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ABSTRACT

It is a well-established result that steganographic capacity of perfectly secure stegosystems grows linearly with
the number of cover elements—secure steganography has a positive rate. In practice, however, neither the
Warden nor the Steganographer has perfect knowledge of the cover source and thus it is unlikely that perfectly
secure stegosystems for complex covers, such as digital media, will ever be constructed. This justifies study of
secure capacity of imperfect stegosystems. Recent theoretical results from batch steganography, supported by
experiments with blind steganalyzers, point to an emerging paradigm: whether steganography is performed in a
large batch of cover objects or a single large object, there is a wide range of practical situations in which secure
capacity rate is vanishing. In particular, the absolute size of secure payload appears to only grow with the square
root of the cover size. In this paper, we study the square root law of steganographic capacity and give a formal
proof of this law for imperfect stegosystems, assuming that the cover source is a stationary Markov chain and
the embedding changes are mutually independent.

Keywords: Steganography, steganographic capacity, square root law, Markov source

1. INTRODUCTION

In steganography, the sender communicates with the receiver by hiding her messages inside innocuous looking
(cover) objects. Most practical steganographic methods embed messages by slightly modifying individual ele-
ments of the cover, obtaining thus the modified stego object that conveys the hidden message. The goal here
is to make the stego objects statistically indistinguishable from covers. By this we mean that a passive warden
inspecting the traffic cannot construct a detector of stego objects that would work better than an algorithm that
makes random guesses. The assumption is that, up to a secret shared key, the Warden is familiar with all details
of the steganographic scheme: this is the so-called Kerckhoffs’ principle, which we also interpret to mean that
the Warden has complete knowledge of the distribution of covers.

Statistical detectability of embedding changes depends on their character and extent. Intuitively, it should
be possible to send short messages with lower risk of being detected than long messages. From a practical point
of view, the sender needs to know how long a message she can embed for a chosen risk—she needs to know the
steganographic capacity of the stegosystem. Unfortunately, determining the steganographic capacity analytically
for real digital media objects, such as digital images, is very difficult even for the simplest steganographic
paradigms, such as LSB embedding. The reason is the lack of accurate statistical models.

One may intuitively expect the steganographic capacity to be linear in the size of the cover object by referring
to a similar result for capacity of noisy communication channels. This is, indeed, valid if the stegosystem is
perfectly secure, since there is no possible detector.1,2 In view of the absence of provably secure steganographic
methods for real digital media, it makes sense to investigate steganographic capacity of imperfect embedding
methods for which detectors exist and inquire about the largest payload that can be embedded using their
ε-secure versions in the sense of Cachin.3
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Figure 1. The largest payload m(ni) embedded using the embedding operation of F5 that produces a fixed steganalyzer
error, PE , for images with ni non-zero DCT coefficients. The straight lines are corresponding linear fits. The slope of the
lines is 0.53 and 0.54, which is in good agreement with the square root law.

The fact that steganographic capacity is most likely sublinear was already suspected by Anderson4 in 1996:

“Thanks to the Central Limit Theorem, the more covertext we give the Warden, the better he will
be able to estimate its statistics, and so the smaller the rate at which [the Steganographer] will be
able to tweak bits safely. The rate might even tend to zero...”

Recent analysis of batch steganography and pooled steganalysis by Ker5 tells us that steganographic capacity
of imperfect stegosystems only grows as the square root of the number of communicated covers. This result
could be interpreted as the square root capacity law for a single image by dividing it into smaller blocks. The
capacity result, however, was obtained with the assumption that the individual images (blocks) form a sequence
of independent random variables, which is clearly false not only for images but also other digital media files.
The main goal of this paper is to study the steganographic capacity for the simplest form of dependence that
enables analytical reasoning—we assume that individual elements of the cover follow stationary Markov chain.
The reason why we expect that the square root capacity law will hold is its experimental verification6 for various
embedding methods in both spatial and DCT domains. In particular, the maximal payload that leads to the
same fixed detection accuracy of the steganalyzer is proportional to the square root of the cover size. A sample
result of these experiments on JPEG images for the embedding operation of F5 is reprinted in Figure 1. There,
the accuracy of the detector is represented using the minimal average classification error under equal prior
probabilities of cover and stego images, PE . For each set of images with a given number of non-zero DCT
coefficients, n, the largest payload, m(n), was iteratively found for which the steganalyzer obtained a fixed value
of PE . A linear fit through the experimental data displayed in a log-log plot confirms the square root law.

