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ABSTRACT

In this paper a method to remove the divergence from a vector field is presented. When applied to a displacement
field, this will remove all local compression and expansion. The method can be used as a post-processing step
for (unconstrained) registered images, when volume changes in the deformation field are undesired. The method
involves solving Poisson’s equation for a large system. Algorithms to solve such systems include Fourier analysis
and Cyclic Reduction. These solvers are vastly applied in the field of fluid dynamics, to compensate for numerical
errors in calculated velocity fields. The application to medical image registration as described in this paper, has
to our knowledge not been done before. To show the effect of the method, it is applied to the registration of both
synthetic data and dynamic MR series of the liver. The results show that the divergence in the displacement
field can be reduced by a factor of 10 − 1000 and that the accuracy of the registration increases.

Keywords: Registration

1. INTRODUCTION

Image registration is a key technology in the analysis of (bio)medical imaging data in clinical practice and
biomedical research. By establishing spatial correspondence between images it enables, a.o., multi-modality
visualization, tracking of changes over time, and comparison between patient groups. A very common approach
to image registration is the optimisation of a similarity metric with respect to the parameters that describe the
transformation between two images. One of the most important aspects of a registration algorithm is the choice
of the right constraints on the deformation field. For instance, no folding should be allowed and solid structures
should only be transformed in a rigid manner.

For most applications, many structures in the human body can be considered incompressible, which leads to
the demand of a registration that does not allow for volume changes within those structures. If the registration of
such structures would be perfect, i.e. when the same structures are exactly mapped onto each other, there would
be no volume changes present in the resulting displacement field. However most times there is a need to apply
some constraints in order to avoid undesired volume changes. Several specialised volume preserving registration
methods have been developed.1,2 For a more general discussion on volume preserving regularisation terms, see.3

Sometimes it is hard to incorporate such constraints within the registration framework. Moreover, using an
incompressibility constraint during the registration may lead to a considerable slow down of the registration
when derivative information of the similarity metric can no longer be analytically calculated. To avoid these
issues we propose a post-processing step to remove any volume changes that are present in the displacement field
obtained with the registration algorithm.

2. METHOD

In this section we introduce the proposed method to remove volume changes in a displacement field. We start
by giving a general description of the followed procedure. This leads to the description of the Poisson equation
that needs to be solved. In the subsequent subsections two techniques that can be used to solve this equation
are introduced, after which the section is concluded with some remarks on other solvers.
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2.1 Correcting a vector field for volume changes

In mathematical terms an incompressibility constraint is equal to the demand for zero divergence in every point
of the displacement field:

∇ · −→u (x, y, z) = 0 (1)

A displacement field obeying this rule is called solenoidal. To make a displacement field solenoidal, we try to
find a correction field, −→ε (x, y, z), that makes the original field, −→u (x, y, z) solenoidal:

∇ · [−→u (x, y, z) −−→ε (x, y, z)] = 0 (2)

By searching for a field that can be described as the gradient of some potential field the coupled partial vector
equations are converted into a single differential:

−→ε (x, y, z) = ∇φ(x, y, z) (3)

Equation (2) and (3) together lead to

∆φ(x, y, z) = ∇ · −→u (x, y, z) (4)

Note that Equation (4) can also be obtained by using the Helmholtz decomposition theorem, which states
that any smooth vector field can be decomposed into a solenoidal (divergence free) field and an irrotational (curl
free) field:

F = −∇ξ + ∇× A (5)

where ∇ · A = ∇ · (−→u −−→ε ) = 0 and ∇× ξ = 0

Equation (4) is a Poisson equation, since ∇·−→u (x, y, z) = g(x, y, z) is a scalar potential that can be calculated
from −→u (x, y, z). In order to obtain a zero centred field we can subtract the mean value from −→ε (x, y, z), because
adding a constant vector to a vector field, does not change its divergence: thus any field −→ε (x, y, z) + −→c also
satisfies Equation (2).

