
A New Distribution Metric for Image Segmentation

Romeil Sandhua Tryphon Georgioub Allen Tannenbauma

aSchool of Electrical & Computer Engineering, Georgia Institute of Technology,
Atlanta, GA 30332-0250

bDepartment of Electrical & Computer Engineering, University of Minnesota,
Minneapolis, MN 55455

ABSTRACT

In this paper, we present a new distribution metric for image segmentation that arises as a result in prediction
theory. Forming a natural geodesic, our metric quantifies “distance” for two density functionals as the standard
deviation of the difference between logarithms of those distributions. Using level set methods, we incorporate an
energy model based on the metric into the Geometric Active Contour framework. Moreover, we briefly provide a
theoretical comparison between the popular Fisher Information metric, from which the Bhattacharyya distance
originates, with the newly proposed similarity metric. In doing so, we demonstrate that segmentation results are
directly impacted by the type of metric used. Specifically, we qualitatively compare the Bhattacharyya distance
and our algorithm on the Kaposi Sarcoma, a pathology that infects the skin. We also demonstrate the algorithm
on several challenging medical images, which further ensure the viability of the metric in the context of image
segmentation.
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1. INTRODUCTION

A well-studied problem in computer vision is the fundamental task of segmenting or partitioning an image into
disjoint regions with applications ranging from medical image analysis, quality control, or military surveillance
and tracking. Although the general segmentation problem involves separating N distinct partitions, a piecewise
assumption of two sets is generally made. That is, the image is assumed to be comprised of two homogeneous
regions, often referred to as “Object” and “Background”. The goal of segmentation is to accurately capture
these regions. Specifically, the use of active contours has been proven to be quite successful in accomplishing
this task.1–6

Employing the methodology of geometric active contours (GAC), a curve is represented as the zero level-
set of a higher dimensional surface7, 8 A common choice is the signed distance function. Although this implicit
representation of a curve is computationally more expensive than parametric approaches, it allows for the contour
to naturally undergo topological changes. In the GAC framework, a curve is evolved to minimize an image based
energy functional, typically via gradient descent. Several energy functionals have been proposed in literature:
Some models use local information and features such as edges,3 while other methods use regional information
by discriminating on a photometric variable of interest (e.g., gray-scale intensity, color, tensors).5, 9–11 Recently,
hybrid models, which incorporate regional statistics in a localized fashion, have been proposed.12 It should also
be noted that one can constrain the evolution of a curve by incorporating shape information, and we refer the
interested reader for more details to the following references.13–15

Region based approaches have been popularized due to a higher level of robustness to noise and initialization
when compared to models based on local information. In region-based segmentation, energy models employ the
use of image statistics dependent on the segmenting curve using parametric9, 16, 17 and non-parametric methods.18

In this work, we will restrict most of our discussion to approaches that generalize the statistical inference
beyond first and second moments to entire probability density functions (pdf). From this, segmentation can be
reinterpreted as measuring the “distance” between two distributions via a similarity metric.

Further author information: (Send correspondence to R.S.)
R.S.: E-mail: rsandhu@gatech.edu, Telephone: 1 404 385 5062

Medical Imaging 2008: Image Processing, edited by Joseph M. Reinhardt, Josien P. W. Pluim,
Proc. of SPIE Vol. 6914, 691404, (2008)

1605-7422/08/$18 · doi: 10.1117/12.769010

Proc. of SPIE Vol. 6914  691404-1



By directly measuring the discrepancy of pixel intensities, Rousson and Deriche proposed to maximize the
L2-distance between the log-likelihood of two distributions defined by the interior and exterior regions of the
segmenting curve.16 Although a Gaussian assumption is made in their work, an extension to entire probability
distributions is straightforward. Interestingly, the metric proposed in this paper, when mapped to a linear space,
results in a similar energy.19 Using an information theoretic approach, mutual information between region labels
and image intensities has also been proposed. Recently, Freedman et. al introduce the Bhattacharyya distance
and Kullback-Leibler divergence for segmentation by maximizing the similarity between the density of a region
enclosed by a curve C and a known pdf that is learned a-priori .20 By relaxing the assumption of a-priori
knowledge, Rathi et. al derived a flow that optimally separates distributions via the Bhattacharyya measure.21

