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ABSTRACT 

During investigations of potential child and elder abuse, clinicians and forensic practitioners are often 
asked to offer opinions about the age of a bruise. A commonality between existing methods of bruise aging 
is analysis of bruise color or estimation of chromophore concentration. Relative chromophore concentration 
is an underlying factor that determines bruise color. We investigate a method of chromophore concentration 
estimation that can be employed in a handheld imaging spectrometer with a small number of wavelengths. 
The method, based on absorbance properties defined by Beer-Lambert’s law, allows estimation of 
differential chromophore concentration between bruised and normal skin. Absorption coefficient data for 
each chromophore are required to make the estimation. Two different sources of this data are used in the 
analysis- generated using Independent Component Analysis and taken from published values.  Differential 
concentration values over time, generated using both sources, show correlation to published models of 
bruise color change over time and total chromophore concentration over time. 

Keywords: Methods: feature extraction, Modalities: optical imaging, Diagnostic Task: detection 

1. INTRODUCTION 
We are motivated in this effort by a demonstrated need to improve the identification of bruises from elder 
and child abuse. During investigations of potential child and elder abuse, clinicians and forensic 
practitioners are often asked to offer opinions about the extent and age of a bruise. Visual inspection in vivo 
and photography of bruises are two conventional methods employed in clinical practice1, 2. However they 
are qualitative, subjective, inaccurate and hence unreliable. Spectroscopy has emerged in the field and has 
shown improvements in the reliability of bruise aging3, 4.  

The spectral response of the normal and diseased skin can be analyzed for hidden variables such as 
erythema index, oxygen saturation, dermal blood volume, and concentration of various chromophores in 
the skin3-7. Point spectrometers measure spectral response as a single point on the body. By taking multiple 
measurements in a localized area, one can create a distribution map of the chromophores. However, in 
clinical practice, point spectroscopy may be too time consuming and tedious to create a distribution map of 
the chromophore concentrations8. For this reason, a system that can capture an area of tissue is more 
clinically appropriate. 

The distribution of chromophores is indicative of important information about the bruise, such as source of 
trauma and age of the bruise3, 9. Recently, research has been done using spectrophotometry to create 
distribution maps of chromophores in skin. Spectrophotometers yield images in which the spectral response 
at each pixel pertains mainly to the skin directly underneath that pixel. With these images, spectral analysis 
can be applied over a broad area of tissue with a single measurement. Vogel et al have used a 4 wavelength 
spectral imaging system to create chromophore concentration maps of Kaposi-Sarcoma lesions6. This work 
demonstrated the ability to show oxygen saturation and blood volume. Tsumura et al have demonstrated the 
ability to create hemoglobin and melanin maps from color photos of human skin10. Work by Sprigle et al 
has shown the capability to create contrast-enhanced images of erythematic skin11, which is closely related 
to chromophore concentration maps. 



Existing methods of bruise aging share a commonality, the analysis of bruise color or chromophore 
concentration. Changes in bruise color are attributed to the breakdown of hemoglobin into by-products 
which include biliverdin, bilirubin, and hemosiderin1, 3. Each of these chromophores has a unique spectral 
response. As hemorrhaging ceases and hemoglobin breakdown commences, relative chromophore 
concentrations change. This results in a spectral response that influences observed bruise color. There are 
however other factors that influence bruise color such as melanin concentration and skin thickness. 

The goal of our project is development of a point-of-care imaging device for the visual enhancement and 
aging of bruises. We have employed an 11-wavelength multi-spectral imaging system to investigate 
methods for enhancing and aging bruises. Using our system we collected images of clinical bruises for 
analysis. We chose to investigate the breadth of clinical bruises rather than induced bruises. This presented 
us with bruises of different etiologies and location than we would see in induced bruises. 

In this paper, we investigate a method for bruise aging, specifically, chromophore concentration estimation 
that can be employed in a handheld imaging spectrometer with a small number of wavelengths. The method 
is capable of giving differential chromophore concentration estimates without measuring incident light. 
Using the method along with a model of differential concentration versus bruise age, we hope to be able to 
estimate the age of a bruise.  

