconferencing and Video 



on Demand applications, video quality is affected by such factors such as errors, congestion and latency in the 
network, the number of participants in the multimedia stream, and so on. On-line quality monitoring has great 
potential to allow service providers to meet their Quality of Service (QoS) requirements by dynamically 
changing the resource allocation strategies. 

 
• To evaluation competing image and video processing algorithms. A long-time bugaboo in the field of 

image processing has been the lack of any reasonable means for comparing algorithms. Indeed, for decades, 
the standard approach to assessing the relative merits of image processing algorithms has been to either “try 
them on Lena and see how they look,” or to deploy a standard distance metric (relative to an idealized image) 
such as the Mean-Squared Error (MSE) or Peak Signal-to-Noise Ratio (PSNR). The first of these approaches 
has the virtue of using the ultimate judge – the human observer, but suffers from a lack of statistical 
significance in the face of subjective variability, unless a massive and cumbersome human study is done 
encompassing adequate variety and numbers of images and observers, under controlled conditions, and with 
statistical validation of the results. Needless to say, such studies are very rare. The second approach has the 
virtues of implied automation and complete objectivity, but unfortunately, the objective measures used (MSE, 
PSNR, and so on) are acknowledged to have poor perceptual relevance, except, perhaps, at very low and very 
high error levels. Obviously, the emergence of truly successful IQA and VQA algorithms implies the 
possibility of changing this situation, and it is our hope that IQA/VQA algorithms will become standard 
impartial arbiters to measure and compare the efficacy of competing image and video processing algorithms. 

 
• To optimization the design of image and video processing algorithms. A dual problem to testing the 

success of an image processing system using an IQA or VQA algorithm, is to design the system, or at least 
adjust its parameters, using a QA measure as the optimality criteria. Such systems could then be described as 
Perceptually Optimal if the IQA/VQA algorithms being used correlate sufficiently well with human judgment. 
Such an approach could revolutionize the design of image and video compression, filtering, acquisition, 
display (and so on) systems. 

 
Regardless of how well we design IQA/VQA algorithms, controlled studies of the human subjective judgment of 
quality must remain the ultimate standard of performance for any image/video processing algorithm (except in machine 
vision, which is a much smaller market). Indeed, subjective judgment is the means by which IQA and VQA algorithms 
must be assessed. Subjective judgment involves psychophysical studies where image/video signals are viewed by 
human observers under controlled conditions. The subjects indicate a quality score on a numerical or qualitative scale. 
To account for human variability and to assert statistical confidence, multiple subjects are required to view each 
image/video, and a Mean Opinion Score (MOS) is computed. While subjective studies are the only completely reliable 
method of quality assessment, they are cumbersome, expensive, and complex [5]. Indeed, subjective QA is impractical 
for nearly every application – other than benchmarking automatic QA algorithms, for which it is an absolute necessity. 
 
Objective image and video quality assessment algorithms are commonly categorized roughly into three types – namely 
full reference, reduced reference and no reference algorithms. We’ll review these briefly, making some comments on 
their definitions. 
 
Full Reference (FR) IQA/VQA algorithms make use of an ideal “reference” image that is assumed to be  available for 
comparison. Naturally, this makes the problem easier! Indeed, nearly all of the work on IQA/VQA over the past few 
decades is FR, because of the relative simplicity of making quality judgments relative to a standard.  FR algorithms are 
quite valuable, for all of the bulleted purposes listed above; yet, naturally, we’d like to do away with the need for 
reference data to achieve greater freedom of application, to develop insights into the meaning of visual quality, and 
simply because it has not yet been done. 
 
Reduced Reference (RR) IQA/VQA algorithms do operate without the use of a pristine reference image or video, but 
they do make use of additional (side) information along with the distorted image or video signal. RR algorithms use 
typically use information or features extracted features from an original reference as supplemental comparison 
information, such as localized spatio-temporal activity information, detected edge locations, or embedded marker bits to 
estimate the distortion of the channel [1], [2], [32]. Other algorithms use knowledge that has been independently derived 
regarding the distortion process (such as foreknowledge of the nature of the distortion introduced by a compression 



algorithm, e.g., blocking, blurring, or ringing) to assist in the quality assessment process [3]. Some authors refer to this 
type of RR algorithm as “blind,” but in our view, presuming knowledge of the distortion process is a form of side 
information. RR techniques have attracted a lot of recent interest, since requiring the reference image/video may impose 
too much of a bandwidth limitation [4]. 
 