Although these measures are based on varying disciplines and are motivated by a specific problem, they can
be extended to a general class of densities. Moreover, as stated above, they can be applied to visual information.
However, we highlight and note that segmentation results are directly impacted by the type of similarity measure
used. From this, we introduce a new distribution metric for image segmentation. Based on prediction theory,
our intrinsic metric quantifies the “distance” between two density functions as the standard deviation of the
difference between the logarithms of the two density functions.19, 22 In previous work and similarly to that of
Freedman et al., we have proposed to match the distribution of the region interior to the segmenting curve
with that of known density (learned a-priori).23 However, the emphasis was for visual tracking. Specifically,
we incorporated the metric in the deformation functional of a particle filtering scheme.24 In this paper, we
relax the assumption of a-priori knowledge, and focus on the accurate segmentation of biological structures or
pathologies found in medical imagery. A qualitative comparison between the Bhattacharyya distance and our
newly proposed metric is then done to highlight the notion that similarity measures can not be applied equally
for image segmentation. In particular situations, one distribution metric may prevail while another measure may
be highly dependent on the initialization or statistical information. To the best of our knowledge, a qualitative
comparison of segmentation results has not been made.

This paper is organized as follows: In the next section, we provide a theoretical overview of our metric as
well as review certain distribution measures popularized by the computer vision community. In Section 3, we
incorporate the proposed metric within the GAC framework, and derive the corresponding curve evolution that
maximizes the distance between the region interior and exterior to the segmenting curve. Experimental results
are given in Section 4. We conclude with a summary in Section 5.

2. PRELIMINARIES

In this section, we provide a brief overview of the metric proposed for image segmentation as well as its com-
parisons to measures derived from the Fisher Information metric. In addition, we highlight interesting parallels
between certain classical distances between distribution and our new metric.

2.1 Metric based on Prediction Theory

Typically, we seek to maximize the distance of two distributions defined by a certain photometric variable so
as to identify the distribution that best characterizes an object or the foreground. To this end we motivate our
metric that quantifies (dis)similarity between spectral distributions using basic concepts of prediction theory. So
let f1(θ) and f2(θ), with θ ∈ [0, π], denote the power spectral densities of two discrete-time, zero-mean, random
processes ufi

k with i ∈ {1, 2} and k ∈ Z. The variance of the optimal, linear, one-step-ahead prediction error for
the process corresponding the density fi(θ) is

E{|ufi

0 − ûfi

0|past|2} = E{|ufi

0 −
∑

αfi

k ufi

−k|2} (1)

with k > 0. Here, αfi

k denote the coefficients that minimize the linear prediction error variance for the specific
fi(θ). Since we want to quantify dissimilarity between f1(θ) and f2(θ), we use f2(θ) to design a linear predictor
(i.e., coefficients αf2

k , k ≥ 0), and then compare how well this predictor performs when used to predict a
random process with spectral density f1(θ) against the optimal predictor for the corresponding process,
i.e., the optimal one that is based on f1(θ) instead of f2(θ). That is, we quantify the degradation of predictive
error variance for the case where the predictor is optimal for one process and then applied to the other. The
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degradation of predictive error variance turns out to be equal to the ratio between the arithmetic over the
geometric means of the fraction f1/f2, namely

ρ(f1, f2) :=
E{|uf1

0 − ∑k=∞
k=1 αf2

k uf1
−k|2}

E{|uf1
0 − ∑k=∞

k=1 αf1
k uf1

−k|2}
=

∫ f1(θ)
f2(θ)dθ

exp
∫

log f1(θ)
f2(θ)dθ

. (2)

The quantity ρ(f1, f2) can be viewed as analogous to “divergences” such as the Kullback-Leibler relative entropy
used in Information Theory. The differential form ρ(f, f +∆), for ∆ a “small” perturbation (i.e., neglecting third
order terms and above), gives rise to the following Riemannian metric on the cone of spectral density functions

gf (∆) :=
∫

χ

(
∆(x)
f(x)

)2

dx −
( ∫

χ

∆(x)
f(x)

dx

)2

. (3)

Geodesics turn out to be exponential families of distributions and geodesic distances can be computed in closed
form.19, 22 In fact, the geodesic distance provides the sought metric between distributions and this is given in
Equation (9), tailored for the level set framework of the present paper. It is interesting to note that geodesic
distances (as in Equation 9) are is insensitive to scaling and can be seen as giving rise to a “shape” comparator
(and hence, actually, a pseudo-metric).