Using discrete notation with sampling interval δ and central finite difference approximation of the second
derivative operator, Equation (4) turns into:

φp−1,q,r − 2φp,q,r + φp+1,q,r+
φp,q−1,r − 2φp,q,r + φp,q+1,r+

φp,q,r−1 − 2φp,q,r + φp,q,r+1 = δ2gp,q,r (6)

where for ease of notation we have taken the sampling interval δ to be equal in all directions and g(x, y, z) is
sampled using the same intervals, so φp,q,r = φ(pδ, qδ, rδ) and gp,q,r = g(pδ, qδ, rδ).

Equation (6) represents a very large system of equations. In fact it results in a equation for every point in
the original field. So when the original field is defined at 256*256*64 locations, this will result in a system of 4.2
million equations.

Solving Poisson’s equation for such large systems is a commonly faced problem in the field of fluid dynamics.
Numerically calculated velocity fields often have some imperfections in them: although fluids are incompressible
the calculated velocity fields are not solenoidal. To remove the divergence from the velocity field the same method
as described in this section, is used. Solving the resulting Poisson equation is done by using two techniques:
Fourier Analysis and Cyclic Reduction4.5 These techniques are described in the following sections.
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2.2 Fourier Analysis

We will start by looking at a 1D case to understand the procedure and then present the formulas for the full 3D
case, which is a straightforward extension. In one dimension the Poisson Equation (6) is reduced to:

φp−1 − 2φp + φp+1

δ2
= gp (7)

Using the inverse Fourier transform φp and gp can be expanded as:

φp =
1
L

L∑
l=1

φ̂le
−2πipl/L, gp =

1
L

L∑
l=1

ĝle
−2πipl/L (8)

where φ̂l and ĝl denote the Discrete Fourier Transform (DFT) coefficients. Combining equations (7) and (8)
and rearranging terms results in:

1
L

L∑
l=1

φ̂le
−2πipl/L

(
e2πil/L − 2 + e−2πil/L

δ2

)

=
1
L

L∑
l=1

ĝle
−2πipl/L (9)

which gives us a relation between the unknown φ̂l and the ĝl:

2φ̂l
cos(2πl/L) − 1

δ2
= ĝl (10)

Because the ĝl can be calculated from gp by means of the DFT and the φp can be calculated from φ̂l using the
inverse DFT from Equation (8), the 1D problem of Equation (7) is solved.

The extension to the 3D case is straightforward. In isotropically sampled images this leads to the following
expression for the Fourier coefficients φ̂l,m,n

2φ̂l,m,n

(
cos(

2πl

L
) + cos(

2πm

M
)

+ cos(
2πn

N
) − 3

)
= δ2ĝl,m,n (11)

Using the 3D (inverse) Fourier transforms the unknowns φp,q,r can now be computed.

Solving the Poisson equation using Fourier analysis thus involves three steps:

1. Compute the Fourier transform of gp. This can be done using the Fast Fourier Transform.

2. Use Equation (11) to compute the frequency components φ̂l,m,n.

3. Compute φp,q,r using the inverse DFT.
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2.3 Cyclic reduction

Cyclic reduction is best understood in 1D, but the generalisation to higher dimensions only becomes straight-
forward after the extension to 2D. To reduce notational complexity we make two additional simplifications with
respect to the sampling distance δ and the number of elements P in each dimension: δ = 1 and P = 2k, k ∈ R.
Writing Equation (7) using matrix notation then gives:⎛

⎜⎜⎜⎜⎜⎝

−2 1
1 −2 1

. . . . . . . . .
1 −2 1

1 −2

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

φ1

φ2

...
φP−1

φP

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

g1

g2

...
gP−1

gP

⎞
⎟⎟⎟⎟⎟⎠ (12)

or,

K1D
−→
Φ =

−→
G (13)

When we multiply row i of the matrix in Equation (12) by 2 and add the surrounding rows we see that the
elements of the columns i − 1 and i + 1 are eliminated. By performing this operation for all even rows, all
elements in the odd columns are eliminated and the result is a half-sized system. This procedure is known as
odd-even reduction.