No Reference (NR) or Blind IQA/VQA algorithms attempt to assess image/video quality without access to any 
information than the distorted signal. In our view, algorithms that presume the distortion to be, for example, JPEG 
blocking, do not belong in this category. True NR IQA/VQA remains an exceedingly difficult, and indeed daunting 
proposition, and there is very little substantive work on this topic. Yet, it is certainly one of the “Holy Grails” of the 
image processing field, and the fact that human beings can perform the task almost instantaneously powerfully suggests 
that there is hope in this direction. Moreover, practitioners in industry are most interested in this problem, since 
evaluation of unknown video streams in a wireless cellular network undergoing a wide variety of compression, channel, 
and processing distortions affords little hope for using FR VQA algorithms in real-time, since the availability of a 
reference image is out of the question, while RR information is likely unreliable. Clearly, much remains to be learned 
regarding FR and RR QA and human perception of quality. No doubt, what is learned will eventually lead to feasible 
blind QA algorithms; while the problem at times seems nearly hopeless, and research on it remains moribund, we 
believe that the groundwork for eventual resuscitation of the area is being laid. 
 
In the following Sections, we’ll start by briefly reviewing early work on IQA and continue with some of our recent 
advances in IQA, specifically, the Structural SIMilarity (SSIM) Index and the Visual Information Fidelity (VIF) Index, 
which take two very different approaches to the problem. Both SSIM and VIF exhibit a remarkable level of 
performance relative to prior approaches to IQA. We will also describe recent successes we have had in extending both 
of these IQA frameworks to the much more complex problem of VQA. Our early work on VQA, while promising, still 
requires further algorithm development as well as more extensive testing resources. In later Section of this paper and the 
associated Talk, we discuss the our current efforts towards the design and construction of a VQA database, including 
details of the subjective study that needs to be conducted to complete the database. We plan to make this database 
available to the research community, as we have with our IQA database, which has become a standard in the research 
community. It is our hope that such a service will help us and others significantly advance the field of VQA. 
 

2. BACKGROUND 
 
It is useful in our discussion to broadly consider the process of a human observer viewing a displayed image using the  
philosophy of communication theory. Although we will refer to images in this context, the ideas involved extend 
directly to moving images, or video. In his framework, we may view the formation of images, which for the purpose of 
discussion we may regard as optical images of the natural or man-made environment under natural or standard man-
made lighting, as natural image transmission. That is, the objects in the environment, along with the light sources, are 
the transmitters, and the lighted emitted from the objects (reflected or otherwise) is the natural image signal. We note in 
passing, as others have, that as with any engineered communication system, this signal has associated with it statistical 
properties that are a function of the source and the transmitter. These are commonly referred to as natural scene 
statistics, which have found utility in many image processing tasks. 
 
These natural image signals radiate in all directions, and in so doing are modified by the ambient natural environment, 
which we might refer to as comprising the natural image channel. A small portion of this modified image signal is 
captured by image sensors, transduced into another electrical or optical form, then subsequently subjected to a series of 
intense processing steps which may include digitization, compression, modulation, channel coding, filtering, digital 
transmission, decompression, additional filtering, and subsequent display, the aggregate of all stages of which we may 
collectively refer to as the synthetic image channel. It is the overall natural-synthetic image channel, with all of its 
infinite complexities, that introduces distortion into the image signal. The great complexity of this overall channel, and 
the difficulty in generically modelling it, is one reason why blind IQA is such a difficult problem. 
 
Finally, the displayed image signal is incident on the human eye, which along with the neurons along the visual pathway 
and the visual cortex, comprise what we may refer to as the natural image receiver. In the IQA literature, and indeed 
more broadly, the natural image receiver is referred to as the Human Vision System, or HVS. 
 



Continuing with our analogy of imaging as a communication system in the classical sense, then we may also conclude 
that the more information that we have available regarding the nature of the transmitter, the channel, and the receiver, 
then the better job of image communication we will be able do, meaning the better quality images we will be able to 
efficiently deliver to the receiver, provided that our models of transmitter, channel, and receiver are accurate, and 
provided that we are able to effectively utilize this information in the design of the overall communication system. Key 
to this goal are the design of accurate and usable models of the natural image transmitters, the overall natural/synthetic 
image channel, and the natural image receiver. 
 