This paper is organized as follows. In the next section, we introduce notation, definitions, and basic assump-
tions under which we will operate. The square root law of steganographic capacity (SRL) is formulated and
proved in Section 3. The result is interpreted and discussed in Section 4. To improve the flow of arguments,
two important but rather technical results needed to prove the SRL are formulated as lemmas and moved to an
appendix.

2. BASIC ASSUMPTIONS

In this section, we introduce notation and formulate and discuss three basic assumptions under which we prove
the SRL. The first assumption concerns the impact of embedding. We postulate that the stego object is obtained
by applying a mutually independent embedding operation to each cover element. This type of embedding can
be found in majority of practical embedding methods (see, e.g., Ref. 7 and the references therein). The second



LSB embedding:

B =

±1 embedding:

B =

F5:

B =

= 1 − β = β = 1
2β = 1

Figure 2. Examples of several embedding methods in the form of a functional matrix B.

assumption is our model of covers. We require the individual cover elements to form a first-order Markov chain
because this model is analytically tractable while allowing study of more realistic cover sources with memory.
Finally, the third assumption essentially states that the steganographic method is not perfectly secure.

Throughout the paper, we use A = (aij) to denote a matrix with elements aij , calligraphic font (X ) to
denote sets, and capital letters (X, Y ) to denote random variables, both vector and scalar. If y is a vector
with components y = (y1, . . . , yn), yl

k denotes the subsequence yl
k = (yk, . . . , yl). If Y = (Y1, . . . , Yn) is a

random vector with underlying probability distribution P , then P (Y l
k = yl

k) denotes the marginal probability
P (Yk = yk, Yk+1 = yk+1, . . . , Yl = yl).

An n-element cover source will be represented using a random variable Xn
1 , (X1, . . . ,Xn) distributed

according to some general distribution P (n) over Xn, X , {1, . . . , N}. A specific cover object is a realization
of Xn

1 and will be denoted with the corresponding lower case letter xn
1 , (x1, . . . , xn) ∈ Xn. A stegosystem,

with covers of fixed size n, is a triple Sn = (Xn
1 ,Φ(n),Ψ(n)) consisting of the random variable describing the

cover source, embedding mapping Φ(n), and extraction mapping Ψ(n). The embedding mapping Φ(n) applied

to Xn
1 induces another random variable Y n

1 , (Y1, . . . , Yn) with probability distribution Q
(n)
β over Xn. Specific

realizations of Y n
1 are called stego objects and will be denoted yn

1 , (y1, . . . , yn). Here, β ≥ 0 is a scalar parameter
of embedding whose meaning will be explained shortly. The specific details of the embedding (and extraction)
mappings are immaterial for our study. We only need to postulate the probabilistic impact of embedding.

Assumption 1: [Mutually independent embedding] The embedding algorithm visits every cover ele-
ment Xk and, independently of all other elements, modifies it to a corresponding element of the stego object Yk

with probability

Qβ(Yk = j|Xk = i) , bi,j(β) =

{

1 + βci,i if i = j

βci,j otherwise,
(1)

for some constants (ci,j) with ci,j ≥ 0 for i 6= j. Note that because
∑

j∈X bi,j = 1, we must have ci,i = −∑

j 6=i ci,j

for each i ∈ X . The matrix (ci,j) reflects the inner workings of the embedding algorithm, while the parameter
β captures the extent of embedding changes. It will be useful to think of β as the relative number of changes
(change rate) or some function of the change rate. Also note that we can find sufficiently small β0 such that
bi,i(β) > 0 for β ∈ [0, β0] and all i ∈ X .

Because the matrix Bβ , (bi,j(β)) does not depend on k ∈ {1, . . . , n} or the history of embedding changes,
one can say that the stego object is obtained from the cover by applying to each cover element a Mutually
Independent embedding operation (we speak of MI embedding). The independence of embedding modifica-
tions implies that the conditional probability of stego object given the cover object can be factorized, i.e.,

Q
(n)
β (Y n

1 |Xn
1 ) =

∏n
i=1 Qβ(Yi|Xi).

Many embedding algorithms across different domains use MI embedding. Representative examples are LSB
embedding, ±1 embedding, stochastic modulation, Jsteg, MMx, and various versions of the F5 algorithm.7

Examples of the matrix Bβ for three selected embedding methods are shown in Figure 2.

Next, we formulate our assumption on the cover source.