Generalising to 2D the ordering of the elements must be specified. We use the default row major ordering
where a grid is put in the vector row by row. The matrix of Equation (13) now takes the form of a block
tridiagonal matrix K2D:

⎛
⎜⎜⎜⎜⎜⎝

A I
I A I

. . . . . . . . .
I A I

I A

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

φ1

φ2

...

...
φQ

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

g1

g2

...

...
gQ

⎞
⎟⎟⎟⎟⎟⎟⎠

(14)

where A = K1D − 2I and φi and gi are L sized vectors containing the ith rows of φ and g respectively. On
this system we can again apply odd-even reduction by multiplying the odd rows by I, the even rows by −A and
adding three consecutive rows, ending up with:

⎛
⎜⎜⎜⎜⎜⎝

2I2 − A2 I2

I2 2I2 − A2 I2

. . . . . . . . .
I2 2I2 − A2 I2

I2 2I2 − A2

⎞
⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎜⎜⎝

φ2

φ4

...

...
φQ−2

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

Ig1−Ag2 + Ig3 Ig3−Ag4 + Ig5
...
...

IgQ−3−AgQ−2 + IgQ−1

⎞
⎟⎟⎟⎟⎠ (15)

⎛
⎜⎜⎜⎝

A
A

. . .
A

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

φ1

φ3

...
φQ−1

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

g1−Iφ2

−Iφ2 + g3−Iφ4
...

gQ−Iφ
Q−2

⎞
⎟⎟⎟⎠ (16)
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Since Equation (15) has the same form as Equation (14) the odd-even reduction can be performed recursively
until one equation is left. The solution of the final equation can then be substituted in reverse order.

When ordering a 3D image slice by slice, the extension from 2D to 3D is straightforward. In Equation (14)
A now simply becomes A = K2D − 2I.

2.4 Other solvers

Other techniques to solve the linear system represented by Equation (6) include the Jacobi and Gauss-Seidel
method. Cyclic reduction produces an exact result for the chosen discretization of the derivatives, whereas the
Jacobi method gives approximated results.6 Because the rows of the matrix in Equations (12) and (14) all sum
up to zero, these matrices are not strictly diagonally dominant and thus the Gauss-Seidel method cannot be used
to solve this system.7 The fastest way to solve the system of Equation (6) is to use two steps of cyclic reduction
to reduce the system to a quarter of the original size and then apply the Fourier analysis technique. By using
only 2 steps of cyclic reduction the propagation of rounding errors in the right hand side vectors of Equation
(15) and (16) is also kept at an acceptable level. This combination is naturally called FACR.4

3. EXPERIMENTS

To demonstrate the effect of the method and show its performance, three types of experiments were done. Firstly
we used synthetic displacement fields together with synthetic and medical images with and without the addition
of noise. Secondly we applied our method to a clinical application. Lastly we investigated the performance of
our algorithm with respect to the required computation time.

3.1 Synthetic displacement fields

For the first experiments we created displacement fields, which we know to be solenoidal and applied them to both
a synthetic and a medical image to obtain deformed images. The registration error was determined by averaging
the length of the difference vector that was found by subtracting the displacement field found by the registration
algorithm from the known true solenoidal deformation. We choose the following solenoidal deformation field:⎛

⎝Ax sin(ωxy)
Ay sin(ωyx)
Az sin(ωzx)

⎞
⎠ (17)

where Ax, Ay and Az are the amplitudes and ωx, ωy and ωz are the frequencies in respectively the x,y and z
direction. A visualisation of this field together with the deformed images is given in the left column of Figure 1.

The synthetic image contains a slowly varying checker board pattern and the medical image is part of the
dynamic MR liver series. The deformed images were non-rigidly registered to their originals and the resulting
displacement field were analysed with respect to their divergence.