2.2 Fisher Metric, Hellinger Discrimination, Bhattacharyya Distance

We now discuss and compare the Riemannian structure of the well-known Fisher information metric with the
structure of our metric that was proposed in the previous section. It is interesting to note that the Kullback-
Leibler divergence and the Fisher metric can be motivated in a manner completely analogous to our metric,
using a paradigm from source-coding instead of the degradation of predictive error variance that we saw earlier.
Thus, in the present context two probability distributions p1 and p2 are compared based on “coding efficiency”
of a design that is based on one of the two and then applied to a source generating symbols according to the
other distribution. More specifically, let P denote the finite dimensional probability simplex

P := {p(k) where k ∈ {1, ...., n}, p(k) ≥ 0,
∑

x

p(x) = 1}.

Figure 1b displays the 2-dimensional simplex as a red triangular surface in R
3. The optimal code-length for

independent symbols generated according to p1 ∈ P is precisely the entropy −∑
x p1(x) log(p1(k)) (e.g., see25).

Now, if the code is designed based on p2 while the symbols are generated according to p1, the degradation of
coding efficiency is given by the Kullback-Leibler (KL) divergence

K(p1, p2) :=
∑

k

p1(k) log(
p1

p2
). (4)

The differential form of the Kullback-Leibler divergence is a Riemannian metric known as the Fisher information
metric:

gfisher,p(∆) =
∑

χ

∆(k)2

p(k)
(5)

The mapping p(k) �→ u(x) :=
√

p(x) maps the probability simplex onto the (positive quadrant of the) sphere∑
χ u(x)2 = 1. This is exemplified in Figure 1 where the simplex (red triangular surface) is mapped onto the

blue spherical surface. Interestingly, under this map, the Fisher metric correspond to the Euclidean distance on
the surface of the sphere.26, 27 Thus, geodesics map onto great circles and the geodesic distance is precisely the
arclength on the sphere. The well-known Hellinger discrimination28

H(p1, p2) =
∑

χ

(√
p1(k) −

√
p2(k)

)2 (6)
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(a) (b)

Figure 1. (a) The map p �→ √
p for each point on the simplex (b) The simplex as a triangular red surface taken onto the

orthant of the blue spherical surface

as well as the famed Bhattacharyya distance29

B(p1, p2) =
∑

χ

√
p1(k)p2(k) (7)

can be directly related to the arclength and induce the same topology. Indeed, the Bhattacharyya distance is
precisely the cosine of the geodesic arc between the two image points under the mapping p �→ √

p. For continuous
random variable and probability density functions (as opposed to probability vectors) summation is replaced by
integration. In the next section we highlight the parallels between the two metrics.

2.3 Parallels and Comparison the Predictive metric and the Fisher metric

Given that we seek to measure the distance between two density functionals, it has been shown that the notion of
degradation of performance is a powerful tool in forming a measure of (dis)similarity. That is, the performance
that is measured when the wrong choice between the two alternatives is made. Moreover, both degradation
measures induce a Riemannian metric in the space of the respective distributions. However, the manner in which
the respective metrics penalize perturbations and distances are quite different as seen Table 1. Also, while the
p �→ √

p maps the probability simplex onto the sphere, the mapping f �→ log f takes the cone of spectral densities
into a linear space. In other words, we are able to map geodesics defined by our Riemannian metric into straight
lines. In doing so, one should note the connection with the popular energy functional proposed by Rousson and
Deriche. This can be now reformulated and is similar to that of the mapped version of our Riemannian metric,
in the linear L2 sense. However, our metric naturally incorporates a term that makes it scale-invariant and
a “shape recognizer” as noted earlier. Table 1 below highlights differences between the Fisher metric and the
metric proposed in this paper.