Early successful modeling efforts focused on developing FR IQA and VQA algorithms using models of the natural 
image receiver - the HVS - to predict quality. The premise behind such HVS-based metrics is to simulate the visual 
pathway of the eye-brain system. In this framework, the error between a reference and test visual signal is computed in 
a perceptual space, in contrast to classical pure-math error metrics computed in the pixel domain, such as the MSE, the 
PSNR, and other similar distance metrics. As depicted in Fig. 1, HVS-based systems typically begin by preprocessing 
the signal to correct for non-linearities, since lightness perception is a non-linear function of luminance. A filterbank 
decomposes the reference and distorted (‘test’) image signals into multiple spatial frequency- and orientation-tuned 
channels in an attempt to model similar processing by the cortical neurons [6]. If the image signal is dynamic video, 
then a “temporal filtering block” as illustrated in Fig. 1 (using dashed lines) is typically deployed by HVS-based VQA 
algorithms, where the reference and test video sequences are also decomposed into temporal frequency channels. The 
luminance and contrast masking features of the HVS are then modeled to account for perceptual error visibility as a 
function of luminance and contrast. A space-varying threshold map is created for each channel describing local spatio-
spectral error sensitivity, and is used to normalize the differences between reference and test images, resulting in what 
are referred to as Just Noticeable Differences (JND's). In the final stage, the JND values for all channels are pooled via a 
suitable metric such as a weighted MSE to generate a space-varying quality map. 
 

This approach to quality assessment is intuitive and has met with considerable success. Indeed, we would agree that 
the idea of utilizing receiver models is the most natural approach to the problem of IQA/VQA. Popular IQA algorithms 
that followed the above paradigm include the pioneering work by Mannos and Sakrison [7], Lubin’s laplacian-pyramid-
based approach [8], Daly’s Visible Differences Predictor [9], Teo and Heeger’s steerable pyramid approach [10], and 
the Emmy Award-winning Sarnoff JNDMetrix metric [11]. Popular VQA algorithms following the HVS paradigm 
include the Perceptual Distortion Metric (PDM) [12], the Digital Video Quality (DVQ) metric [13], and the Sarnoff 
metric for video [11]. 

 
Figure 1. Block diagram of HVS-based metrics. 

 
HVS-based metrics have several drawbacks that are well documented [16]. However, the main drawback, in our view, 
lies in the fact that our knowledge of the natural receiver, the HVS, while improving, still remains very limited. We 
have little idea, really, what the term visual quality really means. By contrast, we have a very good idea of what visual 
fidelity means, provided that we have an effective objective measure of fidelity. The hope is that HVS-based or hybrid 
image fidelity metrics will eventually be developed which correlate very highly with subjective IQA. Indeed, as our 
knowledge of human visual function increases, we believe this will very likely be the case. 
 
While our incomplete knowledge of the natural receiver has apparently put limits on the performance of purely HVS-
based IQA algorithms, the introduction of better-performing IQA algorithms has cast a strong light on these limits. One 
non-HVS-based algorithm that immediately attracted considerable attention is the Structural Similarity Index, or SIMM 
[16], which in an early form was called the University Quality Index, or UQI [17]. SSIM, which was one of the 
algorithms developed by our group, has found a great deal of popularity and visibility owing to its simplicity of 
definition, its ease of computation, its analytical tractability, and most of all, its excellent performance relative to human 
subjective scores (see Table 1). Interestingly, the idea behind UQI/SSIM arose not from systematic studies or modeling 
of the natural transmitter, channel, or receiver, but rather, from simple, intuitive ideas regarding how distortions in 
image structure might be measured. Indeed, the original UQI, or Wang-Bovik Index, arose in a back-and-forth Eureka 



email exchange between the two inventors, both of whom were amazed by the excellent IQA performance of the 
algorithm. 
 
Our group at UT-Austin had been studying IQA for some time prior to the development of UQI/SSIM, but with the 
unexpected success of UQI/SSIM, this work intensified and accelerated. In an effort to place IQA on a solid, and new 
theoretical footing, we chose to utilize recently-developed models of natural scene statistics to prototype the natural 
transmitter in our communication system analogy of IQA, which made possible the measurement of image fidelity in a 
natural information-theoretic setting. The resulting paradigm, known as the Visual Information Fidelity (VIF) Index 
[20], though more complex than SSIM in both construction and in computation, proved to be extremely efficient in 
terms of performance relative to subjective judgements (Table 1). VIF, like SSIM, had a prior simpler formulation 
which encapsulated the basic concepts of the new approach. The earlier algorithm, known as the Information Fidelity 
Criterion, or IFC [21], succeeded quite well but was improved upon in the later VIF formulation through the use of 
perceptual noise modeling and a form of divisive normalization [1], [21], [32]. 
 