Assumption 2: [Markov cover source] We assume that the cover source Xn
1 is a first-order stationary

Markov Chain over X , which we will often abbreviate as simply Markov Chain (MC). This source is completely



described by its stochastic transition probability matrix A , (aij) ∈ R
N×N , aij = Pr(Xk = j|Xk−1 = i), and

by the initial distribution Pr(X1). The probability distribution induced by the MC source generating n-element
cover objects satisfies P (n)(Xn

1 = xn
1 ) = P (n−1)(Xn−1

1 = xn−1
1 )axn−1xn

, where P (1)(X1) is the initial distribution.
We further assume that the transition probability matrix of the cover source satisfies aij ≥ δ > 0, for some δ

and thus the MC is irreducible. The stationary distribution of the MC source is a vector π , (π1, . . . , πN )
satisfying πA = π. In this paper, we will always assume that the initial distribution P (1)(X1) = π, which implies
P (n)(Xk) = π for every n and k. This assumption simplifies the analysis without loss of generality because the
marginal probabilities P (n)(Xk) converge to π with exponential rate w.r.t. k (see Doob,8 equation (2.2) on page
173). In other words, MCs are “forgetting” their initial distribution with exponential rate.

Under the above assumption and the class of MI embedding, the source of stego objects no longer exhibits
the Markov property and forms a Hidden Markov Chain (HMC) instead.9 The HMC model is described by its
hidden states (cover elements) and output transition probabilities (MI embedding). Hidden states are described
by the cover MC and the output probability transition matrix B is taken from the definition of MI embedding.

Unless stated otherwise, in the rest of this paper Q
(n)
β denotes the probability measure induced by the HMC

source embedded with parameter β into n-element MC cover objects. By the stationarity of the MC source, the

marginal probabilities P (n)(Xk+1
k ) = P (2)(X2

1 ) and Q
(n)
β (Y k+1

k ) = Q
(n)
β (Y 2

1 ) for all k. Sometimes we will omit
the number of elements, n, and denote as P and Qβ the probability distribution over cover and stego objects,
respectively.

The third assumption we formulate concerns the entire stegosystem Sn. Because it is known1,2 that stegano-
graphic capacity of perfectly secure stegosystems is linear in n, the SRL can only apply to imperfect stegosystems.

Assumption 3: [FI condition] We assume that the stegosystem Sn = (Xn
1 ,Φ(n),Ψ(n)) is not perfectly

secure in the sense of Cachin3 (the KL divergence DKL(P (n)||Q(n)
β ) > 0). For our special case of Markov cover

sources Xn
1 and MI embedding Φ(n), this assumption can be equivalently stated in two different forms:

1. The pair (P (2), Q
(2)
β ) does not satisfy so called Fisher Information condition,

∀y2
1 ∈ X 2

(

P (2)(X2
1 = y2

1) > 0
)

⇒
( d

dβ
Q

(2)
β (y2

1)
∣
∣
β=0

= 0
)

. (2)

2. There exists a pair of states (i, j) such that

P (X2
1 = (i, j)) 6= Qβ(Y 2

1 = (i, j)) for all β¿0. (3)

The complete proof of equivalence of each condition and perfect security appears in [10, Cor. 7]. Here, we only
provide a few brief arguments. First of all, perfectly secure stegosystems must satisfy (2) because the Fisher
information

I(0) = EP

[(
d

dβ
Q

(2)
β (y2

1)
∣
∣
β=0

)2
]

appears as a coefficient in front of β2 in the Taylor expansion of KL divergence DKL(P (2)||Q(2)
β ) w.r.t. β and

thus d
dβ Q

(2)
β (y2

1)
∣
∣
β=0

must be zero whenever P (2)(y2
1) > 0. The opposite implication (zero Fisher information

implies zero KL divergence) is not valid in general but holds for MI embedding as shown in Ref. 10. The second
condition follows from the fact that second-order marginal statistics fully describe the first-order MC process
and thus if (3) does not hold, then both cover and stego distributions are the same for all n (the stegosystem is
perfectly secure).

Finally, we would like to stress that Assumptions 1–3 are not overly restrictive and will likely be satisfied
for all practical steganographic schemes in some appropriate representation of the cover. For example, in digital
images it is unlikely that the distribution of each pixel depends only on its neighbor, but the dependency is likely
to be spatially-limited. Then the image can be modeled as a Markov chain made up of overlapping pixel groups.
Furthermore, if a stegosystem preserves the first-order statistics of a cover source, it is likely to be detectable by
considering higher-order dependencies: the apparently-perfect stegosystem becomes imperfect when the cover is
represented by pairs or groups of pixels, coefficients, or some other derived quantities.