2. METHODS 
Residents of an extended care facility and students and staff of our lab were recruited for the study. Ages 
ranged from 19-86. Subjects were divided into two groups consisting of subjects younger than 65 years of 
age and subjects at least 65 years of age. We chose this criterion to be consistent with work by Langlois and 
Gresham, which demonstrated a significant difference in the development rate of yellow between the two 
groups2. Subjects of the younger group had much more consistent bruising patterns and time to resolution 
than did the subjects of the elder group. Because the accuracy of the reported bruise onset date was deemed 
unreliable within the elder group, only bruises from subjects younger than 65 years of age are analyzed in 
this paper. The analyzed dataset consists of 58 images from 12 bruises. 

Most bruises were imaged on several different occasions after discoloration was reported. Bruise location 
was often marked with surgical marker so that we could image the same spot on different occasions. For 
most of the bruises, the first images were taken after the first twenty-four hours. Bruises occurred within 
everyday life (i.e. we did not induce any of the bruises), which meant we were unable to image the bruises 
until visible discoloration was perceived. This also meant the etiology and location were uncontrolled. 
Some subjects had multiple bruises imaged during the course of this study.  

2.1 Multi-spectral imaging system 

A rotating filter wheel style imaging system collected data for this research (Figure 1). The imaging system 
was mounted on a tripod and could be transported to location of the subject. The sensor for the system was 
a Unibrain Fire-i™ CCD camera (Unibrain, S.A., resolution 640x480pixels, 8-bit grey-scale per pixel). 
Located in front of the camera was the rotating motorized filter wheel, which could accommodate 12 
filters. The system was fit with 11 bandpass filters (FWHM: 10nm~40nm) with center wavelengths in the 
range of 370-970nm. One filter position was left open to get a wideband reference image. The filters 
targeted the absorption peaks and isobestic points of the primary chromophores of blood and skin.  
Multispectral images were acquired by sequentially changing filters in front of the camera lens resulting in 
a series of images – an image cube.  



  
 Figure 1: The spectral imaging system. The filter wheel and illumination are visible. The camera is 

located behind the left side of the filter wheel.  

A rectangular arrangement of four 40-watt halogen bulbs provided illumination. The camera was centered 
in the arrangement. This lighting system provided adequate lighting in the 415-970 nm wavelength range; 
however the power output at wavelengths below 415nm was not sufficient. Measurements at wavelengths 
below 415 were not used in this study because the signal to noise ratio was too low. 

The illumination system had a non-uniform spectral power distribution across the wavelengths of interest, 
thus the gain and shutter speed of the camera were adjusted on an individual wavelength basis. Gain and 
shutter speed were also adjusted on a subject basis, with the intention of maximizing the dynamic range in 
the resultant images. The system was controlled using custom in house software written in LabVIEW 
(National Instruments Corp. Austin, TX). Information about the bruise such as onset date, location, subject 
age, gender, and skin color were recorded by the software. For more information about the imaging 
procedure see our previous publication12. 

2.2 Image preprocessing 

Multispectral images were preprocessed before analysis. The first step was cropping the image to include 
only areas of skin surrounding the bruise. This promoted good curvature correction because discontinuous 
surfaces were excluded from curve fitting. The second step was correction of shading due to surface 
curvature. This was done by fitting a quadratic surface to the cropped intensity image. The fitted surface 
was normalized so that its maximum value is one. The cropped image was then corrected for shading 
artifacts by dividing by the fitted surface.  

We fit a quadratic surface to the cropped image using the lsqcurvefit function in MATLAB’s Optimization 
Toolbox (The Mathworks, Inc.). The use of a quadric allowed us to fit second order curvature and was 
robust to images where the main axes of curvature did not align with the x- and y-axes of the image. This 
method of curve fitting required us to exclude any bruise pixels from the procedure. We hand selected a 
rectangular region of pixels that fully encompassed the bruise. These pixels were excluded from the fitting.  

In some situations it may be more appropriate to reduce the human input in processing or to maximize the 
number of pixels used for fitting. For this we have devised a minimum entropy curvature correction 
technique based on Likar et al 13; however this method is not used in this paper. 



 
Figure 2: Cropped image (left) versus curvature corrected cropped image (right). The curvature correction 

procedure was able to remove the first and second order shading artifacts. Higher order shading artifacts are 
still apparent in the curvature image. 