Video Quality Assessment, or VQA, has followed a similar developmental trajectory as IQA. HVS-based metrics for 
video enjoyed considerable apparent success, until a VQEG study cast doubt the merits of the approach relative to 
simpler measures (such as the PSNR). All three video quality metrics mentioned above (PDM, DVQ, and Sarnoff) were 
proponents in a VQEG evaluation conducted as part of the Phase I FR-TV study in 2000 [14]. This study concluded that 
the performance of all proponents were, essentially, statistically equivalent to one another and to PSNR! The VQEG 
conducted another study in 2003, labeled Phase-II FR-TV study, to obtain finer discrimination between models than the 
Phase-I study [15]. Although the proponent models performed better in this study than in Phase-I, the Phase-II study 
emphasized a specific, and hence limited application domain, focusing on digitally encoded television. In this study, no 
single model emerged as a leading candidate. In our view, VQA remains an open area of inquiry where we expect that 
considerable strides might be made by exploiting paradigms, such as those motivating SSIM and VIF, that are 
complementary to those that only seek to model the natural receiver. New approaches to tackling the problem (we 
describe our own ideas in Section 4) will hopefully lead to viable alternatives that demonstrate generalizable VQA 
across a wide array of video distortions, with statistically superior performance relative to PSNR and other existing 
objective VQA algorithms.   
 

3. IMAGE QUALITY ASSESSMENT 
 
We briefly review the construction and performance of the SSIM and VIF Indices for still images as a way of 
introducing the concepts that will be extended into the video domain.  

3.1 Structural Similarity Index 
The UQI/SSIM Index tacitly assumes that the HVS has evolved to extract structural information from an image 
[16],[17]. Thus, the approach is, at least conceptually, a dual approach to HVS-based methods. The perceptual quality 
of a given image is predicted by quantifying the loss of structural image information, which is measured using simple 
sample statistics of image patches. Figure 2 illustrates the SSIM quality assessment system for images. Let f = {fi, i = 1 
,…, N} and g = {gi, i = 1 ,…, N} denote vectors from corresponding patches in the reference and test images F and G, 
respectively. From each patch, define weighted mean luminances and Root Mean Square (RMS) contrast. Also, define 
the covariance between the reference and test patches using: 
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with similar definitions for µg and σg, and where the unit-sum weighting function wi has a gaussian-like fall-off from the 
patch center. The SSIM Index between the corresponding patches is then 
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where C1, C2, C3 are small positive constants that stabilize each term. Thus, SSIM measures differences between patch 
luminances l, contrast c, and structure s expressed as simple, easily-computed image statistics. By computing SSIM(f, g) 
over the entire image, a quality map is obtained. A scalar quantifying the overall quality of the test image G is obtained 
by computing the overall mean value of SSIM(f, g), or by using some other pooling procedure [1], [31], [32]. The 
original UQI is the special case of SSIM where C1 = C2 = C3 = 0. 
 
Despite its simplicity, SSIM correlates extraordinarily well with perceptual image quality, and handily outperforms 
prior state-of-the-art HVS-based metrics such as the Sarnoff model, as demonstrated in extensive psychometric studies 
[1], [16], [22]. Table 1 shows the Spearman Rank Order Correlation Coefficient (SROCC) computed between the 
results of several metrics and the MOS images distorted by a wide variety of processes (the entire LIVE database) 
including JPEG and JPEG2000 compression, additive white gaussian noise, gaussian blur and fast-fading bit errors in a 
Rayleigh communication channel [16], [22]. The degree of improvement obtained by SSIM relative to the prior 
standard-bearer is nearly equal to the progress made over the previous thirty years of research! It should be noted that an 
improvement of 2-3%, while numerically small, is quite substantial from a perceptual standpoint. For example, the 
LIVE database contains distorted images with a wide range of degrees of each type of distortion, ranging from images 
in which the visual content is almost completely obscured, to images where the distortion is near the threshold of 
visibility. At these extremes, all of the algorithms correlate well with subjective judgment as might be expected (they’d 
better!). If the extreme distortions are left off, the disparity in performance between the algorithms becomes even more 
pronounced. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Table 1: Performance of image quality metrics 

3.2 Visual Information Fidelity Criterion: 
The Visual Information Fidelity (VIF) Index views image quality assessment as an information fidelity problem. The 
philosophy of the approach is based on the hypothesis that visual quality is related to the amount of information that the 
HVS can extract from an image. In this sense, VIF is also a dual approach to IQA relative to HVS-based methods. 
 
Figure 3 summarizes the VIF approach. Reference images are assumed to be the output of a natural image source 
represented using a powerful, yet simple natural scene statistic (NSS) model known as the Gaussian Scale Mixture 
(GSM) model [19]. In this model, the wavelet coefficients of the natural source f have a GSM distribution: the elements 
f of a patch of spatially adjacent locations, scales and orientations are distributed as a zero-mean Gaussian random 
vector, conditioned on a multiplier field: f ~ zu, where z is a scalar multiplier field, and u is a zero-mean Gaussian 
random vector with covariance matrix Cu. The multiplier field is estimated from the reference image, while the test 

 
Figure 2. Block diagram of SSIM. 



image g is assumed to be the output of a distortion channel through which the reference image passes. A blur plus 
additive noise distortion model in the wavelet domain is used as the channel model. 
 