3. THE SQUARE ROOT LAW OF STEGANOGRAPHIC CAPACITY

In this section, we formulate and prove the main result of this paper, which states that the steganographic
capacity of imperfect stegosystems with Markov covers and mutually independent embedding operation only
grows with the square root of the number of cover elements. This finding has some fundamental implications
in steganography and steganalysis. Probably the most remarkable one is that steganographic capacity exhibits
quite different properties when compared with capacity of noisy channels or lossless compression. For example,
while a mismatch in source model decreases the compression gain by a constant (the KL divergence between
the source model and true source distribution), a cover model mismatch in steganography leads to vanishing
capacity.

For the formulation of the SRL Theorem, we borrow the term used in Ref. 5. We will say that the Steganog-
rapher is at risk (w.r.t. some fixed tuple (P ∗

FA
, P ∗

MD
), with 0 < P ∗

FA
< 1 and 0 < P ∗

MD
< 1 − P ∗

FA
) if the

Warden has a detector with probability of false alarms and missed detection PFA, PMD satisfying PFA < P ∗
FA

and PMD < P ∗
MD

.

Theorem 1: [The square root law of steganography for Markov covers] For a sequence of stegosys-

tems (Sn)∞n=1 satisfying Assumptions 1–3, the following holds:

1. If the sequence of embedding parameters β(n) increases faster than 1/
√

n in the sense that limn→∞
β(n)
1/

√
n

=

∞, then, for sufficiently large n, the Steganographer is at risk for arbitrary tuple (P ∗
FA

, P ∗
MD

).

2. If β(n) increases slower than 1/
√

n, limn→∞
β(n)
1/

√
n

= 0, then the stegosystem can be made ε-secure for any

ε > 0 for sufficiently large n. This implies that the Steganographer is not at risk, for any tuple (P ∗
FA

, P ∗
MD

).

3. Finally, if β(n) grows asymptotically as fast as 1/
√

n, limn→∞
β(n)
1/

√
n

= ε for some 0 < ε < ∞, then the

stegosystem is asymptotically Cε2-secure for some constant C.

Proof: We prove each part of the theorem separately. We remind the reader that, under our interpretation of

Kerckhoffs’ principle, the Warden knows the distribution of cover objects P (n) = Q
(n)
0 .

Part 1 [Steganographer at risk] Here, we prove that the Steganographer is at risk w.r.t. any (P ∗
FA

, P ∗
MD

)
for all sufficiently large n. This means that we need to construct a sequence of detectors, Dn, for the following
composite binary hypothesis testing problem

H0 : β = 0

H1 : β > 0

based on observing one stego object (one realization of a random sequence with distribution Q
(n)
β ). The error

probabilities of these detectors are required to satisfy PFA < P ∗
FA

and PMD < P ∗
MD

for all sufficiently large n.
We now describe the test statistic for each detector Dn.

Equation (3) in Assumption 3 guarantees the existence of pair of states (i, j) such that P (X2
1 = (i, j)) 6=

Qβ(Y 2
1 = (i, j)) for all β > 0. Thus, we define the test statistic νβ,n for detector Dn as

νβ,n =
√

n

∣
∣
∣
∣

1

n − 1
hβ [i, j] − P

(
X2

1 = (i, j)
)
∣
∣
∣
∣
, (4)

where 1
n−1hβ [i, j] is the relative count of the number of consecutive pairs (i, j) in an n-element stego object

embedded using parameter β (In terms of indicator functions∗, hβ [i, j] =
∑n−1

k=1 I{Yk=i,Yk+1=j}). Note that due

to stationarity of the cover source, E
[

1
n−1hβ [i, j]

]

= Qβ(Y 2
1 = (i, j)) for all β.

We prove the following for the difference between the means of νβ,n under both hypotheses

lim
n→∞

E[νβ,n] − E[ν0,n] = ∞ when
√

nβ → ∞. (5)

∗For any two statements A, B, I{A,B} = 1 if A and B are true, otherwise I{A,B} = 0.



Suppose, for a contradiction, that there exists K > 0, and a strictly increasing sequence of integers (nm)∞m=1

for which
|E[νβ,nm

] − E[ν0,nm
]| < K for all m. (6)

If lim supm→∞ β(nm) = β0 > 0, then there exists a subsequence of (nm)∞m=1, which we denote the same to
keep the notation simple, such that limm→∞ β(nm) = β0. For this subsequence, however, the difference

E[νβ,nm
] − E[ν0,nm

] =
√

nm

∣
∣
∣Qβ

(
Y 2

1 = (i, j)
)
− P

(
X2

1 = (i, j)
)
∣
∣
∣

tends to ∞ with m → ∞ because by (3) the absolute value converges to a positive value independent of m. This
is, however, a contradiction with (6).