Region-of-interest (ROI) selection was also included in the preprocessing stage. A rectangular region, B, of 
pixels in the bruised skin was selected as the Bruise ROI. Four rectangular regions of adjacent normal skin, 
N1-4, were selected as the Normal Skin ROI. For this work, values were averaged over B and N, thus the 
native registration accuracy of the multispectral image sufficed allowing us to omit any additional 
registration. For creation of chromophore maps, registration with sub-pixel accuracy is required. This has 
proved to be somewhat difficult with the current imaging system due to slight subject movements and 
optical aberrations. Concurrent research has developed technology for capturing a 4-wavelength spectral 
image simultaneously14.  

2.3 Analysis 

We previously introduced the notion of normalized bruise reflectance (NBR) values12. NBR values are 
calculated by dividing the mean pixel value of B by the mean pixel value of N. According to Beer-
Lambert’s law, the negative log of the calculated NBR is equal to the absorbance difference, Ad, between 
the bruised skin and normal skin (eq 1).  

 Ad = Ab − An = −log NBR( )    (1) 

The Beer-Lambert law asserts that total absorbance is the sum of absorbance from each of the constituent 
absorbers (eq 2). Absorbance due to each absorber is the product of the absorption coefficientα  of the 
absorber, the path length (l) the light travels through the absorber, and the concentration (c) of the absorber. 

 A = α ilicii∑     (2) 

Absorbance, absorption coefficient, and path length are all a function of wavelength. We can state equation 
2 formally as equation 3. For the rest of this paper we will use the syntax of equations 2 and 3 
interchangeably.  

 ( ) ( ) ( )∑= i iii clA λλαλ  (3) 

We employ a simple skin model in which the chromophores are uniformly distributed within each layer of 
skin. This is not an uncommon assumption6. We also assume that the mean path length does not change as 
a function of chromophore concentration, thus we have a constant path length between normal skin and 
bruised skin. Skin thickness varies as a function of body site, however we will also assume that because of 
the proximity of B and N, the skin thickness between does not vary. Using this model, we put Ad in terms 
of the concentration difference of each absorber in eq 4.  

 Ad = Ab − An = α ili cib − cin( )
i∑ = α ilicidi∑    (4) 



cib is the concentration of chromophore I in the bruised skin. cin is the concentration of chromophore i in 
normal skin. cid is the difference in concentration of chromophore i between bruised and normal skin.  

2.3.1 Calculating differential concentration levels 

To calculate differential concentration levels, we set up a system of equations X=MS. X contains the 
differential absorption values for each wavelength,λ , for each measurement in our data set; this is our 
observed data. Columns of X correspond to wavelengths,λ1throughλ11. Rows of X correspond to different 
measurements (spectral images) I1 through Im, each of which represents a bruise on a subject at a certain 
age.  
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S contains the values of the absorption coefficients for each absorber at each wavelength. These are our 
source signals.  As in X, columns of S correspond toλ1throughλ11. Rows of S correspond to the different 
absorbers.  
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M is the mixing matrix, and demonstrates how the source signals mix to get X. Contextually, M represents 
the differential concentration and path length of each of the chromophores for each measurement. Since we 
are not separating the differential concentration and path length values in this work, we will just take the 
contents of M as differential concentration. By setting up a system of equations (eq 7), we can solve for M. 
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2.3.2 Source signals 

We generate S in two different ways. This must be done before we can solve for M. The first way is by 
independent component analysis (ICA), using a method similar to Polder15. ICA is a form of source signal 
separation that estimates source signals and the mixing matrix given the observed signals. In general, the 
discovered independent components can be interpreted as underlying causes of observations, especially 
when one believes that: (1) observed features are generated by the interaction of a set of independent 
hidden random variables, and (2) these hidden variables are likely to be kurtotic (i.e. each variable is 
discriminative and sparse). ICA has-been used in a variety of blind source separation problems including 
audio source separation16, image segmentation17, and fMRI of the brain18. In this work we used a highly 
efficient version of the ICA algorithm, FastICA19. FastICA can be called with numerous parameterizations. 
We used a deflation estimate approach with the g(u)=u^3 "pow3" contrast function. Convergence was 
estimated using epsilon (0.0001) threshold difference in the separating matrix. 

The other method of generating S is the use of published absorption coefficient curves4, 20. We generated S 
with absorption coefficient data for deoxygenated-hemoglobin (Hb), oxygenated-hemoglobin (HbO2), and 
bilirubin. We also generated S with absorption coefficient data for just Hb and bilirubin. Work by 
Randeberg suggests that Hb and bilirubin are the two chromophores that are most important in bruise 
aging3. 