If g are the corresponding coefficients from the test image, then g =bf +n where b is a scalar gain field that models 
modification of signal energy due to compression, blur, additive noise, contrast enhancement and/or other distortion, 
and n is zero-mean AWGN. Further, the HVS is modeled as a zero-mean AWGN communication channel v, since 
neural noise and other factors limit the information it can extract from an image. Thus, the “perceived” reference and 
test images are (respectively) e = f+v and d = g+v. 
 

 
The mutual information I between f and d (conditioned on z) measures the information that the HVS can extract from 
the test image g and likewise for the reference image f. The ratio of these information measures defines the local VIF 
Index of the distorted image: 
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As with SSIM, a global VIF quality metric can be obtained by summing both numerator and denominator over all 
patches and all wavelet subbands, then forming the ratio. A detailed discussion of VIF, including parameter and wavelet 
basis selection can be found in [20]. The precursor to VIF, known as the Information Fidelity Criterion, is described in 
[21]. This metric is similar to VIF, but does not include normalization with respect to the information content (and does 
not perform as well). 
 
The performance of VIF has been tested extensively across widely varying distortion types and found to exhibit superior 
performance relative to all known algorithms (including SSIM) as indicated, for example, using SROCC relative to 
MOS as a performance metric (Table 1). An extensive description of this study, which included over 25,000 value 
judgments on nearly 800 distorted images, and which deployed a wide variety of statistical measures of algorithm 
performance, is available in [22]. 
 

4. VIDEO QUALITY ASSSESSMENT 
 
Most of the video quality metrics proposed in the literature have been simple extensions of still image quality metrics, 
or IQA algorithms. Thus, most of the leading VQA algorithms are based on models of the natural receiver, the HVS, as 
discussed in Section 2. In fact, seven of the ten proponent models evaluated by the VQEG in its Phase I testing used 
models of the HVS in their algorithms [14]. More recently, there has been a shift in trend toward so-called top-down 
approaches to quality assessment, which we can equate to modeling of either the natural image transmitter, and/or the 
natural/synthetic image channel, using our prior parlance. As we mentioned before, part of the reason for this shift in 
paradigm has been the realization that we are still limited in our understanding of the complexity of the HVS, which 
means that our current HVS models contain inaccuracies that may degrade the performance of HVS-based VQA 
algorithms. 
 
A more important reason, perhaps, is the fact that HVS-based models typically model threshold psychophysics, viz., the 
sensitivity of the HVS to different features such as luminance, contrast and contrast masking phenomena are measured 
at the threshold of perception [23]. However, quality assessment usually deals with supra-threshold perception, where 

 
Figure 3: Block diagram of the VIF quality assessment system 



artifacts in the video sequences are visible and algorithms attempt to quantify the annoyance levels of these distortions. 
Thus, in recent years, there has been an increased interest in models that describe the distortions in the video sequence 
that the human eye is sensitive to and that equate with loss of quality; for example, blurring, blocking artifacts, fidelity 
of edge and texture information in the signal, color information, contrast and luminance of registered patches in the 
spatial and frequency domain, and so on. These approaches, in our framework, would be described as using implicit 
models of the natural image transmitter, and explicit models of the natural/synthetic image channel. Indeed, five of the 
six proponent models tested by the VQEG in its Phase II testing utilized feature vectors that contained information such 
as those just described in predicting quality [15]. These feature vectors are generally combined either using linear 
weighting measures or non-linear learning mechanisms to compute a quality index for the entire sequence. Although 
these developments are promising, in particular for specific video industries, we note that the reliance on models of 
particular distortions is likely to limit the general application of these methods. 
 
Another problem, in our view, is that the top-down algorithms for VQA proposed in the literature have incorporated 
features for measuring spatial distortions in video signals, yet very little effort has been spent on measuring temporal 
distortions or motion artifacts. Several of the algorithms mentioned above utilize rudimentary temporal information by 
differencing adjacent frames or by processing the video using other temporal filters before feature computation. 
However, to our knowledge, no algorithms in the literature attempt to compute motion information in video signals to 
predict quality. Yet, The HVS is quite sensitive to motion and can accurately judge the velocity and direction of moving 
objects. These skills are essential to survival and play a huge role in human perception of moving image sequences. 
Considerable resources in the HVS are devoted to motion perception. Most of the neurons in the striate cortex respond 
best to a stimulus moving in a particular direction and play a role in the perception of movement. Motion perception is 
largely executed in the medial temporal (MT) area of extra-striate cortex, where 90% of the neurons are directionally 
sensitive. Motion perception is not modeled well in current HVS-based design paradigm either. All of the VQA metrics 
mentioned above use either one or two temporal channels, and model the temporal tuning of the neurons in area V1 of 
visual cortex only – despite the important role of the neurons in area MT of the extra-striate cortex in motion perception. 
 