If limm→∞ β(nm) = 0, we find the contradiction in a different manner. By the FI condition from As-
sumption 3, there must exist states (i, j) such that d

dβ Qβ=0(Y
2
1 = (i, j)) 6= 0. From the Taylor expansion† of

Qβ(Y 2
1 = (i, j)) at β = 0 with Lagrange remainder and 0 < ξ < 1

E[νβ,nm
] − E[ν0,nm

] =
√

nmβ

∣
∣
∣
∣

d

dβ
Qβ=0

(
Y 2

1 = (i, j)
)

+
1

2
β

d2

dβ2
Qξβ

(
Y 2

1 = (i, j)
)
∣
∣
∣
∣
, (7)

which tends to ∞ as m → ∞ when
√

nmβ → ∞, which is again a contradiction with (6). We summarize that
E[νβ,n] − E[ν0,n] → ∞ holds for any sequence β(n) for which

√
nβ(n) → ∞.

Lemma 1 in the Appendix shows that exponential forgetting of Markov chains guarantees that

Var [νβ,n] < C (8)

for some constant C independent of n and β. Equations (5) and (8) are all we need to construct detectors Dn

that will put the Steganographer at risk for all sufficiently large n. The detector Dn has the following form

νβ,n > T decide stego (β > 0)

νβ,n ≤ T decide cover (β = 0),

where T is a fixed threshold. We now show that T can be chosen to make the detector probability of false alarms
and missed detections satisfy

PFA < P ∗
FA

PMD < P ∗
MD

for sufficiently large n. The threshold T (P ∗
FA

) will be determined from the requirement that the probability of
the right tail, x ≥ T (P ∗

FA
), under H0 is at most P ∗

FA
. Using Chebyshev’s inequality,

PFA = Pr(ν0,n ≥ T ) ≤ Pr(|ν0,n| ≥ T ) ≤ Var [ν0,n]

T 2
<

C

T 2
.

Setting T =
√

C/P ∗
FA

gives us PFA < P ∗
FA

.

Because of the growing difference between the means (5), we can find n large enough so that the probability
of the left tail, x ≤ T (P ∗

FA
), under H1 is less than or equal to P ∗

MD
. Again, we use the Chebyshev’s inequality

with the bound on the variance of νβ,n to prove this

PMD = Pr
(
νβ,n < T (P ∗

FA)
)

= Pr
(
νβ,n − E[νβ,n − ν0,n] < T (P ∗

FA) − E[νβ,n − ν0,n]
)

≤ Pr
(
|νβ,n − E[νβ,n − ν0,n]| > E[νβ,n − ν0,n] − T (P ∗

FA)
)

<
C

(E[νβ,n − ν0,n] − T (P ∗
FA

))
2 ,

†The Taylor expansion is valid since by its form the function Qβ(Y k+1

k = (i, j)) is analytic.



which can be made arbitrarily small for sufficiently large n because E[νβ,n]−E[ν0,n] → ∞. This establishes the
first part of the square root law.

Part 2 [Asymptotic undetectability] Now we prove that when
√

nβ → 0, then the KL divergence between
the distributions of cover and stego objects tends to zero,

dn(β) = DKL

(

P (n)||Q(n)
β

)

=
∑

yn

1
∈Xn

P (n)(Xn
1 = yn

1 ) lg
P (n)(Xn

1 = yn
1 )

Q
(n)
β (Y n

1 = yn
1 )

→ 0, (9)

which will establish that the steganography is ε-secure for any ε > 0 for sufficiently large n. By the well-known
connection between hypothesis testing and KL divergence,3 no nontrivial upper bound on false alarms and missed
detections will be met, for large enough n.