Type of Comparison Information-Based Metric Prediction-Based Metric

metric
∫

∆2

p

∫
(∆

f )2 − (
∫

∆
f ))2

mapping p �→ √
p f �→ log f

geodesic distance great circles logarithmic families

Table 1. Theoretical Comparison between the Fisher Information Metric and our proposed Metric

From the above table, it should be no surprise that segmentation results will indeed be different. In the next
section, we cast the geodesic distance as an energy functional in the GAC framework for image segmentation.

3. LEVEL SET FORMULATION OF PROPOSED SIMILARITY METRIC

We consider the problem of segmenting an image I. That is, we first assume the image is composed of two
homogeneous regions referred to as “Object” and “Background”. From this, the goal of segmentation is to
capture these two regions. To do so, we enclose a curve C, represented as the zero-level set of a signed distance
function φ : �2 → �, such that φ < 0 represents the inside of C and φ > 0 represents the outside of C. Our goal
is to evolve the curve C, or equivalently φ, so that the interior matches the Object and the exterior matches the
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Background. As a result, the curve C would then match the boundary of the curve ∂Ω separating the Object
and Background. The general minimization is performed by evolving C according to the flow:

∂φ

∂t
= ∇φEimage + λ · δ(φ) · div

( ∇(φ)
|∇(φ)|

)
(8)

where a regularization term is added to the image based energy. We now propose an energy functional based on
our metric discussed previously, and derive the corresponding partial differential equation (PDE) that describes
its curve evolution in the level set framework. Moreover, because our metric measures similarity or “distance”
as the standard deviation between the log-likelihood of two distributions, pin and pout, we seek to maximize the
following energy functional

Eimage(z, φ) =

√

E
{(

log
pin(z, φ)
pout(z, φ)

)2}
− E

{(
log

pin(z, φ)
pout(z, φ)

)}2

(9)

where E{f(z)} is the expected value of the functional f(z) with respect to the random photometric variable
z ∈ Z, and pin and pout are the pdf’s defined on the random variable z. In the present work, we restrict the
variable z to set of gray level values {1, 2, ..., 256}. Moreover, let I : �2 → Z be a mapping of the image defined
over the domain Ω, to the photometric variable z, and x ∈ �2 be the image coordinates. Then the pdf inside
the curve C can be formulated as such

pin(z, φ) =
∫

Ω

K(z − I(x))Hε(−φ)
Hε(−φ)

dx pout(z, φ) =
∫

Ω

K(z − I(x))Hε(φ)
Hε(φ)

dx (10)

where K(z − I(x)) is a specified kernel. For numerical experiments, we have used K(z − I(x)) = δε(z − I(x)).
Also Hε : R �→ {0, 1} denotes the smoothed Heaviside step function with the corresponding derivative δε. These
are both given as follows

Hε(φ) =

⎧
⎨

⎩

1 φ > ε
0 φ < −ε

1
2 (1 + φ

ε + 1
π sin(πφ

ε )) otherwise
δε(φ) =

{
0 φ > ε, φ < −ε

1
2ε (1 + cos(πφ

ε )) otherwise
(11)

The gradient ∇φT can be computed using the calculus of variations. Taking the first variation with respect
to φ, we arrive at the following PDE

∇φEimage = − δε(φ)
Eimage

· [E{B · G} − E{B} · E{G}] (12)

with B and G given as

B = log
pin(z, φ)
pout(z, φ)

G =
[(

1
Ain

+
1

Aout

)
− K(z − I(x))

(
1

Ainpin(z, φ)
+

1
Aoutpout(z, φ)

)]
(13)

Also noting that Ain is given by
∫
Ω Hε(φ)dx, Equation (12) is a PDE that describes the evolution of the curve C

that optimally maximizes the “distance” between the distributions which correspond to the exterior and interior
regions of segmenting curve.