We believe that the performance of VQA techniques can be improved by the introduction of meaningful models that 
describe motion in video sequences, as well as model spatio-temporal distortions in the video stream. To date, there has 
been very little work done in these directions. Next we will describe video quality metrics that we have very recently 
developed that are based on the structural similarity and visual information fidelity concepts. The novelty in this new 
work lies in incorporating one of the chief factors that affect human perception of moving image sequences – namely, 
the motion of objects in the scene that is viewed.  

4.1 Basic framework for motion modeling 
The motion of objects in 3D scenes takes an elegant and simple form in the frequency domain that facilitates analysis. 
We consider the apparent motion of image intensities, namely the optical flow, and not the true three-dimensional 
velocity of motion. We assume that short segments of video consist of local image patches undergoing translation, 
which is a reasonable approximation as long as there are no scene changes. This model is used locally to describe video 
sequences, since translation is a linear approximation to more complex types of motion. Let i(x,y) denotes an image and 
I �(u,v) its Fourier transform. Assuming that this image undergoes translation with flow vector λ

�
=(λx, λy), the Fourier 

transform of the resulting video sequence, denoted F(u,v,w), is given by [27]: 
 

F �(u,v,w)= I�(u,v) δ(λxu + λyv +w)                                                                  (1) 
 
where δ(x) denotes the Dirac delta function. Thus, the spectrum of a translating video signal lies entirely along a plane 
in the frequency domain whose orientation is defined by the flow vector. Additionally, the magnitudes of the spatial 
frequencies do not change, but are simply sheared in the frequency domain. 
 
Eq. (1) provides an explicit characterization of the motion of a video sequence in the frequency domain. Frequency 
domain approaches are well suited to the study of human perception of video signals owing to the presence of bandpass 
visual channels in the HVS [5]. Hence, in the VQA systems that we describe, the video sequence is filtered using a 
family of band-pass spatio-temporal filters and quality assessment is performed on the resulting bandpass channels in 



the spatio-temporal frequency domain. Although the development is generic and applies to any filter family, we use 
Gabor filters in our implementation to achieve improved spatio-spectral localization [28]. 
 
We used the optical flow estimation algorithm described in [29] to compute the flow field for the reference video, with 
small modifications that are described in [25]. The optical flow computation on the reference sequence provides us with 
an estimate of the local orientation of the plane containing the frequency spectrum of the video sequence. We propose to 
use this information to achieve motion compensated quality computation in the following way. We first identify the 
Gabor filters that overlap significantly with this plane, which is accomplished by requiring that the plane lie within one 
standard deviation of the Gabor filter in the frequency domain. This is illustrated in Fig. 4 for two hypothetical video 
sequences, where one is a static sequence that contains no motion and the other is a moving sequence. Note the close 
relation between using this rule for filter selection and motion compensated filtering of the reference sequence. If the 
video signal exactly satisfies our assumption of translational motion, then exact motion compensated filtering of the 
video sequence would require using a filter whose support lies entirely along the spectral plane of the reference video 
signal. This can be achieved using non-separable Gabor filters, whose major axis is oriented along the spectrum of the 
video and whose spread along the minor axis is very small or negligible. We, however, use spherically symmetric Gabor 
filters that are separable. The filtering that we achieve is therefore not exactly motion compensated, but can be 
considered an approximation to it, provided that the spread of the Gaussian window in the frequency domain is not too 
large. 
 
Once these filters have been identified, we compute quality indices only between the outputs of the selected subset of 
filters. This helps us to model both spatial as well as temporal distortions in the test video sequence. Distortions in the 
video that are purely spatial, meaning intra-frame distortions, will result in changes in the frequency components along 
the plane, which will be captured by the Gabor filter outputs. Examples of such spatial distortions include blurring, 
blocking and ringing caused by compression, errors during acquisition, transmission through communication channels, 
and so on. Distortions in the video that are purely temporal, meaning inter-frame distortions, will result in a change in 
the axis along which the plane intersects the Gabor filter. Examples of temporal distortions include motion 
compensation mismatch and mosquito noise due to compression, ghosting and temporal aliasing during acquisition, 
transmission through communication channels etc. We describe a specific instance of this generic framework for VQA 
in the following.  
 