Using Taylor expansion of dn(β) with Lagrange remainder at β = 0 we have dn(β) = dn(0)+d′n(0)β+
d′′

n
(υβ)
2! β2,

where 0 < υ < 1. This step is valid since under our assumptions all derivatives of (normalized) KL divergence
are continuous w.r.t. β, for proof see Ref. 11. The term dn(0) is zero because both distributions are the same
when β = 0. The term d′n(0) is also zero because

d′n(0) = lim
β→0

d′n(β) = lim
β→0

−1

log 2

∑

yn

1

P (n)(Xn
1 = yn

1 )

d
dβ Q

(n)
β (Y n

1 = yn
1 )

Q
(n)
β (Y n

1 = yn
1 )

=
−1

log 2

∑

yn

1

d

dβ
Q

(n)
β=0(Y

n
1 = yn

1 )

= lim
β→0

−1

log 2

d

dβ

( ∑

yn

1

Q
(n)
β (Y n

1 = yn
1 )

︸ ︷︷ ︸

=1

)

= 0.

Finally, by Lemma 2 in Appendix there exists a constant C̃, such that 1
nd′′n(β) < C̃ for β ∈ [0, β0] and all n.

Thus, dn(β) ≤ 1
2 C̃nβ2 → 0 when

√
nβ → 0.

Part 3 [Asymptotic Cε2-security] To prove the third part of the square root law, we again expand the KL
divergence dn(β) at β = 0 up to the third order with the Lagrange form of the remainder

dn(β) =
1

2!

(d′′n(0)

n

)

nβ2 +
1

3!

(d′′′n (υβ)

n

)

nβ3 (10)

for some 0 < υ < 1. According to Ref. 11, both normalized derivatives of the KL divergence, 1
nd′′n(0) and

1
nd′′′n (υβ), are upper bounded by the same finite constant C̃ for all β ∈ [0, β0]. Since β(n)

√
n → ε with n → ∞,

β(n) → 0 and thus the expansion is valid. By the same reason, the second term in (10) converges to zero as
n → ∞. From this result, we obtain the asymptotic bound on KL divergence in the form dn(β) ≤ 1

2 C̃ε2 as was
to be shown. Q.E.D.

4. CONCLUSION

A general theme is now emerging in steganography literature: whether steganography is performed in a large
batch of cover objects or a single large object, there is a wide range of situations in which secure capacity grows

according to the square root of the cover size. Such results will likely hold for all stegosystems that are not
perfectly secure in the sense of Cachin. It appears that the theory of hidden information is quite unlike the
traditional theory of information.

The result presented in this paper is the first to allow dependence between the components of the cover. We
have proved the square root law of steganographic capacity for single covers under essentially three conditions:
that they can be represented as a Markov chain, that the embedding operation can be modeled as independent
substitutions of one state for another, and that the embedding scheme does not preserve all statistical properties
of the cover. This applies to a very wide range of popular steganographic algorithms, in spatial and transform
domains. The last condition is important because it is known that perfectly secure steganography, conveying
information at a linear rate, can always be constructed if the cover source is perfectly understood.12 However, we



have argued that digital media cover sources will never be perfectly understood. We should explain, therefore,
why it makes sense to assume that the Warden has perfect knowledge of the covers (necessary for construction of
the detectors in Part 1 of the proof). It can be justified by the cautious nature of Kerckhoffs’ principle: although
the Steganographer may believe that the Warden does not know the complete cover distribution, there is always
the risk that the Warden knows more than the Steganographer does. For example, she might know more about
dependencies between cover elements. Since the Steganographer cannot say for certain how much the Warden
will know, they must assume the worse case: complete knowledge.

The formulation of our theorem parallels that of Ref. 5: embedding at a rate faster than
√

n leads to
eventual detection, whereas embedding at a rate slower than

√
n leads to eventual ε-security. At rates A

√
n, the

stegosystem is ε-secure. We clarify, though, that this does not refer to embedding at a diminishing rate in a single
cover object (which would be a different theorem, and is an avenue for further research). The quantity β(n)
describes a constant embedding rate throughout an object of size n: one could think of the function β as giving
a strategy describing how much data can be hidden in an object of each size. The SRL says that over-ambitious
strategies lead to easier detection in larger objects, cautious strategies lead to more difficult detection in larger
objects, and quantifies the boundary.

The square root law has some important implications in steganography and steganalysis. Most significantly,
the simple fact that capacity is sublinear means that a true steganographic channel, with positive rate, cannot be
constructed unless the cover source is known perfectly. For steganalysis, the SRL explains in part why the same
relative payload can be detected more accurately in large images (however it is not the whole explanation: larger
images tend to have more smooth gradients and less noise, and these factors also influence detection accuracy).
Thus, when benchmarking steganography, the distribution of image sizes in the database influences the reliability
of steganalysis and makes it more difficult to compare the results on two different databases. To resolve this
issue, one might switch to measuring the payload in bits per square root of pixel.