The method of calculating M is dependent on how S is generated. When FastICA generates S (S-ICA), M 
is generated simultaneously. When using published absorption coefficient data for S (S-trio and S-
sansHbO2), we generate M by finding the least squares solution with MATLAB. 



3. RESULTS AND DISCUSSION 
3.1 Sources from ICA 

Prior to estimating the independent components (ICs), FastICA will apply principle component analysis 
(PCA) to reduce the dimensionality of the data. The number of dimensions reduced to is user defined; we 
specified it to be 3 in order to fit a model where the absorbers were Hb, HbO2, and bilirubin. These first 3 
eigenvectors account for 88.9% percent of total variance in the data. Figure 3 shows the variance accounted 
for by the top k eigenvectors. The shape of this curve indicates that there may be more than 3 natural 
dimensions in the data; however the use of more dimensions does not fit our physiological model. 
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Figure 3: Total variance in the data set represented in the top k eigenvectors. 

The number of ICs produced by FastICA is also user defined. Again, we specified 3 ICs to fit our 
physiological model. The resulting ICs are plotted with the published normalized absorption coefficient 
curves in Figure 4. It should be noted that the curves are normalized to 1, with the exception of the Hb 
curve which is normalize by the same factor as the HbO2 curve to preserve the isobestic points. Curves are 
normalized to show shape rather than absolute value because ICA is insensitive to scaling. For that same 
reason, curves may be flipped over the x-axis.  
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Figure 4: Source signals (IC1, IC2, IC3) estimated by ICA plotted with normalized absorption coefficients. 

The ICs plotted in Figure 4 are results of FastICA run on the dataset. However, FastICA did not always 
converge on the same result. This is in part due to the fact that the algorithm begins with a randomize 
estimate of the unmixing matrix. Depending on the initial estimate, FastICA can produce different results. 
In the case of the results presented in Figure 4, all of them seem to have a ``notch'' feature between 540 and 
577, which is characteristic of the HbO2 curve. This seems to indicate a residual source that is not 



separated, but rather diffused among each of the three sources (i.e. there seem to be more than three sources 
in the data). A physiological model for bruise aging with more than three sources may factor in biliverdin 
and hemosiderin.  

Estimates of the differential concentration given in the mixing matrix M produced by FastICA are plotted 
in Figure 5. This graph shows data for all subjects. There is a high amount of variation in this data, which 
indicates a weakness of creating an aging model by correlating these results with the ages of naturally 
acquired bruises. 

 

ICA Results: Differential Concentration Plotted Against Bruise Age
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Figure 5: Differential concentration for the three estimated path length versus age of the bruise. All subjects.  

There are some patterns that are visible in the plot. The values exhibit high variance around the lower 
bruise age. As bruise age increases the variance appears to shrink and the concentration tends to zero. High 
variance in the younger bruises can partially be accounted for by varying etiology and location of the 
bruises. IC3 appears to exhibit concentration change characteristic of bilirubin. The concentration rises for 
the first few days and then begins to fall after approximately day 10. The peak concentration of bilirubin is 
said to occur between day 6 and day 12, which almost matches with our data. Furthermore, the shape of 
IC3 (Figure 4) most closely matches the absorption coefficient curve of bilirubin.  

3.2 Sources from published absorption coefficients 

Estimation of M using published absorption coefficient curves was done for two different sets S-trio and S-
sansHbO2. S-trio was composed of absorption coefficients for Hb, HbO2, and bilirubin. S-sansHbO2 was 
composed of Hb and bilirubin. HbO2 was left out of the second set because we do not expect to see much 
extravascular HbO2 after the initial stages of bleeding, and most of our data was collected 24 hours or more 
after trauma. Melanin is not included in either of the sets because our skin model suggests that there will be 
no difference in melanin concentration or path length between the bruised and normal skin.  

The differential concentration values for all subjects (from M) are plotted as a function of bruise age for S-
sansHbO2 (Figure 6). Figure 7 contains this data plotted for four individual bruises: A, B, C, and D.  



 

Differential Concentration Plotted Against Bruise Age
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Figure 6: Differential concentration for S-sansHbO2, plotted for all bruises. As age increases, differential concentration 

changes eventually tending back to zero as the bruise resolves. 
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Bruise C
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Figure 7: Differential concentration and path length for S-sansHbO2. Bruise C has 2 data points that fall out of the 
range of the chart. 