  
(a) (b) 

Fig. 4: Illustration of a set of filters chosen for the case of (a) A static sequence (video consists of same 
frame repeated throughout the sequence)  (b) A sequence undergoing translation 

 

4.2 Video Structural SIMilarity index (V-SSIM) 
Soon after the development of SSIM, a very simple extension of SSIM was proposed for VQA, wherein a simple frame-
by-frame SSIM implementation was described [24]. Although this algorithm proved to be competitive with the VQEG 
proponents from [14], we have been able to demonstrate that the SSIM paradigm can yield much better performance by 



introducing distortion measurement that incorporates motion information [25]. The development of this approach, 
which we term Video SSIM, or simply the V-SSIM Index closely follows the development of the Complex Wavelet 
SSIM (CW-SSIM) Index proposed in [26]. CW-SSIM is a simple extension of SSIM, where structural similarity is 
measured in the complex wavelet domain, thereby achieving high performance and a degree of translation-invariance, 
which is quite useful if errors in registration occur between the reference and test video sequences. 
 
V-SSIM is defined as follows. Let f
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the reference and distorted video sequences, respectively, at corresponding spatio-temporal locations from one sub-band 
of the Gabor filter family. Then, the V-SSIM Index between these coefficients is given by: 
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where K is a small positive constant added to preserve numerical stability. Note that we use only the magnitudes of the 
Gabor filter outputs to compute the V-SSIM Index, by contrast with the CW-SSIM Index [26]. Since the CW-SSIM 
Index was designed using the complex wavelet response in order to yield a translation insensitive measure, the phase of 
the complex wavelet response corresponds to small translations in the image. However, for application to VQA, the 
phase of the Gabor outputs represents motion information, and the optical flow estimation algorithm in [29] computes 
flow using this phase information. Thus, once motion compensation is accomplished, then the V-SSIM Index is only 
computed between the magnitudes of the selected filter outputs, using the selection criterion described in Section 4.1. 
 
We tested our proposed V-SSIM index on the VQEG database [14] and the results we report are from [25]. We are not 
particularly satisfied with the VQEG database in terms of the types of video sequences and distortions that are 
represented, but it is the best available current VQA database. Nevertheless, as described below, we have plans to 
create, in the future, a VQA database to complement the existing popular LIVE IQA Database. The VQEG database 
contains 20 reference video sequences, test sequences obtained by distorting each of these reference videos with 16 
different distortion operations and subjective scores for all test sequences. The current implementation of our optical 
flow estimation uses filters at just one scale. Therefore, we had to exclude 4 of the reference sequences in the database 
that contained fast moving sequences, where the flow estimation algorithm failed due to temporal aliasing [29]. All of 
the VQEG test sequences are interlaced and for simplicity, and to avoid the degrading effects of applying de-interlacing, 
our algorithm operates only on the odd fields of the interlaced sequences. The results of our simulations are summarized 
in Table 2, which shows the Spearman Rank Order Correlation Coefficient (SROCC) between the subjective and 
objective scores for several different VQA algorithms. SROCC is one of the metrics specified by the VQEG that tests 
the prediction monotonicity of a VQA system. As can be seen, and as expected, the PSNR does not correlate well with 
subjective scores. Proponent P8 is the best performing metric amongst the 10 different proponent models tested by the 
VQEG in terms of SROCC [14]. We also compared our results against the better performing version of the two metrics 
proposed in [24]. As can be seen, the V-SSIM Index is attractively competitive with the leading VQA algorithms. 
 
 

Prediction Model SROCC 
PSNR 0.786 

Proponent P8 (Swisscom) in [14] 0.803 
Frame-by-frame SSIM in [24] 0.812 

V-SSIM using motion [25] 0.835 
Table 2 

4.3 Video Information Fidelity  
We recently proposed a model that describes the statistics of natural video sequences, towards the development of an 
information theoretic quality metric for video signals [28]. Translational motion of local image patches was combined 



with the GSM model for natural images in the frequency domain to describe the statistics of sub-band filtered 
coefficients of video signals. Assume the video signal f is filtered with a family of spatio-spectrally localized 3-D 

subband filters gi(x, y, t) G↔ ɶ
i(u, v, w), resulting in wavelet coefficients ci(x, y, t). A modified version of the GSM 

model for natural images is used to capture the behavior of the image undergoing translation, and an associated mixing 
density parameter z is used as described in [28]. When conditioned on the estimated value ẑ  of the mixing density z, 
the coefficients c(x,y,t) are zero-mean Gaussian random variables with variances: 
 

( ) ( ) 262 2ˆ2 , ,c x yz G u v u v dudvσ π λ λ−= − −∫ ɶ  

 

where ( ), , x yG u v u vλ λ− −ɶ  is a 2-D slice of the filter along the plane containing the spectrum of the translating video 

signal. From this it is apparent that large-magnitude coefficients will appear where the energy of the variance field is 
large, and where the oriented plane significantly intersects the filter passbands. 
 