Finally, we emphasize that the square root law of capacity relates to the number of changes caused by the
embedding process, and not to the size of the information transmitted. With adaptive source coding methods
(even simple matrix embedding based on Hamming codes will do) the number of bits of information which
can be conveyed, by making at most c changes in n cover locations, is O(c log(n/c)). Therefore the SRL
implies an asymptotic information capacity which is O(

√
n log n) (i.e., still sublinear), in the absence of perfect

steganography.
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APPENDIX

In this appendix, we include two auxiliary lemmas needed in the proof of the SRL in Section 3.

Lemma 1: Let νβ,n be the random variable defined in (4) for a fixed value of the parameter β and cover
size n. The variance of this random variable can be bounded by a constant C for every value of β and n

∃C,∀β,∀n Var [νβ,n] ≤ C.

Proof: From the definition of νβ,n

(n − 1)2

n
Var [νβ,n] = E

[( n−1∑

k=1

I{Y k+1

k
=(i,j)}

)2]

− E
[ n−1∑

k=1

I{Y k+1

k
=(i,j)}

]2

≤
n−1∑

k=1

Var [I{Y k+1

k
=(i,j)}] +

+2
[ ∑

k+1<k̂

E[I{Y k+1

k
=(i,j)}I{Y k̂+1

k̂
=(i,j)}] − E[I{Y k+1

k
=(i,j)}]E[I{Y k̂+1

k̂
=(i,j)}]

]

+ 2n. (11)



In the last sum, we bounded all terms for k = k̂ − 1 by 1 and thus obtained the term 2n in the last inequality.
For any event A,

Var [IA] = Pr(A) − Pr(A)2 = 1
4 −

(
Pr(A) − 1

2

)2 ≤ 1
4

so the first term is bounded by n−1
4 .

Finally, we find an upper bound on the sum in (11) in the form of C2n for some positive constant C2. This

will give us the proof because Var [νβ,n] ≤ n
(n−1)2 ((n − 1) 1

4 + 2C2n + 2n) ≤ 4( 1
4 + 2C2 + 2), and n2

(n−1)2 ≤ 4 for

n ≥ 2. Thus C = 8C2 + 9.

We start by showing that

Qβ

(
Y k+1

k = (i, j), Y k̂+1

k̂
= (i, j)

)
− Qβ

(
Y k+1

k = (i, j)
)
Qβ

(
Y k̂+1

k̂
= (i, j)

)

=
[

Qβ

(
Y k̂+1

k̂
= (i, j)

∣
∣Y k+1

k = (i, j)
)
− Qβ

(
Y k̂+1

k̂
= (i, j)

)

︸ ︷︷ ︸

≤N2ρk̂−k−2

]

Qβ

(
Y k+1

k = (i, j)
)
≤ N2ρk̂−k−2, (12)

for some 0 ≤ ρ < 1 and k + 1 < k̂ (N is the number of all possible states of the MC). In other words, the
HMC is exponentially forgetting its initial condition. Then, we will be able to bound the sum in (11) by

N2
∑n

k̂=3

∑k̂−2
k=1 ρk̂−k−2 = N2

∑n
k̂=3

1−ρk̂−2

1−ρ ≤ N2
∑n

k̂=3
1

1−ρ = N2(n − 2) 1
1−ρ ≤ N2n

1−ρ . Thus, C2 = N2

1−ρ because

Qβ

(
Y k+1

k = (i, j)
)
≤ 1.

The term Qβ

(
Y k̂+1

k̂
= (i, j)

)
in (12) can be written as

Qβ

(
Y k̂+1

k̂
= (i, j)

)
=

∑

(̂i,ĵ)

Qβ

(
Y k̂+1

k̂
= (i, j)

∣
∣X k̂+1

k̂
= (̂i, ĵ)

)
P

(
X k̂+1

k̂
= (̂i, ĵ)

)
=

∑

(̂i,ĵ)

bî,ibĵ,jP
(
X k̂+1

k̂
= (̂i, ĵ)

)
. (13)

The term Qβ

(
Y k̂+1

k̂
= (i, j)

∣
∣Y k+1

k = (i, j)
)

in (12) can be written as

Qβ

(
Y k̂+1

k̂
= (i, j)

∣
∣Y k+1

k = (i, j)
)

=
Qβ

(
Y k̂+1

k̂
= (i, j), Y k+1

k = (i, j)
)

Qβ

(
Y k+1

k = (i, j)
)

=

∑

(̂i,ĵ)

∑

(̃i,j̃) bî,ibĵ,jbĩ,ibj̃,jP
(
X k̂+1

k̂
= (̂i, ĵ),Xk+1

k = (̃i, j̃)
)

Qβ

(
Y k+1

k = (i, j)
) = (#).