The differential concentration plot for all bruises shows high variance, but it also shows general trends. Day 
1 (24-48hours after the trauma event) was the first day the majority of the bruises were imaged. We see a 
spread of values for differential concentration of Hb for the first few days. Then, with the exception of a 
few outliers, the differential concentration tends to zero at the end of the second week. According to 
Langlois, bleeding may continue for 24-48 hours after the trauma event2. This would result in a maximal 
concentration of Hb and HbO2 in that period, which agrees with what we see. Degradation of Hb occurs 



slowly over a matter of days. Bilirubin, a breakdown product of Hb, begins to form several hours after 
trauma. Yellow color, produced by bilirubin, has been reported to peak in the range of 6 to 12 days after 
trauma1, 2. The differential concentration of bilirubin appears to increase until it peaks between day 4 and 8, 
and then it decreases with time. Strangely, the data also shows a spike in hemoglobin concentration around 
day 19. This is unexplained by bruising models but the spike appears to be primarily the result of a single 
bruise. The presence of bruising after two weeks contrasts the published aging models, which define 
resolution after 2 weeks. The bruises we saw that lasted longer than two weeks may be outliers, but they 
also demonstrate the variations in clinical bruising. 

Data for the individual bruises (Figure 7) does not clearly demonstrate the trends in shown by the complete 
group. For Bruise A, the differential concentration of Hb and bilirubin are both high at day 7, the first day 
of imaging. The concentration of both chromophores drops to zero as the bruise age approaches two weeks. 
Bruise B exhibits the same pattern as bruise A, although overall the concentration levels are lower on B. 
Bruise A and B are from the same subject which may contribute to the similar aging pattern. Bruise C was 
imaged over most of its lifetime. It has high a differential concentration of bilirubin from 3 to 10 days and 
lower concentration outside this period. The differential concentration of Hb in this bruise exhibits strange 
patterns which do not agree with bruising models. Bruise D exhibits an over all trend of concentration 
levels falling to zero, yet it has some abnormal features. This bruise lasted almost one month before 
resolution, which exceeds the published duration of bruising. On day 19, the bruise was imaged three times 
with slight changes in the imaging setup. The variation in calculated differential Hb concentration levels for 
that day, demonstrates the sensitivity of this method to changes in data collection and processing. It is also 
interesting to note that the calculated bilirubin concentration does not vary to the same extent as Hb. 

When we solve for differential concentration using the three source model, S-trio, different results appear.  
The differential bilirubin concentration keeps a similar shape as with S-sansHbO2 but the real difference is 
in the concentration levels of Hb. Differential concentration of Hb as a function of bruise age keeps a 
similar shape, but the values are a magnitude of order higher than with S-sansHbO2. The concentration of 
HbO2 is on the same order of magnitude as Hb, but the values are negative. This might suggest that the 
absolute levels of HbO2 are lower in bruised skin than in normal skin, although there is no other evidence 
to support this.  

4. CONCLUSION 
A technique for estimating differential concentrations of bruise chromophores was presented in this paper. 
The technique can be employed in a multispectral imaging system employing a small number of 
wavelengths. We used 10 wavelengths in our analysis, but the technique would allow use of as few 
wavelengths as there are chromophores. Using more wavelengths results in an over determined system. 

Differential concentration as a function of bruise age appears to correlate with published bruise aging 
models. However, the high amount of variance in conjunction with the small data set used does not bode 
well for creating an aging model from this data.  

We have refined our data collection system since the end of data collection for this study. These changes 
include addition of an achromatic lens, higher quality filters, and a cross-polarization illumination system 
to eliminate specular reflection from our captured images. We hope to collect a larger dataset with this 
system for later analysis. 

The bruises within this data set occurred naturally so varied in location, cause and size and demonstrated 
high variability. We will continue to work over the breadth of clinical bruises to capture the different 
etiologies and location of bruising. This variability needs to be accounted for when generating aging 
models. 

We also hope to improve the analysis in future work. Application of a light path length model and a more 
advanced skin model may improve and give more meaning to the results. Models which depend on subject 
skin thickness may require extra instrumentation such as ultrasound for skin thickness measurement. 
Additionally, ultrasound has potential for characterization and aging of bruised tissue.  