Our work on developing information-theoretic algorithms for VQA based on our prior work on IQA is still ongoing. 
Recently, we have developed a video analog of the IFC Index (VIF without perceptual noise modeling and divisive 
normalization), which appears to have performance that is favorably competitive with all prior VQA algorithms [30]. 
However, our perceptual testing of this algorithm remains incomplete as of this writing. Further, we expect to soon 
incorporate modifications, following the VIF Index, which will likely further improve our information-theoretic 
approach to VQA. 
 

5. TOWARDS A VIDEO QUALITY ASSESSMENT DATABASE 
 
The most important tool assisting our successful advancement of the field of Image Quality Assessment is the LIVE 
Quality Assessment Database, which has become a de facto standard in the global image processing community. The 
database contains 779 images - 29 reference images distorted by a diversity of processes such as JPEG/JPEG 2000 
compression, blur, AWGN and wireless channel bit errors [22]. Each image was evaluated by (on average) 23 human 
observers to determine Mean Opinion Scores (MOS). The recent Release 2 of the LIVE Database includes Differential 
MOS (DMOS) values as well, which is regarded as more sensitive than MOS. Over 200 institutions have downloaded 
the LIVE database for research purposes – despite the data volume of >1GB - and it has already been cited in over 20 
technical articles, although it was first was released to the research community less than two years ago. It is safe to 
claim that the testing of new IQA algorithms by researchers around the world is conducted on the LIVE database. 
 
To enable the performance evaluation of VQA algorithms over a suitably diverse dataset, we plan to expand the LIVE 
database by developing a VQA database of generic power, containing videos affected by a broad variety of important 
and general distortions. We also plan to provide subjective scores (MOS, DMOS) for all of the distorted videos. There 
is a great need for a standardized VQA database that is freely available to the research community, and which go 
beyond the needs of specific video industries. Conducting subjective studies on many video sequences is a cumbersome 
and daunting task, but we believe that such an effort will prove to be a great service to the community, which 
encourages us to undertake this task. 
 
Currently, VQA algorithms can be tested against other algorithms on the VQEG Phase-I FR-TV database. However, the 
VQEG database has significant limitations. First, 4 of the 5 current VQEG projects involve evaluation of VQA metrics 
for television systems. As a result, the reference and distorted videos in the database are interlaced, leading to visual 
artifacts in the reference as well as distorted video sequences. Algorithms such as those mentioned in Sections 2 and 4 
typically involve multiple processing steps which require adjustment to handle interlaced signals. De-interlacing the 
sequence prior to processing is not suitable in a VQA framework, since de-interlacing introduces artifacts in the video. 
Additionally, the VQEG database consists only of compression-related artifacts produced by H.263 and MPEG codecs. 
This set of distortions is quite limited for the broad spectrum of distortions that generic quality assessment algorithms 
are targeted towards. 
 
Thus, we plan to develop a database of progressive scanned videos suitable for a broad range of multimedia 
applications, such as video teleconferencing, Video-on-Demand, Internet streaming video, mobile multimedia, and so 



on. We will incorporate a wide range of distortions, including MPEG-2 compression, which exhibits compression 
artifacts such as blur, ringing, motion compensation errors, mosquito noise etc.; H.263 compression, representative of 
low-bit rate video compression to be widely deployed in mobile applications; simulated spatial distortions including 
additive noise and blur and temporal distortions such as jerkiness and smearing; and channel errors including delay-
induced jitter, visual artifacts from error concealment of lost packets, bit errors and burst errors due to fading and 
multi-path reflections, and so on. 
 
A major difficulty that we (and others) have encountered is the acquisition of high-quality, progressive scanned, 
copyright free source videos, so that we can share the data as well as the result of our subjective studies freely with the 
research community. Towards this end we have, thus far, obtained 8 videos from a High Definition database provided 
by the University of Munich and several videos from the mobile video unit at Texas Instruments, Inc. These sequences 
contain horizontal, vertical, panning, zoom and rotary motions and both fast moving and slow moving scenes. Our 
eventual goal is about 20 videos. 
 
Finally, we will undertake an extensive psychometric study in consultation with noted visual psychologists and our 
frequent collaborators L. Cormack and W. Geisler at UT-Austin’s Center for Perceptual Systems (CPS) at UT-Austin. 
LIVE/CPS possesses ample resources for calibrated video display. We intend to conduct a Single Stimulus Continuous 
Quality Evaluation (SSCQE) procedure to compute scores for all sequences in the data sets. Such a study is well suited 
to applications such as video monitoring and quality control that are rapidly gaining popularity. Additionally, the 
SSCQE procedure allows for the subject to provide a time-dependent index of quality, as opposed to a single index that 
determines the quality of the entire signal. We envision that the resulting database would prove more challenging for 
VQA algorithms than the current VQEG database, and would enable more rigorous performance evaluation of quality 
assessment systems. 
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