Finally, P
(
X k̂+1

k̂
= (̂i, ĵ),Xk+1

k = (̃i, j̃)
)

can be factorized as P
(
X k̂+1

k̂
= (̂i, ĵ)|Xk+1

k = (̃i, j̃)
)
P

(
Xk+1

k = (̃i, j̃)
)
.

Due to the Markov property of the random variable Xn
1 , P

(
X k̂+1

k̂
= (̂i, ĵ)|Xk+1

k = (̃i, j̃)
)

= P
(
X k̂+1

k̂
=

(̂i, ĵ)|Xk+1 = j̃
)
. For each pair of indices (̂i, ĵ), we define index j̃max = arg maxj̃ P

(
X k̂+1

k̂
= (̂i, ĵ)|Xk+1 = j̃

)
.

Then

(#) ≤
∑

(̂i,ĵ) bî,ibĵ,jP
(
X k̂+1

k̂
= (̂i, ĵ)

∣
∣Xk+1 = j̃max

) ∑

(̃i,j̃) bĩ,ibj̃,jP
(
Xk+1

k = (̃i, j̃)
)

Qβ

(
Y k+1

k = (i, j)
)

(13)
=

∑

(̂i,ĵ)

bî,ibĵ,jP
(
X k̂+1

k̂
= (̂i, ĵ)

∣
∣Xk+1 = j̃max

)
. (14)

Now, we can combine (13) and (14) to prove (12) as

Qβ

(
Y k̂+1

k̂
= (i, j)

∣
∣Y k+1

k = (i, j)
)
− Qβ

(
Y k̂+1

k̂
= (i, j)

)

(13),(14)

≤
∑

(̂i,ĵ)

bî,ibĵ,j

(

P
(
X k̂+1

k̂
= (̂i, ĵ)

∣
∣Xk+1 = j̃max

)
− P

(
X k̂+1

k̂
= (̂i, ĵ)

))

=
∑

(̂i,ĵ)

bî,ibĵ,jP
(
Xk̂+1 = ĵ

∣
∣Xk̂ = î

)(

P
(
Xk̂ = î

∣
∣Xk+1 = j̃max

)
− P

(
Xk̂ = î

))

≤ N2ρk̂−k−2. (15)



It is a well known result in MCs that the absolute value of the term P
(
Xk̂ = î

∣
∣Xk+1 = j̃max

)
− P

(
Xk̂ = î

)

in (15) can be bounded by ρk̂−k−2 (exponential forgetting), for some constant 0 ≤ ρ < 1. This is because the
MC is irreducible due to the assumption ai,j ≥ δ (see equation (2.2) on page 173 in Doob8). This bound does
not depend on j̃max. The final bound does not depend on β because bî,i ≤ 1 and bĵ,j ≤ 1. Q.E.D.

Lemma 2: Let dn(β) = DKL(P (n)||Q(n)
β ) be the KL divergence between n-element cover and stego sources as

defined in (9). Then,

∃β0,∃C > 0,∀β ∈ [0, β0],∀n
1

n
d′′n(β) < C̃.

In other words, the second derivative of the normalized KL divergence, 1
nd′′n(β), can be bounded by a constant

C̃ for each n and β. And this bound does not depend on n or β.

Proof: The problem of bounding normalized derivatives of KL divergence for the case of HMC was studied by
Mevel et al.13 Their results, namely Theorem 4.4 and Theorem 4.7, however, cannot be directly applied to our
case because our assumptions are different. In particular, Assumption C on page 1124 is not satisfied because
we allow zeros in matrix B. Motivated by this work, we derive a more general result about the normalized KL
divergence and its derivatives (see the report in Ref. 11). Intuitively, we can expect the normalized KL divergence
to be arbitrarily smooth and bounded due to the smooth transition from P to Qβ and the fact that dn(0) = 0.
The main result of the report, formally stated in [11, Theorem 3], says that every derivative of 1

ndn(β) w.r.t. β
(and the function 1

ndn(β) itself) is uniformly bounded and Lipschitz-continuous (or simply continuous) on [0, β0].
These properties are independent of n ≥ 1. From this fact, Lemma 2 can be obtained as a special case. This
result also allows us to expand the KL divergence into a Taylor series with respect to β. Q.E.D.
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