A translation registration is used to initialise a multi resolution non rigid registration that uses Mutual
Information as a similarity metric and B-splines to model the transformations. The used registration algorithm
is based on the work of Mattes et al .8 Thévenaz et al .9 and Rueckert et al ..10 The algorithm to remove the
divergence was implemented using routines from the open source Insight Segmentation and Registration Toolkit11

and Fortran routines from FishPack library in the Netlib mathematical software repository.

By adding noise to the test images, the correspondence between the images is reduced and the registration
becomes more difficult. We investigated whether our method can correct for the expected increase in registration
errors. Gaussian noise with varying variance was added to the synthetic image and the Signal to Noise Ratio
was calculated according to:

SNR = 20 10 log
(γ

σ

)
(18)

where γ is the dynamic range of the synthetic image and σ is the standard deviation of the applied Gaussian
noise.
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(a) Solenoidal field (b) Registration result (c) Corrected field

(d) Deformed image (e) Registered image (f) Corrected image

(g) Deformed image (h) Registered image (i) Corrected image

Figure 1: The left column shows the applied solenoidal displacement field and the corresponding deformed
images, the middle column shows the registration results with on the top row the displacement field for the
synthetic image and in the right column the divergence in the displacement field was removed.

3.2 Clinical application

In dynamic liver studies the registration of incompressible tissue plays an important role.12 These registrations
would normally have to be done in order to construct voxel-based time-intensity curves that are used for farmaco
kinetic modelling of contrast agent uptake in a tumour, which can e.g . be used to asses its malignancy. The
used data set consisted of five dynamic MR liver series. Each of these series contained six 3D MR images
acquired at a fixed interval of about 30 seconds. For each series all images were put into registration with the
3rd time point and the resulting displacement field was corrected for volume changes. In total 25 registrations
and corrections were performed. We analysed the divergence that was present in both the uncorrected and the
corrected displacement fields
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3.3 Performance tests

In the last type of experiments we measured the calculation time required for removing the divergence of dis-
placement fields of various sizes. These experiments were performed on a 64 bit machine with a 2.3 GHz AMD
processor and 16 GB of RAM.

4. RESULTS

The second column of Figure 1 shows the displacement field and the accordingly deformed images, found by
registration of the synthetically deformed images shown in the first column. In the last column the corrected
field and images are displayed. As can be seen from this figure, the corrected field shows more regularity and
resembles the original field better. This becomes more apparent when we calculate the divergence of both fields
in each point. Figure 2 shows a slice of this divergence image from both the unconstrained and the corrected
field.

(a) Unconstraint (b) Corrected

(c) Unconstraint (d) Corrected

Figure 2: A slice showing the divergence of the uncorrected (left) and corrected (right) field of both the synthetic
(top row) and the medical image (bottom row). The contrast and brightness values of both images are the same.

The average absolute divergence present in both the uncorrected and corrected field is listed in Table 1. After
correction the divergence in the field is reduced by about one order of magnitude.
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Image Divergence
uncorrected corrected

Synthetic 0.151 ± 0.003 (1.27 ± 0.05) · 10−2

Medical (7.96 ± 0.05) · 10−2 (3.55 ± 0.02) · 10−3

Table 1: Reduction in divergence for for both the synthetic and the medical image

Adding noise to the image slightly increases the divergence that is present in the displacement field after
registration, as can be seen in Figure 3. After post-processing this increase in local volume change is removed.

Divergence present in the displacement field after registration 
of a noisy image
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Figure 3: Divergence in the registered displacement field slightly increases with the noise level in the image, but
our method can reduce it to the same level again.

By looking at the average registration error in Figure 4 we see that the registration improves a bit by removing
the divergence form the displacement field found by the unconstrained registration algorithm.

