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ABSTRACT

The level set framework has proven well suited to medical image segmentation!  thanks to its ability of balancing
the contribution of image data and prior knowledge in a principled, flexible and transparent way. It consists
of evolving a curve toward the target object boundaries. The curve evolution equation is sought following
the optimization of a cost functional containing two types of terms: data terms, which measure the fidelity of
segmentation to image intensities, and prior terms, which traduce learned prior knowledge. Without priors many
algorithms are likely to fail due to high noise, low contrast and data incompleteness. Different priors have been
investigated such as shape! and appearance priors.” In this study, we propose a simple type of priors: the area
prior. This prior embeds knowledge of an approximate object area and has two positive effects. First, It speeds
up significantly the evolution when the curve is far from the target object boundaries. Second, it slows down
the evolution when the curve is close to the target. Consequently, it reinforces curve stability at the desired
boundaries when dealing with low contrast intensity edges. The algorithm is validated with several experiments
using Magnetic Resonance (MR) images and Computed Tomography (CT) images. A comparison with another
level set method illustrates the positive effects of the area prior.
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1. INTRODUCTION

Active contour/level set segmentation methods, which use an active curve to delineate the target object bound-
aries, have been generally effective. The curve evolution equations are derived from the optimization of a global
objective functional. The level set representation of an active curve'# yields numerically stable and efficient algo-
rithms. It handles automatically topological changes of the evolving curve and yields an implicit representation
of the corresponding region membership and boundary, which removes the need of complex data structures. Sev-
eral studies have shown that the variational, active contour/level set formalism can lead to effective algorithms
to solve many vision problems such as tracking,'® motion estimation,'” and 3D interpretation,'® as well as many
medical image analysis problems.!™® This formalism is well suited to medical image segmentation because it
can balance the contribution of image data and prior knowledge in a principled, flexible and transparent way.
Level set methods are commonly based on the optimization of an objective functional which contains two types
of terms: data terms, which measure the fidelity of segmentation to image intensities, and prior terms, which
traduce prior knowledge learned from a set of relevant images and segmentation examples. Data terms can
be divided into two categories: region-based® %11 and contour-based data terms.'?1'® In this study, we use a
contour-based data term in conjunction with a new simple prior: tha area prior. The latter embeds knowledge of
an approximate object area (size). As we will show in the experiments (section 4), the area prior has two positive
effects. First, It speeds up significantly the evolution when the curve is far from the target object boundaries.
Second, it slows down the evolution when the curve is close to the target. This reinforces curve stability at the
desired boundaries when dealing with low contrast intensity edges.

The remainder of this paper is organized as follows: In the next section, we give the necessary background
to introduce the proposed method. In section 3, we define an area prior and derive the corresponding level set
curve evolution equation. In section 4, we describe representative experiments and comparisons with Magnetic
Resonance (MR) images and Computed Tomography (CT) images.
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2. BACKGROUND

Let I : Q C R? — R be an image function. Consider a closed planar curve f(s) : [0,1] — Q parameterized by s.
A contour-based data term is commonly expressed in terms of the image gradient!? 1%

—

Fo(F.1) = f o(I(s))ds (1)

where function g is generally given by

1
I =— —— p=1,2 2
g(I) Ve, Pl (2)
and G, is the Gaussian kernel with standard deviation o
1 :c2 2
Go(z,y) = —e_l 15" ‘7(x,y) e (3)

The evolution equation of T is obtained by minimizing Fp (T, 1) with respect to I'. Function g(I) attracts T’
toward high gradients of intensities, i.e., toward the boundaries of segmentation. In order to speed up the curve
evolution, a weighted area term, A,, can be added to (1) as follows'?

Fooa (F.1) = ]f

r

o(I(s)ds + p / o(I(x))dx (4)

RS
T
—_—
Agy: Weighted area term

Where RS denotes the region outside curve . Coefficient 1 can be positive or negative, depending on the initial
position of the curve. Suppose that the initial curve is inside the target object. In this case, a positive value
of p corresponds to decreasing the area outside f, and consequently speeds up the evolution toward the desired
boundaries. When the initial curve is outside the target object, u should be negative.