4. EXPERIMENTS

In this section, we present experimental results obtained from evolving a curve C according to Equation (8).
Moreover, we provide a qualitative comparison between our metric and that of the result obtained with the
Bhattacharyya distance. This is done for segmenting the Kaposi Sarcoma, a pathology that infects the skin. We
also demonstrate our algorithm on segmenting medical structures and the classic image of a zebra.
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Figure 2. Case one of the Kaposi Sarcoma. Top Row: shows the evolution of a curve according to the Bhattacharyya
distance resulting in an unsuccessful segmentation. Bottom Row: Successful segmentation when using the proposed
similarity metric

4.1 Comparative Segmentation: Kaposi Sarcoma

Although various metrics and distributional functionals have been proposed for segmentation in the GAC frame-
work, a qualitative comparison to demonstrate the varying behavior has not been done (to the best of our
knowledge). The goal of this experiment is not to claim the ideal energy model for distinguishing between
two distributions, but to add our metric with differing properties to a general class of models discriminating
on probability densities. Hence, we would like show that with the same distribution, two different metrics can
provide drastically different results. Note, no smoothing or regularizing term is used in these comparisons, and
the results are obtained strictly on the energy describing the respective similarity measure.

In Figure 2, we demonstrate a segmentation comparison between the flow derived from the Bhattacharyya
distance and the similarity metric proposed in this paper. Note, the same initialization is used, and hence, the
same initial pdf’s. Here, the segmentation result obtained by discriminating distributions with the Bhattacharyya
distance fails to capture the infected portion of the skin. Moreover, it favors to segment an entirely different
region. However, an acceptable segmentation result is obtained by evolving the curve according to Equation
(12). Initial, intermediate, and final segmentation results are shown.

On a different case of the Kaposi Sarcoma, Figure 3 shows that the Bhattacharyya distance is again unable to
capture the infected portion of the skin while the metric used in this paper results in a successful segmentation.
From these experiments, we believe (without proof) that a major qualitative difference between the metric
proposed and the Bhattacharyya distance, is the ability to capture objects under low contrast. As present in
both of the Kaposi Sarcoma images, the infected portion’s gray-scale intensity is not entirely different from the
region surrounding it, when compared to region exterior of the initial curve. This will be a subject of future
work. Several stages of the segmentation are given.

4.2 Segmentation Results: Medical Structures, Classic Zebra

In this section, we test our region-based segmentation model on several images, which further demonstrates the
viability and possible advantage of our distribution metric for image segmentation. A common example that is
often tested with energy models that discriminate on probability distributions is the zebra image. The goal here
is to capture the entire zebra by separating the distributions so as to obtain a bimodal “Object” with a unimodal
background. We note that several segmentation methods have been able to capture this image. However, for
the sake of completeness, we show results in Figure 4. Stages of the segmentation are shown along with the
corresponding plots of the probability distributions.

Segmenting biological structures from medical images is often a challenging task. This is due to the inherent
inhomogeneous distribution of a photometric variable as well as the low contrast and noise (as seen in the Kaposi
Sarcoma). In the remaining examples, we segment both the corpus callosum and an MRI image of a heart.

Proc. of SPIE Vol. 6914  691404-6



L
i :

Figure 3. Case two of the Kaposi Sarcoma. Top Row: shows the evolution of a curve according to the Bhattacharyya
distance resulting in an unsuccessful segmentation. Bottom Row: Successful segmentation when using the proposed
similarity metric

With different types of initialization, including small seed points used for the corpus callosum, we are able to
capture the finer details as shown in Figure 5. It should be noted that without discriminating on the entire
probability distribution (e.g., making a Gaussian assumption), one would not be able to segment the corpus
callosum. Finally, in Figure 6, we demonstrate our algorithm by segmenting an MRI image of a heart with a
different type initialization compared to other initializations seen in this paper.

5. CONCLUSION

In this paper, we introduce a new metric for image segmentation that quantifies the “distance” between two
distributions as the standard deviation of the difference between logarithms of those densities. While several
metrics and measures have been proposed for image segmentation, results often vary drastically. Specifically,
although separating distributions using the Bhattacharyya distance as a measure has resulted in the successful
segmentation on some challenging imagery, in other cases such as the Kaposi Sarcoma, the Bhattacharyya -
based algorithm fails to capture the infected portion of the skin while the energy model proposed in this paper
results in a successful segmentation. The differing segmentation results can be traced to how the respective
metrics penalize perturbations on a manifold of distributions. Thus, a subject of future work is to investigate
and clarify how differences in metrics affect segmentation.
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