Registration error
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Figure 4: Error in the registration before and after correction for unwanted volume changes

Table 2 lists the results from the registration of the dynamic MR liver series. The displayed values are
the average absolute value of the divergence that occurs in the displacement field for the uncorrected and the
corrected case. The average reduction of the divergence, due to our method is up to 3 orders of magnitude

The results of the performance experiments are presented in Figure 5, where the computation times are plotted
against the size of one dimension of the images. All images had equal size in each of the three dimensions. From
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Divergence
T Uncorrected Corrected

P
at

ie
nt

1 0 (2.78 ± 0.02) · 10−2 (9.05 ± 0.08) · 10−5

1 (1.58 ± 0.01) · 10−2 (7.08 ± 0.07) · 10−5

2 (1.35 ± 0.01) · 10−2 (6.23 ± 0.07) · 10−5

4 (7.76 ± 0.07) · 10−3 (3.90 ± 0.04) · 10−5

5 (9.62 ± 0.08) · 10−3 (4.67 ± 0.04) · 10−5

P
at

ie
nt

2 0 (2.15 ± 0.02) · 10−2 (1.47 ± 0.01) · 10−5

1 (4.36 ± 0.04) · 10−2 (3.11 ± 0.03) · 10−5

2 (1.91 ± 0.01) · 10−2 (1.28 ± 0.01) · 10−5

4 (3.28 ± 0.02) · 10−2 (1.91 ± 0.02) · 10−5

5 (12.12 ± 0.08) · 10−3 (7.68 ± 0.06) · 10−6
P
at

ie
nt

3 0 (7.27 ± 0.07) · 10−2 (4.80 ± 0.05) · 10−5

1 (6.06 ± 0.06) · 10−2 (4.08 ± 0.04) · 10−5

2 (2.24 ± 0.01) · 10−2 (1.47 ± 0.01) · 10−5

4 (3.76 ± 0.04) · 10−2 (2.77 ± 0.02) · 10−5

5 (2.21 ± 0.02) · 10−2 (1.76 ± 0.02) · 10−5

P
at

ie
nt

4 0 (3.38 ± 0.03) · 10−2 (3.01 ± 0.02) · 10−5

1 (7.23 ± 0.06) · 10−2 (6.74 ± 0.06) · 10−5

2 (1.92 ± 0.01) · 10−2 (1.57 ± 0.01) · 10−5

4 (1.34 ± 0.01) · 10−2 (1.24 ± 0.01) · 10−5

5 (5.92 ± 0.05) · 10−3 (6.07 ± 0.05) · 10−6

P
at

ie
nt

5 0 (6.59 ± 0.06) · 10−2 (5.49 ± 0.06) · 10−5

1 (4.02 ± 0.03) · 10−2 (3.79 ± 0.03) · 10−5

2 (3.53 ± 0.02) · 10−2 (2.52 ± 0.02) · 10−5

4 (2.08 ± 0.02) · 10−2 (1.50 ± 0.01) · 10−5

5 (2.85 ± 0.02) · 10−2 (2.36 ± 0.02) · 10−5

Table 2: Mean absolute values of the divergence in the uncorrected and corrected displacement field in a registered
dynamic MR liver series

the three steps - calculation of the divergence, solving Poissons equation and calculation of the gradient - the first
and last step always take approximately the same time while solving Poissons equation always takes the longest
time. For images smaller than 200 × 200 × 200, the total computation time is less than 40 seconds, with larger
images the computation time increases rapidly. However the computation time per voxel stays approximately
the same: 3µs. When we compare the computation time of our post-processing step to those of the registration,
which typically take hours, it is neglectable. The used algorithms were not optimised for speed and did not use
any parallel processing of the data. By using multiple processors its is very well possible to gain speed in all of
the above mentioned calculation steps.

5. CONCLUSION

In this paper we describe a method to remove volume changes from a displacement field. Although the techniques
have been applied in the field of fluid dynamics, the application to image registration is new. The described
method can be used as post-processing stage for any registration algorithm. Our experiments show that by
applying this technique on the displacement field found by a non rigid registration algorithm, we are able to reduce
the divergence in the field by a factor 10-1000. In initial experiments, we also found that this post-processing
step slightly improved the accuracy of image registration. Compared to the registration, the computational costs
of this post-processing step are neglectable.
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Computation time per voxel for various image size
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Figure 5: Computation times of the various steps in the proposed method to remove the divergence in a vector
field.
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