Contour-based data terms have been widely used in general-purpose image segmentation'?1® and in many

important applications such as in medical image analysis.! However, relying on the sole contribution of the
data term might be insufficient when dealing with low contrast (small intensity gradient), blurry edges, and
high noise. In such cases, function g(I) is weak and models (1) and (4) are likely to fail in stopping the curve
at the sought boundaries. In section 4, we will show an example where the curve evolution fails in segmenting
the target object with model (4). Prior knowledge is essential to overcome high noise, low contrast and data
incompleteness. Different priors have been investigated such as shape® and appearance priors.” In this study,
we investigate a simple type of priors: the area priors. In the next section, we will define an area prior and
briefly discuss the positive effects of such a prior.

3. THE PROPOSED AREA PRIOR

We propose to embed an area prior in functional (4) as follows

2
Foaa 1) =  o1(6)ds + 5 ( [ i A,,> n [ a)x o)

P

Area prior Ag

where Rg is the region inside curve r , and A, is an approximate prior value of the target object area (size). For a
given class of images or for a specific application, .4, is determined over a set of relevant images and segmentation
examples. We assume that for a given application, the area of the target object does not vary much from an
image to another. This assumption is valid in many medical image segmentation problems because we have
generally to deal with a particular organ or structure. For instance, the variation of the spine area over different
MR images is small. To understand the effect of the area prior in (5), we assume without loss of generality that
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the initial curve is inside the target object (u should be positive). In this case, the outward motion of [’ decreases
both the area prior and the weighted area A,. This speeds up significantly the evolution when the curve is far
from the target object boundaries. When curve [ is close to desired boundaries, the area prior approaches zero
and the second term in (5) (the product of the area prior and A,) becomes close to its global minimum (zero).
This slows down significantly the evolution to stabilize the curve at the desired boundaries. In the experiment
section, we will illustrate those positive effects of the area prior by comparisons with model (4).'2

3.1 Level set representation of T

A level set implementation'# of curve evolution consists of representing curve r implicitly by the zero level set
of a function u : Q € R? — R, ie., T is the set {u = 0}. The region inside T’ corresponds to u < 0, and
the region outside r corresponds to u > 0. The level-set representation has well-known advantages over an
explicit discretization of r using a number of points on the curve. It handles automatically topological changes
of the evolving curve-T' may split and merge while u remains a function-and can be effected by stable numerical
schemes.!* Using the level set representation in functional (5), we obtain

Fia,a,(u,1) = /Q 9(1)3w) Vuldx + 5 (/ H(u)dx — A >u /Q g(D)H(~u)dx (6)

Area prior Ag

where H is the Heaviside function and ¢ is the Dirac function.

3.2 The obtained level set evolution equation
The level set evolution equation minimizing Fp 4,4, (u, I) is obtained by embedding u in a one-parameter family

of functions: u(x,t): @ x Rt — R, and solving the partial differential equation (PDE)

du(x,t) _ O0Fp.a,.a,(ul)
ot ou

(7)

The functional derivative of Fp a,.4,(u, ) with respect to u is obtained using the standard calculus of the
Euler-Lagrange equation. This leads to the following evolution equation

ou(x,1)

L 5(u)div< (I )Ig ) + gl )5(u)% (/ H(u)dx—Ap>2
- u [t dx(/H Jix 4, ) 3w ®)

In practice, the Heaviside and Dirac functions in the evolution equation are commonly smoothed according to?

lifz>e€
H(z)=4q 0if z < —¢
1+ 24 Lsin(Z2)]if 2] <€

de(2) = H{(2)
where € > 0.