This work also demonstrates the use of ICA for human bruise characterization. Although the application of 
ICA in this study did not give us extraordinary results, it should not be taken as an indication of ICA’s 
applicability in this field. Polder et al has already demonstrated the ability to recover the absorbance 



coefficients of the two main chromophores in tomatoes15. Tsumura has demonstrated the ability to extract 
melanin and hemoglobin distribution maps in human skin using ICA10. Some factors that may have 
contribute to the results we saw may be noise or presence of another source. Also, better results may be 
obtained through tuning the parameters of FastICA. 

REFERENCES 

1. Dimitrova, T., et al. Qualitative visual image analysis of bruise age determination: A survey. in 
Proc of the 28th IEEE EMBS Annual International Conference. 2006. New York City, USA. 

2. Langlois, N.E. and G.A. Gresham, The ageing of bruises: a review and study of the color changes 
with time. Forensic Sci Int., 1991. 50: p. 227-238. 

3. Randeberg, L.L., et al., A novel approach to age determination of traumatic injuries by reflectance 
spectroscopy. Lasers in Surgery and Medicine, 2006. 38(4): p. 277-289. 

4. Randeberg, L.L., Diagnostic applications of diffuse reflectance spectroscopy, in Department of 
Electronics and Telecommunications. 2005, Norwegian University of Science and Technology: 
Trondheim. p. 62. 

5. Nishidate, I., Y. Aizu, and H. Mishina, Estimation of Absorbing Components in a Local Layer 
Embedded in the Turbid Media on the Basis of Visible to Near- Infrared (VIS-NIR) Reflectance 
Spectra. Optical Review, 2003. 10(5): p. 427-435. 

6. Vogel, A., et al., Using noninvasive multispectral imaging to quantitatively assess tissue 
vasculature. J Biomed Opt, 2007. 12(5): p. 617-36. 

7. Sowa, M.G., et al., Spectroscopic assessment of cutaneous hemodynamics in the presence of high 
epidermal melanin concentration. Clin Chim Acta, 2002. 317(1-2): p. 203-12. 

8. Stamatas, G.N., C.J. Balas, and N. Kollias. Hyperspectral image acquisition and analysis of skin. 
in Proceedings of SPIE: Spectral Imaging: Instrumentation, Applications, and Analysis II. 2003: 
SPIE. 

9. Randeberg, L.L., et al. Hyperspectral imaging of bruised skin. in Proc. SPIE Vol. 6078: Photonic 
Therapeutics and Diagnostics II. 2006. 

10. Tsumura, N., et al. Mapping pigmentation in human skin by multivisible-spectral imaging by 
inverse optical scattering technique. in IS&T/ SID's 8th Color Imaging Conference, Color 
Science, Systems. 2000. 

11. Sprigle, S., L.W. Zhang, and M. Duckworth, Detection of Skin Erythema in Darkly Pigmented 
Skin Using Multispectral Images. Advances in Skin and Wound Care, 2008. In Press. 

12. Sprigle, S., et al. Multispectral image analysis of bruise age. in Medical Imaging 2007: Computer-
Aided Diagnosis. 2007. San Diego, CA, USA: SPIE. 

13. Likar, B., et al., Retrospective shading correction based on entropy minimization. J Microsc, 2000. 
197(Pt 3): p. 285-95. 

14. Kong, L., et al. Handheld erythema and bruise detector. in Medical Imaging. 2008. San Diego, 
CA, USA: SPIE. 

15. Polder, G., G.W.A.M. van-der-Heijden, and I.T. Young, Tomoto sorting using independent 
component analysis on spectral images. Real-Time Imaging, 2003. 9: p. 253-259. 

16. Bell, A.J. and T.J. Sejnowski, An information maximization approach to blind separation and 
blind deconvolution to blind source separation and blind deconvolution. Neural Computation, 
1995. 7(6): p. 1129-1159. 

17. Bell, A.J. and T.J. Sejnowski, The independent components of natural scenes are edge filters. 
Vision Research, 1997. 37: p. 3327-3338. 

18. McKeown, M.J., et al., Analysis of fMRI data by blind separation into independent spatial 
components. Human Brain Mapping, 1998. 6: p. 160-188. 

19. Hyvarinen, A., Independent component analysis in the presence of gaussian noise by maximizing 
joint likelihood. Neurocomputing, 1998. 22: p. 49-67. 

20. Zijlstra, W.G., A. Buursma, and O.W.v. Assendelft, Visible and Near Infrared Absorption Spectra 
of Human and Animal Haemoglobin: Determination and Application. 2000, Utrecht: VSP. 

 
 