4. EXPERIMENTS AND COMPARISONS

We applied the method successfully to several MR images and CT images. We first show a representative result
of detecting vertebral bodies in MR images of the spine. This task is still challenging due to the poor contrast
between the bones and the surrounding tissue. Very few investigations have addressed this task.'® To illustrate
clearly the positive effect of the area prior, we show an example where our method succeeds in detecting the
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vertebral bodies in a spine image while the method in'? fails. We show in Figure 1 results with our method,
i.e., with the area prior (first line), and with the method in,'? i.e., without the area prior (second line). The
same initialization (Figure 1 a) and parameters are used for both algorithms. The approximate object size is
estimated over several spine images. At iteration 40, the curve is very close to the final position with our method
(Figure 1 b) while it is still close to the initialization with the method in'? (Figure 1 e). This difference between
the two methods illustrates, on one hand, how the area prior makes the evolution faster when the curve is far
from the desired boundaries. On the other hand, the area prior stabilizes the curve near the desired boundaries
as shown in Figure 1 c (iteration 300) and Figure 1 d (iteration 500). Figures 1 f and g depict how the curve
passes through the desired boundaries without the area prior (method in'2). The use of the area prior permits
to detect accurately the vertebral boundaries.

We also show in Figure 2 representative examples of detecting the spleen in two CT images. The area prior
permits to detect accurately the spleen in both images as shown in Figures 2 ¢ and d, while the method in!? fails
as shown in Figure 2 g and h. The area prior speeds up the evolution as depicted in b (with the area prior) and
f (without the area prior).

5. CONCLUSION

We proposed an area prior for level set curve evolution segmentation. This prior embeds knowledge of an
approximate object area and has two positive effects. First, It speeds up significantly the evolution when the
curve is far from the target object boundaries. Second, it slows down the evolution when the curve is close to
the target. Results and comparisons illustrate the positive effects of the area prior. For many object detection
problems in medical imaging, the area prior may be a sufficient, simple, and fast alternative to cumbersome,
computationally expensive priors such as shape priors.
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(a) Initialization

(e) iteration 40 (f) iteration 300 iteration 500

Figure 1. Curve evolution results with our method, i.e., with the area prior (first line), and with the method in,'? ie.,
without the area prior (second line). (a): curve initialization for both methods. First line: (b), (c¢), and (d) depict the
position of the curve with the area prior respectively at iterations 40, 300, and 500. Second line: (e), (f), and (g) depict
the position of the curve with the method in'? at the same iterations. A, = 11.10%. u=5.

12. C. Li, C. Xu, C. Gui, and M. D. Fox, “Level Set Evolution without Re-Initialization: A New Variational
Formulation,” IEEE CVPR 1, pp. 430-436, 2005.

13. J. Carballido-Gamio, S. J. Belongie, and S. Majumdar, “Normalized Cuts in 3-D for Spinal MRI Segmenta-
tion,” IEEE Transactions on Medical Imaging 23(1), pp. 36-44, 2004.

14. J. A. Sethian, “Level set methods and fast marching methods,” Cambridge University Press, 1999.

15. V. Caselles, R. Kimmel, and G. Sapiro, “Geodesic active contours,” International Journal of Computer
Vision 22, pp. 61-79, 1997.

16. D. Cremers, “Dynamical statistical shape priors for level set based tracking,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, 28(8), pp. 1262-1273, 2006.

17. C. Vazquez, A. Mitiche, and R. Laganiere, “Joint Multiregion Segmentation and Parametric Estimation of

Proc. of SPIE Vol. 6914 691402-5



R
w2

(e) Initial curve (Image 2) (f) iteration 40 (g) iteration 400 (h)

Figure 2. Curve evolution results for spleen detection in two CT images with our method, i.e., with the area prior (first
line), and with the method in,'? i.e., without the area prior (second line). (a), (e): the two images with the initial curve.
First line: (b) and (c) depict the position of the curve with the area prior respectively at iterations 40, 400 (first image).
Second line: (f) and (g) depict the position of the curve with the method in'? at the same iterations. (d) and (h) show
the results (second image) respectively with our method and with the method in.'?
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